Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Clin Anat ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984382

ABSTRACT

Appropriate management of radial head fractures is integral to prevent long-term consequences like chronic pain and loss of motion. Advanced imaging systems, like micro-computed tomography (µCT), are valuable for understanding radial head fracture patterns as they utilize micrometer scale resolution to define important parameters of bone health like cortical density and trabecular thickness. The purpose of this study was to identify and describe the structural morphology of the radial head utilizing µCT. Nine fresh-frozen cadaveric human radii were divided into four equal quadrants, based, and labeled as posteromedial, posterolateral, anteromedial, and anterolateral. Quadrants were scanned with a SCANCO MicroCT40 with both cortical and cancellous bone density measurements at a resolution of 36.0 µm. Bone density, direct trabecular number, and trabecular thickness were recorded as milligrams of hydroxyapatite/cm3. A one-way repeated measures ANOVA was performed to compare the bone densities, trabecular number, and trabecular thickness of each of the four quadrants (p < 0.05). The posteromedial quadrant contained substantially more bone than other quadrants. Significantly greater bone densities were found in the posteromedial quadrant (148.1 mg of HA/cm3) compared to the anteromedial quadrant (54.6 mg of HA/cm3), posterolateral quadrant (137.5 mg of HA/cm3) compared to the anteromedial quadrant (54.6 mg of HA/cm3), and posterolateral quadrant (137.5 mg of HA/cm3) compared to the anterolateral quadrant (58.1 mg of HA/cm3). The trabecular number was not significantly different between quadrants. Trabecular thickness was significantly lower in the anterolateral (0.1417 mg of HA/cm3) and anteromedial (0.1416 mg of HA/cm3) quadrants compared to the posteromedial (0.1809 mg of HA/cm3) quadrant. The posterior half of the radial head was found to have a higher density of columns and arches compared to the anterior half. The microstructure of trabecular bone in the distal radius forms columns, struts, and arches, which allow for efficient transmission of stress through the bone. The microstructure of the radial head has similar microarchitecture to the distal radius with the present study identifying the presence of columns and arches in the radial head. These structures, along with trabecular density, in the posterior radial head may explain the lower incidence of fractures involving the posterior half of the radial head. Furthermore, our study supports the idea that the high incidence of fractures involving the anterolateral quadrant is due to microarchitecture characteristics and the relative lack of supportive structures compared to other areas. The novel insight gained from this study will aid in the development of advanced interventions for preventative measures and better treatment of radial head fractures like more satisfactory purchase when screws are directed towards the denser posteromedial quadrant.

2.
J Biol Chem ; 298(6): 101939, 2022 06.
Article in English | MEDLINE | ID: mdl-35436470

ABSTRACT

Microtubule targeting agents (MTAs) are widely used cancer chemotherapeutics which conventionally exert their effects during mitosis, leading to mitotic or postmitotic death. However, accumulating evidence suggests that MTAs can also generate death signals during interphase, which may represent a key mechanism in the clinical setting. We reported previously that vincristine and other microtubule destabilizers induce death not only in M phase but also in G1 phase in primary acute lymphoblastic leukemia cells. Here, we sought to investigate and compare the pathways responsible for phase-specific cell death. Primary acute lymphoblastic leukemia cells were subjected to centrifugal elutriation, and cell populations enriched in G1 phase (97%) or G2/M phases (80%) were obtained and treated with vincristine. We found death of M phase cells was associated with established features of mitochondrial-mediated apoptosis, including Bax activation, loss of mitochondrial transmembrane potential, caspase-3 activation, and nucleosomal DNA fragmentation. In contrast, death of G1 phase cells was not associated with pronounced Bax or caspase-3 activation but was associated with loss of mitochondrial transmembrane potential, parylation, nuclear translocation of apoptosis-inducing factor and endonuclease G, and supra-nucleosomal DNA fragmentation, which was enhanced by inhibition of autophagy. The results indicate that microtubule depolymerization induces distinct cell death pathways depending on during which phase of the cell cycle microtubule perturbation occurs. The observation that a specific type of drug can enter a single cell type and induce two different modes of death is novel and intriguing. These findings provide a basis for advancing knowledge of clinical mechanisms of MTAs.


Subject(s)
Apoptosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Vincristine , Apoptosis/drug effects , Caspase 3/metabolism , Cell Cycle , Enzyme Activation/drug effects , Humans , Microtubules/drug effects , Microtubules/metabolism , Mitosis/drug effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Vincristine/metabolism , Vincristine/pharmacology , Vincristine/therapeutic use , bcl-2-Associated X Protein/metabolism
3.
Immunol Cell Biol ; 101(7): 663-671, 2023 08.
Article in English | MEDLINE | ID: mdl-37149747

ABSTRACT

Modulation of T cell activity is an effective strategy for the treatment of autoimmune diseases, immune-related disorders and cancer. This highlights a critical need for the identification of proteins that regulate T cell function. The kinase DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is emerging as a potent regulator of the immune system, spurring interest in its use as a therapeutic target. In murine models of immune-related diseases including asthma and rheumatoid arthritis, treatment with small-molecule DNA-PKcs inhibitors decreased the disease severity. Additionally, DNA-PKcs inhibitors reduced T cell-mediated graft rejection in a murine allogenic skin graft model. These in vivo studies suggest the use of DNA-PKcs inhibitors as immunotherapy for autoimmune and T cell-mediated disorders. In this study, we sought to characterize further the effects of DNA-PKcs inhibitors on T cells to better understand their clinical potential. We determined that inhibition of DNA-PKcs using inhibitor NU7441 and the inhibitors currently in clinical trials for cancer therapy, M3184 and AZD7648, abrogated the activation of murine and human CD4+ and CD8+ T cells as evidenced by the reduced expression of the activation markers CD69 and CD25. Furthermore, inhibition of DNA-PKcs impeded metabolic pathways and the proliferation of activated T cells. This reduced the ability of OTI-CD8+ T cells to kill cancer cells and the expression of IFNγ and cytotoxic genes. These results highlight a critical role for DNA-PKcs in T cells and validate future studies using DNA-PKcs inhibitors as immune modulation therapy for the treatment of immune-related diseases.


Subject(s)
Antineoplastic Agents , DNA-Activated Protein Kinase , Humans , Animals , Mice , DNA-Activated Protein Kinase/genetics , DNA-Activated Protein Kinase/metabolism , CD8-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/metabolism , DNA
4.
Sci Rep ; 14(1): 19999, 2024 08 28.
Article in English | MEDLINE | ID: mdl-39198533

ABSTRACT

DNA-dependent protein kinase catalytic subunit (DNA-PKcs) plays a vital role in DNA damage repair and lymphocyte function, presenting a significant target in cancer and immune diseases. Current DNA-PKcs inhibitors are undergoing Phase I/II trials as adjuncts to radiotherapy and chemotherapy in cancer. Nevertheless, clinical utility is limited by suboptimal bioavailability. This study introduces DNA-PKcs inhibitors designed to enhance bioavailability. We demonstrate that a novel DNA-PKcs inhibitor, DA-143, surpasses NU7441 in aqueous solubility as well as other available inhibitors. In addition, DA-143 displayed an improvement in DNA-PKcs inhibition relative to NU7441 achieving an IC50 of 2.5 nM. Consistent with current inhibitors, inhibition of DNA-PKcs by DA-143 resulted in increased tumor cell sensitivity to DNA-damage from chemotherapy and inhibition of human T cell function. The improved solubility of DA-143 is critical for enhanced efficacy at reduced doses and facilitates more effective evaluation of DNA-PKcs inhibition in both preclinical and clinical development.


Subject(s)
Chromones , DNA-Activated Protein Kinase , Morpholines , Protein Kinase Inhibitors , Solubility , Humans , DNA-Activated Protein Kinase/antagonists & inhibitors , DNA-Activated Protein Kinase/metabolism , Morpholines/chemistry , Morpholines/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Chromones/chemistry , Chromones/pharmacology , Cell Line, Tumor , DNA Damage/drug effects , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL