Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
NPJ Vaccines ; 7(1): 74, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35773301

ABSTRACT

Respiratory syncytial virus (RSV) G glycoprotein has recently reemerged as a vaccine antigen due to its ability to elicit potent neutralizing antibodies and ameliorate disease in animal models. Here we designed three constructs to display the G central conserved domain (Gcc) focused on inducing broad and potent neutralizing antibodies. One construct displaying Gcc from both RSV subgroups trimerized via a C-terminal foldon (Gcc-Foldon) was highly immunogenic in mice and in MIMIC, a pre-immune human in vitro model. To explore an optimal RSV vaccine, we combined the Gcc-Foldon antigen with a stabilized pre-fusion-F nanoparticle (pre-F-NP) as a bivalent vaccine and detected no antigenic interference between the two antigens in the MIMIC model. In RSV-primed macaques, the bivalent vaccine elicited potent humoral responses. Furthermore, both Gcc-Foldon and the bivalent vaccine conferred effective protection against RSV challenge in mice. This two-component vaccine could potentially provide effective protection against RSV infection in humans and warrants further clinical evaluation.

2.
Cell Rep ; 40(12): 111399, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36130517

ABSTRACT

Human metapneumovirus (hMPV) is a major cause of acute respiratory infections in infants and older adults, for which no vaccines or therapeutics are available. The viral fusion (F) glycoprotein is required for entry and is the primary target of neutralizing antibodies; however, little is known about the humoral immune response generated from natural infection. Here, using prefusion-stabilized F proteins to interrogate memory B cells from two older adults, we obtain over 700 paired non-IgM antibody sequences representing 563 clonotypes, indicative of a highly polyclonal response. Characterization of 136 monoclonal antibodies reveals broad recognition of the protein surface, with potently neutralizing antibodies targeting each antigenic site. Cryo-EM studies further reveal two non-canonical sites and the molecular basis for recognition of the apex of hMPV F by two prefusion-specific neutralizing antibodies. Collectively, these results provide insight into the humoral response to hMPV infection in older adults and will help guide vaccine development.


Subject(s)
Metapneumovirus , Aged , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Humans , Metapneumovirus/physiology , Viral Fusion Proteins
3.
Sci Immunol ; 5(47)2020 05 01.
Article in English | MEDLINE | ID: mdl-32358170

ABSTRACT

A stabilized form of the respiratory syncytial virus (RSV) fusion (F) protein has been explored as a vaccine to prevent viral infection because it presents several potent neutralizing epitopes. Here, we used a structure-based rational design to optimize antigen presentation and focus antibody (Ab) responses to key epitopes on the pre-fusion (pre-F) protein. This protein was fused to ferritin nanoparticles (pre-F-NP) and modified with glycans to mask nonneutralizing or poorly neutralizing epitopes to further focus the Ab response. The multimeric pre-F-NP elicited durable pre-F-specific Abs in nonhuman primates (NHPs) after >150 days and elicited potent neutralizing Ab (NAb) responses in mice and NHPs in vivo, as well as in human cells evaluated in the in vitro MIMIC system. This optimized pre-F-NP stimulated a more potent Ab response than a representative pre-F trimer, DS-Cav1. Collectively, this pre-F vaccine increased the generation of NAbs targeting the desired pre-F conformation, an attribute that facilitates the development of an effective RSV vaccine.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Nanoparticles/chemistry , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/chemistry , Viral Fusion Proteins/immunology , Animals , Antibody Formation , Antigens, Viral/immunology , Female , Humans , Mice , Mice, Inbred BALB C , Respiratory Syncytial Virus Vaccines/chemistry , Respiratory Syncytial Virus, Human/immunology , Viral Fusion Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL