Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Cell ; 185(17): 3169-3185.e20, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35908548

ABSTRACT

Mice deficient for all ten-eleven translocation (TET) genes exhibit early gastrulation lethality. However, separating cause and effect in such embryonic failure is challenging. To isolate cell-autonomous effects of TET loss, we used temporal single-cell atlases from embryos with partial or complete mutant contributions. Strikingly, when developing within a wild-type embryo, Tet-mutant cells retain near-complete differentiation potential, whereas embryos solely comprising mutant cells are defective in epiblast to ectoderm transition with degenerated mesoderm potential. We map de-repressions of early epiblast factors (e.g., Dppa4 and Gdf3) and failure to activate multiple signaling from nascent mesoderm (Lefty, FGF, and Notch) as likely cell-intrinsic drivers of TET loss phenotypes. We further suggest loss of enhancer demethylation as the underlying mechanism. Collectively, our work demonstrates an unbiased approach for defining intrinsic and extrinsic embryonic gene function based on temporal differentiation atlases and disentangles the intracellular effects of the demethylation machinery from its broader tissue-level ramifications.


Subject(s)
Gastrulation , Mesoderm , Animals , Cell Differentiation/genetics , Embryo, Mammalian/metabolism , Gastrulation/genetics , Gene Expression Regulation, Developmental , Mice , Nuclear Proteins/metabolism , Signal Transduction
2.
Cell ; 184(11): 2825-2842.e22, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33932341

ABSTRACT

Mouse embryonic development is a canonical model system for studying mammalian cell fate acquisition. Recently, single-cell atlases comprehensively charted embryonic transcriptional landscapes, yet inference of the coordinated dynamics of cells over such atlases remains challenging. Here, we introduce a temporal model for mouse gastrulation, consisting of data from 153 individually sampled embryos spanning 36 h of molecular diversification. Using algorithms and precise timing, we infer differentiation flows and lineage specification dynamics over the embryonic transcriptional manifold. Rapid transcriptional bifurcations characterize the commitment of early specialized node and blood cells. However, for most lineages, we observe combinatorial multi-furcation dynamics rather than hierarchical transcriptional transitions. In the mesoderm, dozens of transcription factors combinatorially regulate multifurcations, as we exemplify using time-matched chimeric embryos of Foxc1/Foxc2 mutants. Our study rejects the notion of differentiation being governed by a series of binary choices, providing an alternative quantitative model for cell fate acquisition.


Subject(s)
Embryonic Development/physiology , Gastrulation/physiology , Animals , Cell Differentiation , Cell Lineage , Embryo, Mammalian/cytology , Embryonic Development/genetics , Female , Gene Expression , Mice/embryology , Mice, Inbred C57BL , Mouse Embryonic Stem Cells , Pregnancy , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods
3.
Immunity ; 48(5): 951-962.e5, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29768178

ABSTRACT

Natural killer cells (NKs) are abundant in the human decidua, regulating trophoblast invasion and angiogenesis. Several diseases of poor placental development are associated with first pregnancies, so we thus looked to characterize differences in decidual NKs (dNKs) in first versus repeated pregnancies. We discovered a population found in repeated pregnancies, which has a unique transcriptome and epigenetic signature, and is characterized by high expression of the receptors NKG2C and LILRB1. We named these cells Pregnancy Trained decidual NK cells (PTdNKs). PTdNKs have open chromatin around the enhancers of IFNG and VEGFA. Activation of PTdNKs led to increased production and secretion of IFN-γ and VEGFα, with the latter supporting vascular sprouting and tumor growth. The precursors of PTdNKs seem to be found in the endometrium. Because repeated pregnancies are associated with improved placentation, we propose that PTdNKs, which are present primarily in repeated pregnancies, might be involved in proper placentation.


Subject(s)
Immunologic Memory/immunology , Killer Cells, Natural/immunology , Transcriptome/immunology , Uterus/immunology , Animals , Cell Line, Tumor , Decidua/immunology , Decidua/metabolism , Female , Humans , Interferon-gamma/immunology , Interferon-gamma/metabolism , Killer Cells, Natural/metabolism , Mice, Inbred C57BL , Mice, SCID , Mice, Transgenic , Pregnancy , Uterus/cytology , Vascular Endothelial Growth Factor A/immunology , Vascular Endothelial Growth Factor A/metabolism
4.
Nature ; 593(7857): 119-124, 2021 05.
Article in English | MEDLINE | ID: mdl-33731940

ABSTRACT

The mammalian body plan is established shortly after the embryo implants into the maternal uterus, and our understanding of post-implantation developmental processes remains limited. Although pre- and peri-implantation mouse embryos are routinely cultured in vitro1,2, approaches for the robust culture of post-implantation embryos from egg cylinder stages until advanced organogenesis remain to be established. Here we present highly effective platforms for the ex utero culture of post-implantation mouse embryos, which enable the appropriate development of embryos from before gastrulation (embryonic day (E) 5.5) until the hindlimb formation stage (E11). Late gastrulating embryos (E7.5) are grown in three-dimensional rotating bottles, whereas extended culture from pre-gastrulation stages (E5.5 or E6.5) requires a combination of static and rotating bottle culture platforms. Histological, molecular and single-cell RNA sequencing analyses confirm that the ex utero cultured embryos recapitulate in utero development precisely. This culture system is amenable to the introduction of a variety of embryonic perturbations and micro-manipulations, the results of which can be followed ex utero for up to six days. The establishment of a system for robustly growing normal mouse embryos ex utero from pre-gastrulation to advanced organogenesis represents a valuable tool for investigating embryogenesis, as it eliminates the uterine barrier and allows researchers to mechanistically interrogate post-implantation morphogenesis and artificial embryogenesis in mammals.


Subject(s)
Embryo Culture Techniques , Embryo, Mammalian/embryology , Embryonic Development , In Vitro Techniques , Organogenesis , Animals , Embryo Culture Techniques/methods , Embryo, Mammalian/cytology , Female , Gastrulation , Male , Mice , Time Factors , Uterus
5.
Nature ; 504(7479): 282-6, 2013 Dec 12.
Article in English | MEDLINE | ID: mdl-24172903

ABSTRACT

Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3ß signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation of cross-species chimaeric mouse embryos that underwent organogenesis following microinjection of human naive iPS cells into mouse morulas. Collectively, our findings establish new avenues for regenerative medicine, patient-specific iPS cell disease modelling and the study of early human development in vitro and in vivo.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Animals , Blastocyst/cytology , Cellular Reprogramming , Chimera/embryology , Chromatin/metabolism , DNA Methylation , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Epigenesis, Genetic , Female , Germ Layers/cytology , Histones/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/transplantation , Male , Mice , Morula/cytology , Organogenesis , Promoter Regions, Genetic/genetics , Regenerative Medicine , Reproducibility of Results , Signal Transduction , X Chromosome Inactivation
6.
Nature ; 502(7469): 65-70, 2013 Oct 03.
Article in English | MEDLINE | ID: mdl-24048479

ABSTRACT

Somatic cells can be inefficiently and stochastically reprogrammed into induced pluripotent stem (iPS) cells by exogenous expression of Oct4 (also called Pou5f1), Sox2, Klf4 and Myc (hereafter referred to as OSKM). The nature of the predominant rate-limiting barrier(s) preventing the majority of cells to successfully and synchronously reprogram remains to be defined. Here we show that depleting Mbd3, a core member of the Mbd3/NuRD (nucleosome remodelling and deacetylation) repressor complex, together with OSKM transduction and reprogramming in naive pluripotency promoting conditions, result in deterministic and synchronized iPS cell reprogramming (near 100% efficiency within seven days from mouse and human cells). Our findings uncover a dichotomous molecular function for the reprogramming factors, serving to reactivate endogenous pluripotency networks while simultaneously directly recruiting the Mbd3/NuRD repressor complex that potently restrains the reactivation of OSKM downstream target genes. Subsequently, the latter interactions, which are largely depleted during early pre-implantation development in vivo, lead to a stochastic and protracted reprogramming trajectory towards pluripotency in vitro. The deterministic reprogramming approach devised here offers a novel platform for the dissection of molecular dynamics leading to establishing pluripotency at unprecedented flexibility and resolution.


Subject(s)
Cellular Reprogramming/physiology , Induced Pluripotent Stem Cells/physiology , Models, Biological , Animals , Cell Line , Cells, Cultured , Cellular Reprogramming/genetics , DNA-Binding Proteins/genetics , Embryonic Stem Cells , Female , Gene Expression Regulation , HEK293 Cells , Humans , Kruppel-Like Factor 4 , Male , Mice , Transcription Factors/genetics
7.
Nature ; 488(7411): 409-13, 2012 Aug 16.
Article in English | MEDLINE | ID: mdl-22801502

ABSTRACT

Induced pluripotent stem cells (iPSCs) can be derived from somatic cells by ectopic expression of different transcription factors, classically Oct4 (also known as Pou5f1), Sox2, Klf4 and Myc (abbreviated as OSKM). This process is accompanied by genome-wide epigenetic changes, but how these chromatin modifications are biochemically determined requires further investigation. Here we show in mice and humans that the histone H3 methylated Lys 27 (H3K27) demethylase Utx (also known as Kdm6a) regulates the efficient induction, rather than maintenance, of pluripotency. Murine embryonic stem cells lacking Utx can execute lineage commitment and contribute to adult chimaeric animals; however, somatic cells lacking Utx fail to robustly reprogram back to the ground state of pluripotency. Utx directly partners with OSK reprogramming factors and uses its histone demethylase catalytic activity to facilitate iPSC formation. Genomic analysis indicates that Utx depletion results in aberrant dynamics of H3K27me3 repressive chromatin demethylation in somatic cells undergoing reprogramming. The latter directly hampers the derepression of potent pluripotency promoting gene modules (including Sall1, Sall4 and Utf1), which can cooperatively substitute for exogenous OSK supplementation in iPSC formation. Remarkably, Utx safeguards the timely execution of H3K27me3 demethylation observed in embryonic day 10.5-11 primordial germ cells (PGCs), and Utx-deficient PGCs show cell-autonomous aberrant epigenetic reprogramming dynamics during their embryonic maturation in vivo. Subsequently, this disrupts PGC development by embryonic day 12.5, and leads to diminished germline transmission in mouse chimaeras generated from Utx-knockout pluripotent cells. Thus, we identify Utx as a novel mediator with distinct functions during the re-establishment of pluripotency and germ cell development. Furthermore, our findings highlight the principle that molecular regulators mediating loss of repressive chromatin during in vivo germ cell reprogramming can be co-opted during in vitro reprogramming towards ground state pluripotency.


Subject(s)
Cellular Reprogramming/genetics , Cellular Reprogramming/physiology , Embryonic Stem Cells/metabolism , Epigenesis, Genetic , Germ Cells/metabolism , Histone Demethylases/metabolism , Nuclear Proteins/metabolism , Alleles , Animals , Biocatalysis , Cell Lineage , Chimera , Embryonic Stem Cells/cytology , Embryonic Stem Cells/enzymology , Female , Fibroblasts , Gene Knockdown Techniques , Germ Cells/enzymology , HEK293 Cells , Histone Demethylases/deficiency , Histone Demethylases/genetics , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/enzymology , Induced Pluripotent Stem Cells/metabolism , Kruppel-Like Factor 4 , Male , Mice , Mice, Knockout , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Transgenes/genetics
8.
Nature ; 490(7421): 561-5, 2012 Oct 25.
Article in English | MEDLINE | ID: mdl-23023124

ABSTRACT

Although most genes are expressed biallelically, a number of key genomic sites--including immune and olfactory receptor regions--are controlled monoallelically in a stochastic manner, with some cells expressing the maternal allele and others the paternal allele in the target tissue. Very little is known about how this phenomenon is regulated and programmed during development. Here, using mouse immunoglobulin-κ (Igκ) as a model system, we demonstrate that although individual haematopoietic stem cells are characterized by allelic plasticity, early lymphoid lineage cells become committed to the choice of a single allele, and this decision is then stably maintained in a clonal manner that predetermines monoallelic rearrangement in B cells. This is accompanied at the molecular level by underlying allelic changes in asynchronous replication timing patterns at the κ locus. These experiments may serve to define a new concept of stem cell plasticity.


Subject(s)
Alleles , Cell Lineage , Gene Rearrangement, B-Lymphocyte, Light Chain/genetics , Immunoglobulin kappa-Chains/genetics , Precursor Cells, B-Lymphoid/cytology , Precursor Cells, B-Lymphoid/metabolism , Animals , Chromatin Immunoprecipitation , Clone Cells/cytology , Clone Cells/immunology , Clone Cells/metabolism , DNA Replication Timing , Female , Hematopoiesis , Humans , Immunoglobulin kappa-Chains/immunology , Male , Mice , Mice, Inbred BALB C , Models, Animal , Models, Immunological , Precursor Cells, B-Lymphoid/immunology , Stochastic Processes
SELECTION OF CITATIONS
SEARCH DETAIL