Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Diabetologia ; 67(9): 1912-1929, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38871836

ABSTRACT

AIMS/HYPOTHESIS: Stem cell-derived islets (SC-islets) are being used as cell replacement therapy for insulin-dependent diabetes. Non-invasive long-term monitoring methods for SC-islet grafts, which are needed to detect misguided differentiation in vivo and to optimise their therapeutic effectiveness, are lacking. Positron emission tomography (PET) has been used to monitor transplanted primary islets. We therefore aimed to apply PET as a non-invasive monitoring method for SC-islet grafts. METHODS: We implanted different doses of human SC-islets, SC-islets derived using an older protocol or a state-of-the-art protocol and SC-islets genetically rendered hyper- or hypoactive into mouse calf muscle to yield different kinds of grafts. We followed the grafts with PET using two tracers, glucagon-like peptide 1 receptor-binding [18F]F-dibenzocyclooctyne-exendin-4 ([18F]exendin) and the dopamine precursor 6-[18F]fluoro-L-3,4-dihydroxyphenylalanine ([18F]FDOPA), for 5 months, followed by histological assessment of graft size and composition. Additionally, we implanted a kidney subcapsular cohort with different SC-islet doses to assess the connection between C-peptide and stem cell-derived beta cell (SC-beta cell) mass. RESULTS: Small but pure and large but impure grafts were derived from SC-islets. PET imaging allowed detection of SC-islet grafts even <1 mm3 in size, [18F]exendin having a better detection rate than [18F]FDOPA (69% vs 44%, <1 mm3; 96% vs 85%, >1 mm3). Graft volume quantified with [18F]exendin (r2=0.91) and [18F]FDOPA (r2=0.86) strongly correlated with actual graft volume. [18F]exendin PET delineated large cystic structures and its uptake correlated with graft SC-beta cell proportion (r2=0.68). The performance of neither tracer was affected by SC-islet graft hyper- or hypoactivity. C-peptide measurements under fasted or glucose-stimulated conditions did not correlate with SC-islet graft volume or SC-beta cell mass, with C-peptide under hypoglycaemia having a weak correlation with SC-beta cell mass (r2=0.52). CONCLUSIONS/INTERPRETATION: [18F]exendin and [18F]FDOPA PET enable non-invasive assessment of SC-islet graft size and aspects of graft composition. These methods could be leveraged for optimising SC-islet cell replacement therapy in diabetes.


Subject(s)
Islets of Langerhans Transplantation , Islets of Langerhans , Positron-Emission Tomography , Islets of Langerhans Transplantation/methods , Animals , Mice , Humans , Positron-Emission Tomography/methods , Islets of Langerhans/metabolism , Islets of Langerhans/cytology , Stem Cells/cytology , Stem Cells/metabolism , Male , Diabetes Mellitus, Type 1/surgery , Diabetes Mellitus, Type 1/metabolism , Female
2.
Eur J Nucl Med Mol Imaging ; 51(8): 2216-2228, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38532026

ABSTRACT

PURPOSE: Aluminum fluoride-18-labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid-conjugated mannosylated dextran derivative (Al[18F]F-NOTA-D10CM) is a new tracer for PET imaging. We report here on in vitro and in vivo validation of the tracer's ability to target the macrophage mannose receptor CD206. METHODS: First, the uptake of intravenously (i.v.) administered Al[18F]F-NOTA-D10CM was compared between wild-type (WT) and CD206-/- knockout (KO) mice. C57BL/6N mice were injected with complete Freund's adjuvant (CFA) in the left hind leg and the uptake of Al[18F]F-NOTA-D10CM after i.v. or intradermal (i.d.) injection was studied at 5 and 14 days after CFA induction of inflammation. Healthy C57BL/6N mice were studied as controls. Mice underwent PET/CT on consecutive days with [18F]FDG, i.v. Al[18F]F-NOTA-D10CM, and i.d. Al[18F]F-NOTA-D10CM. After the last imaging, Al[18F]F-NOTA-D10CM was i.v. injected for an ex vivo biodistribution study and autoradiography of inflamed tissues. Blood plasma samples were analyzed using high-performance liquid chromatography. To evaluate the specificity of Al[18F]F-NOTA-D10CM binding, an in vitro competitive displacement study was performed on inflamed tissue sections using autoradiography. CD206 expression was assessed by immunohistochemical staining. RESULTS: Compared with WT mice, the uptake of Al[18F]F-NOTA-D10CM was significantly lower in several CD206-/- KO mice tissues, including liver (SUV 8.21 ± 2.51 vs. 1.06 ± 0.16, P < 0.001) and bone marrow (SUV 1.63 ± 0.37 vs. 0.22 ± 0.05, P < 0.0001). The uptake of i.v. injected Al[18F]F-NOTA-D10CM was significantly higher in inflamed ankle joint (SUV 0.48 ± 0.13 vs. 0.18 ± 0.05, P < 0.0001) and inflamed foot pad skin (SUV 0.41 ± 0.10 vs. 0.04 ± 0.01, P < 0.0001) than in the corresponding tissues in healthy mice. The i.d.-injected Al[18F]F-NOTA-D10CM revealed differences between CFA-induced lymph node activation and lymph nodes in healthy mice. Ex vivo γ-counting, autoradiography, and immunohistochemistry supported the results, and a decrease of ~ 80% in the binding of Al[18F]F-NOTA-D10CM in the displacement study with excess NOTA-D10CM confirmed that tracer binding was specific. At 60 min after i.v. injection, an average 96.70% of plasma radioactivity was derived from intact Al[18F]F-NOTA-D10CM, indicating good in vivo stability. The uptake of Al[18F]F-NOTA-D10CM into inflamed tissues was positively associated with the area percentage of CD206-positive staining. CONCLUSION: The uptake of mannosylated dextran derivative Al[18F]F-NOTA-D10CM correlated with CD206 expression and the tracer appears promising for inflammation imaging.


Subject(s)
Dextrans , Fluorine Radioisotopes , Lectins, C-Type , Mannose Receptor , Mannose-Binding Lectins , Receptors, Cell Surface , Animals , Mice , Lectins, C-Type/metabolism , Receptors, Cell Surface/metabolism , Mannose-Binding Lectins/metabolism , Tissue Distribution , Dextrans/chemistry , Mannose/chemistry , Positron Emission Tomography Computed Tomography , Mice, Inbred C57BL , Macrophages/metabolism , Isotope Labeling , Heterocyclic Compounds, 1-Ring
3.
Mol Pharm ; 21(8): 4147-4156, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39008899

ABSTRACT

Fatty acid binding protein 3 (FABP3) is expressed both in tumor cells and in the tumor vasculature, making it a potential target for medical imaging and therapy. In this study, we aimed to radiolabel a CooP peptide with a free amino and thiol group, and evaluate the radiolabeled product [18F]FNA-N-CooP for imaging FABP3 expression in breast cancer brain metastases by positron emission tomography. [18F]FNA-N-CooP was prepared by highly chemoselective N-acylation and characterized using different chemical approaches. We validated its binding to the target using in vitro tissue section autoradiography and performed stability tests in vitro and in vivo. [18F]FNA-N-CooP was successfully synthesized in 16.8% decay-corrected radiochemical yield with high radiochemical purity (98.5%). It exhibited heterogeneous binding on brain metastasis tissue sections from a patient with breast cancer, with foci of radioactivity binding corresponding to FABP3 positivity. Furthermore, the tracer binding was reduced by 55% in the presence of nonradioactive FNA-N-CooP a blocker, indicating specific tracer binding and that FABP3 is a viable target for [18F]FNA-N-CooP. Favorably, the tracer did not bind to necrotic tumor tissue. However, [18F]FNA-N-CooP displayed limited stability both in vitro in mouse plasma or human serum and in vivo in mouse, therefore further studies are needed to improve the stability [18F]FNA-N-CooP to be used for in vivo applications.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Fatty Acid Binding Protein 3 , Fluorine Radioisotopes , Positron-Emission Tomography , Radiopharmaceuticals , Animals , Humans , Female , Mice , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Positron-Emission Tomography/methods , Fatty Acid Binding Protein 3/metabolism , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Fluorine Radioisotopes/chemistry , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/chemistry , Cell Line, Tumor , Peptides/chemistry , Tissue Distribution , Sulfhydryl Compounds/chemistry , Mice, Nude
4.
Diabetes Obes Metab ; 26(1): 251-261, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37818602

ABSTRACT

AIM: High body weight is a protective factor against osteoporosis, but obesity also suppresses bone metabolism and whole-body insulin sensitivity. However, the impact of body weight and regular training on bone marrow (BM) glucose metabolism is unclear. We studied the effects of regular exercise training on bone and BM metabolism in monozygotic twin pairs discordant for body weight. METHODS: We recruited 12 monozygotic twin pairs (mean ± SD age 40.4 ± 4.5 years; body mass index 32.9 ± 7.6, mean difference between co-twins 7.6 kg/m2 ; eight female pairs). Ten pairs completed the 6-month long training intervention. We measured lumbar vertebral and femoral BM insulin-stimulated glucose uptake (GU) using 18 F-FDG positron emission tomography, lumbar spine bone mineral density and bone turnover markers. RESULTS: At baseline, heavier co-twins had higher lumbar vertebral BM GU (p < .001) and lower bone turnover markers (all p < .01) compared with leaner co-twins but there was no significant difference in femoral BM GU, or bone mineral density. Training improved whole-body insulin sensitivity, aerobic capacity (both p < .05) and femoral BM GU (p = .008). The training response in lumbar vertebral BM GU was different between the groups (time × group, p = .02), as GU tended to decrease in heavier co-twins (p = .06) while there was no change in leaner co-twins. CONCLUSIONS: In this study, regular exercise training increases femoral BM GU regardless of weight and genetics. Interestingly, lumbar vertebral BM GU is higher in participants with higher body weight, and training counteracts this effect in heavier co-twins even without reduction in weight. These data suggest that BM metabolism is altered by physical activity.


Subject(s)
Bone Marrow , Insulin Resistance , Humans , Female , Adult , Obesity , Exercise , Overweight , Bone Density
5.
Alzheimers Dement ; 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39475191

ABSTRACT

INTRODUCTION: We investigated hippocampal synaptic density using synaptic vesicle 2A positron emission tomography (PET), and its association with amyloid beta (Aß) and cognitive performance in healthy apolipoprotein E (APOE) ε4 carriers. METHODS: Synaptic density was assessed in 46 individuals (APOE ε4/ε4 n = 14; APOE ε3/ε4 n = 16; APOE ε3/ε3 n = 16) with [11C]UCB-J-PET standardized uptake value ratios (SUVRs), by using the centrum semiovale as a reference region. Differences in hippocampal [11C]UCB-J SUVRs were analyzed with analysis of variance (ANOVA) and linear models. Associations among [11C]UCB-J SUVR, Aß, hippocampal volume, and cognitive variables were analyzed with Spearman correlation. RESULTS: Hippocampal synaptic density was different among the APOE groups (PANOVA = 0.016): APOE ε4/ε4 carriers had lower [11C]UCB-J SUVRs compared to APOE ε3/ε3 (p = 0.013). Hippocampal synaptic density did not correlate with Consortium to Establish a Registry for Alzheimer's Disease (CERAD) total score (rho = -0.052, p = 0.74), Alzheimer's Prevention Initiative Preclinical Cognitive Composite (APCC) score (rho = 0.17, p = 0.28), or [11C]PiB uptake (rho = -0.10, p = 0.50). DISCUSSION: Hippocampal synaptic loss emerges early in the AD continuum and is measurable in vivo in cognitively unimpaired high-risk individuals. HIGHLIGHTS: Synaptic density was studied in vivo in healthy older adults using [11C]UCB-J positron emission tomography. Apolipoprotein E (APOE) ε4/ε4 carriers had lower hippocampal synaptic density compared to APOE ε3/ε3. Synaptic density was not associated with cognitive performance in this population. Hippocampal synaptic alterations occur before clinical symptoms in APOE ε4/ε4 carriers.

6.
Eur J Nucl Med Mol Imaging ; 50(2): 613-621, 2023 01.
Article in English | MEDLINE | ID: mdl-36161511

ABSTRACT

PURPOSE: Short-term androgen deprivation therapy (ADT) is known to increase heterogeneously prostate-specific membrane antigen (PSMA) expression. This phenomenon might indicate the potential of cancer lesions to respond to ADT. In this prospective study, we evaluated the flare on [18F]PSMA-1007 PET/CT after ADT in metastatic prostate cancer (PCa). Given that aggressive PCa tends to display FDG uptake, we particularly investigated whether the changes in PSMA uptake might correlate with glucose metabolism. METHODS: Twenty-five men with newly diagnosed treatment-naïve metastatic PCa were enrolled in this prospective registered clinical trial. All the patients underwent [18F]PSMA-1007 PET/CT immediately before and 3-4 weeks after ADT initiation (degarelix). Before ADT, [18F]FDG PET/CT was also performed. Standardized uptake values (SUV)max of primary and metastatic lesions were calculated in all PET scans. Serum PSA and testosterone blood samples were collected before the two PSMA PET scans. The changes in PSMA uptake after ADT were represented as ΔSUVmax. RESULTS: All the patients reached castration levels of testosterone at the time of the second [18F]PSMA-1007 PET/CT. Overall, 57 prostate, 314 lymph nodes (LN), and 406 bone lesions were analyzed. After ADT, 104 (26%) bone, 33 (11%) LN, and 6 (11%) prostate lesions showed an increase (≥ 20%) in PSMA uptake, with a median ΔSUVmax of + 50%, + 60%, and + 45%, respectively. Among the lesions detected at the baseline [18F]PSMA-1007 PET/CT, 63% bone and 46% LN were FDG-positive. In these metastases, a negative correlation was observed between the PSMA ΔSUVmax and FDG SUVmax (p < 0.0001). Moreover, a negative correlation between the ΔSUVmax and the decrease in serum PSA after ADT was noted (p < 0.0001). CONCLUSIONS: A heterogeneous increase in PSMA uptake after ADT was detected, most evidently in bone metastases. We observed a negative correlation between the PSMA flare and the intensity of glucose uptake as well as the decrease of serum PSA, suggesting that lesions presenting with such flare might potentially be less aggressive. TRIAL REGISTRATION: NCT03876912, registered 15 March 2019.


Subject(s)
Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/drug therapy , Positron Emission Tomography Computed Tomography , Androgens/metabolism , Androgen Antagonists/therapeutic use , Prostate-Specific Antigen/metabolism , Prospective Studies , Fluorodeoxyglucose F18 , Testosterone/therapeutic use , Gallium Radioisotopes
7.
Mol Pharm ; 20(10): 5043-5051, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37531591

ABSTRACT

18F-Labeled [60]fullerene-based molecular spherical nucleic acids (MSNAs), consisting of a human epidermal growth factor receptor 2 (HER2) mRNA antisense oligonucleotide sequence with a native phosphodiester and phosphorothioate backbone, were synthesized, site-specifically labeled with a positron emitting fluorine-18 and intravenously administrated via tail vein to HER2 expressing HCC1954 tumor-bearing mice. The biodistribution of the MSNAs was monitored in vivo by positron emission tomography/computed tomography (PET/CT) imaging. MSNA with a native phosphodiester backbone (MSNA-PO) was prone to rapid nuclease-mediated degradation, whereas the corresponding phosphorothioate analogue (MSNA-PS) with improved enzymatic stability showed an interesting biodistribution profile in vivo. One hour after the injection, majority of the radioactivity was observed in spleen and liver but also in blood with an average tumor-to-muscle ratio of 2. The prolonged radioactivity in blood circulation may open possibilities to the targeted delivery of the MSNAs.


Subject(s)
Fullerenes , Neoplasms , Nucleic Acids , Mice , Humans , Animals , Positron Emission Tomography Computed Tomography/methods , Tissue Distribution , Positron-Emission Tomography/methods , Neoplasms/diagnostic imaging , Fluorine Radioisotopes , Cell Line, Tumor
8.
Eur J Neurol ; 30(8): 2365-2375, 2023 08.
Article in English | MEDLINE | ID: mdl-37154404

ABSTRACT

BACKGROUND AND PURPOSE: The aim was to study brain innate immune cell activation in teriflunomide-treated patients with relapsing-remitting multiple sclerosis. METHODS: Imaging with 18-kDa translocator protein positron emission tomography (TSPO-PET) using the [11 C]PK11195 radioligand was employed to assess microglial activity in the white matter, thalamus and areas surrounding chronic white matter lesions in 12 patients with relapsing-remitting multiple sclerosis who had been treated with teriflunomide for at least 6 months before inclusion. Magnetic resonance imaging (MRI) was used to measure lesion load and brain volume, and quantitative susceptibility mapping (QSM) was used to detect iron rim lesions. These evaluations were repeated after 1 year of inclusion. Twelve age- and gender-matched healthy control subjects were imaged for comparison. RESULTS: Half of the patients had iron rim lesions. In TSPO-PET, the proportion of active voxels indicating innate immune cell activation was slightly greater amongst patients compared with healthy individuals (7.7% vs. 5.4%, p = 0.033). The mean distribution volume ratio of [11 C]PK11195 was not significantly different in the normal-appearing white matter or thalamus amongst patients versus controls. Amongst the treated patients, no significant alteration was observed in positron emission tomography distribution volume ratio, the proportion of active voxels, the number of iron-rim-positive lesions, lesion load or brain volume during follow-up. CONCLUSIONS: Compared to controls, treated patients exhibited modest signs of diffuse innate immune cell activity, which was unaltered during follow-up. Lesion-associated smoldering inflammation was negligible at both timepoints. To our knowledge, this is the first study applying both TSPO-PET and QSM-MRI to longitudinally evaluate smoldering inflammation.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , White Matter , Humans , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Microglia/metabolism , Microglia/pathology , Brain/pathology , White Matter/pathology , Magnetic Resonance Imaging , Inflammation/pathology , Iron/metabolism , Receptors, GABA/metabolism
9.
Scand J Med Sci Sports ; 33(3): 353-358, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36517882

ABSTRACT

OBJECTIVE: The objective of the study was to investigate the associations of sedentary time, physical activity, and cardiorespiratory fitness with skeletal muscle glucose uptake (GU). METHODS: Sedentary time and physical activity were measured with accelerometers and VO2 max with cycle ergometry in 44 sedentary adults with metabolic syndrome. Thigh muscle GU was determined with [18 F]FDG-PET imaging. RESULTS: Sedentary time (ß = -0.374), standing (ß = 0.376), steps (ß = 0.351), and VO2 max (ß = 0.598) were associated with muscle GU when adjusted for sex, age, and accelerometer wear time. Adjustment for body fat-% turned all associations non-significant. CONCLUSION: Body composition is a more important determinant of muscle GU in this population than sedentary time, physical activity, or fitness.


Subject(s)
Cardiorespiratory Fitness , Metabolic Syndrome , Humans , Adult , Metabolic Syndrome/metabolism , Sedentary Behavior , Exercise , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/metabolism , Glucose/metabolism , Physical Fitness
10.
Eur J Nucl Med Mol Imaging ; 48(5): 1312-1326, 2021 05.
Article in English | MEDLINE | ID: mdl-33340054

ABSTRACT

BACKGROUND: Many malignant tumours have increased TSPO expression, which has been related to a poor prognosis. TSPO-PET tracers have not comprehensively been evaluated in peripherally located tumours. This study aimed to evaluate whether N,N-diethyl-2-(2-(4-([18F]fluoro)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide ([18F]F-DPA) can reflect radiotherapy (RT)-induced changes in TSPO activity in head and neck squamous cell carcinoma (HNSCC). METHODS: RT was used to induce inflammatory responses in HNSCC xenografts and cells. [18F]F-DPA uptake was measured in vivo in non-irradiated and irradiated tumours, followed by ex vivo biodistribution, autoradiography, and radiometabolite analysis. In vitro studies were performed in parental and TSPO-silenced (TSPO siRNA) cells. TSPO protein and mRNA expression, as well as tumour-associated macrophages (TAMs), were also assessed. RESULTS: In vivo imaging and ex vivo measurement revealed significantly higher [18F]F-DPA uptake in irradiated, compared to non-irradiated tumours. In vitro labelling studies with cells confirmed this finding, whereas no effect of RT on [18F]F-DPA uptake was detected in TSPO siRNA cells. Radiometabolite analysis showed that the amount of unchanged [18F]F-DPA in tumours was 95%, also after irradiation. PK11195 pre-treatment reduced the tumour-to-blood ratio of [18F]F-DPA by 73% in xenografts and by 88% in cells. TSPO protein and mRNA levels increased after RT, but were highly variable. The proportion of M1/M2 TAMs decreased after RT, whereas the proportion of monocytes and migratory monocytes/macrophages increased. CONCLUSIONS: [18F]F-DPA can detect changes in TSPO expression levels after RT in HNSCC, which does not seem to reflect inflammation. Further studies are however needed to clarify the physiological mechanisms regulated by TSPO after RT.


Subject(s)
Fluorine Radioisotopes , Head and Neck Neoplasms , Animals , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Positron-Emission Tomography , Pyrazoles , Pyrimidines , Tissue Distribution
11.
J Labelled Comp Radiopharm ; 62(6): 259-264, 2019 05 30.
Article in English | MEDLINE | ID: mdl-30843249

ABSTRACT

[18 F]NS12137 (exo-3-[(6-[18 F]fluoro-2-pyridyl)oxy]8-azabicyclo[3.2.1]octane) is a highly selective norepinephrine transporter (NET) tracer. NETs are responsible for the reuptake of norepinephrine and dopamine and are linked to several neurodegenerative and neuropsychiatric disorders. The aim of this study was to develop a copper-mediated 18 F-fluorination method for the production of [18 F]NS12137 with straightforward synthesis conditions and high radiochemical yield and molar activity. [18 F]NS12137 was produced in two steps. Radiofluorination of [18 F]NS12137 was performed via a copper-mediated pathway starting with a stannane precursor and using [18 F]F- as the source of the fluorine-18 isotope. Deprotection was performed via acid hydrolysis. The radiofluorination reaction was nearly quantitative as was the deprotection based on HPLC analysis. The radiochemical yield of the synthesis was 15.1 ± 0.5%. Molar activity of [18 F]NS12137 was up to 300 GBq/µmol. The synthesis procedure is straightforward and can easily be automated and adapted for clinical production.


Subject(s)
Copper/chemistry , Fluorine Radioisotopes/chemistry , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Octanes/chemistry , Octanes/chemical synthesis , Catalysis , Chemistry Techniques, Synthetic , Isotope Labeling , Octanes/metabolism , Radioactive Tracers , Radiochemistry
12.
Bioconjug Chem ; 27(4): 1023-9, 2016 Apr 20.
Article in English | MEDLINE | ID: mdl-26898631

ABSTRACT

meso-Tris(pyridin-4-yl)(4-carboxyphenyl)porphyrin and 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (Photochlor, HPPH) were amide-coupled to 1R,2S,3R,4R-2,3-dihydroxy-4-(hydromethyl)-1-aminocyclopentane and immobilized via an ester linkage to long chain alkyl amine-derivatized controlled pore glass (LCAA-CPG). The applicability of these supports (5 and 6) for the synthesis of porphyrin conjugates with oligomeric biomolecules was demonstrated using an automated phosphoramidite coupling chemistry. Cleavage from the support with concentrated ammonia gave the products, viz., porphyrin conjugates of oligonucleotides (7-9) and dendritic glycoclusters (10-13) and a cyclooctyne derivative (14) in 23-58% yield. In addition, the synthesized cyclooctyne derivative of meso-tris(pyridin-4-yl)(4-carboxyphenyl)porphyrin (14) was conjugated with an azidopropyl-modified hyaluronic acid (19). The hyaluronic acid-porphyrin conjugate (15) was radiolabeled with (64)Cu and its (15[(64)Cu]) receptor binding affinity to CD44-expressing tumor cells was evaluated.


Subject(s)
Biopolymers/chemistry , Porphyrins/chemistry
13.
Brain Stimul ; 17(6): 1171-1177, 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39396800

ABSTRACT

BACKGROUND: A previous study identified a brain network underlying cervical dystonia (CD) based on causal brain lesions. This network was shown to be abnormal in idiopathic CD and aligned with connections mediating treatment response to deep brain stimulation, suggesting generalizability across etiologies and relevance for treatment. The main nodes of this network were located in the deep cerebellar structures and somatosensory cortex (S1), the latter of which can be easily reached via non-invasive brain stimulation. To date, there are no studies testing brain stimulation to networks identified using lesion network mapping. OBJECTIVES: To assess target engagement by stimulating the S1 and testing the brain's acute metabolic response to repetitive transcranial magnetic stimulation in CD patients and healthy controls. METHODS: Thirteen CD patients and 14 controls received a single session of continuous theta burst (cTBS) and sham to the right S1. Changes in regional brain glucose metabolism were measured using [18F]FDG-PET. RESULTS: cTBS increased metabolism at the stimulation site in CD (P = 0.03) but not in controls (P = 0.15; group difference P = 0.01). In subcortical regions, cTBS increased metabolism in the brainstem in CD only (PFDR = 0.04). The remote activation was positively associated with dystonia severity and efficacy of sensory trick phenomenon in CD patients. CONCLUSIONS: Our results provide further evidence of abnormal sensory system function in CD and show that a single session of S1 cTBS is sufficient to induce measurable changes in brain glucose metabolism. These findings support target engagement, motivating therapeutic trials of cTBS to the S1 in CD.

14.
EJNMMI Radiopharm Chem ; 9(1): 24, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38526746

ABSTRACT

BACKGROUND: Production of [11C]CH4 from gas targets is notorious for weak performance with respect to yield, especially when using high beam currents. Post-target conversion of [11C]CO2 to [11C]CH4 is a widely used roundabout method in 11C-radiochemistry, but the added complexity increase the challenge to control carrier carbon. Thus in-target-produced [11C]CH4 is superior with respect to molar activity. We studied the in-target production of [11C]CO2 and [11C]CH4 from nitrogen gas targets as a function of beam current, irradiation time, and target temperature. RESULTS: [11C]CO2 production was practically unchanged across the range of varied parameters, but the [11C]CH4 yield, presented in terms of saturation yield YSAT(11CH4), had a negative correlation with beam current and a positive correlation with target chamber temperature. A formulated model equation indicates behavior where the [11C]CH4 formation follows a parabolic graph as a function of beam current. The negative square term, i.e., the yield loss, is postulated to arise from Haber-Bosch-like NH3 formation: N2 + 3H2 → 2NH3. The studied conditions suggest that the NH3 (liq.) would be condensed on the target chamber walls, thus depleting the hydrogen reserve needed for the conversion of nascent 11C to [11C]CH4. CONCLUSIONS: [11C]CH4 production can be improved by increasing the target chamber temperature, which is presented in a mathematical formula. Our observations have implications for targetry design (geometry, gas volume and composition, pressure) and irradiation conditions, providing specific knowledge to enhance [11C]CH4 production at high beam currents. Increased [11C]CH4 radioactivity is an obvious benefit in radiosynthesis in terms of product yield and molar radioactivity.

15.
J Clin Endocrinol Metab ; 109(4): 1033-1040, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37955868

ABSTRACT

CONTEXT: Studies on human renal metabolism are scanty. Nowadays, functional imaging allows the characterization of renal metabolism in a noninvasive manner. We have recently demonstrated that fluorodeoxyglucose F18 (18F FDG) positron emission tomography can be used to analyze renal glucose uptake (GU) rates, and that the renal cortex is an insulin-sensitive tissue. OBJECTIVE: To confirm that renal GU is decreased in people with obesity and to test whether circulating metabolites are related to renal GU. DESIGN, SETTING AND PARTICIPANTS: Eighteen people with obesity and 18 nonobese controls were studied with [18F]FDG positron emission tomography during insulin clamp. Renal scans were obtained ∼60 minutes after [18F]FDG injection. Renal GU was measured using fractional uptake rate and after correcting for residual intratubular [18F]FDG. Circulating metabolites were measured using high-throughput proton nuclear magnetic resonance metabolomics. RESULTS: Cortical GU was higher in healthy nonobese controls compared with people with obesity (4.7 [3.4-5.6] vs 3.1 [2.2-4.3], P = .004, respectively), and it associated positively with the degree of insulin sensitivity (M value) (r = 0.42, P = .01). Moreover, cortical GU was inversely associated with circulating ß-OH-butyrate (r = -0.58, P = .009), acetoacetate (r = -0.48, P = .008), citrate (r = -0.44, P = .01), and free fatty acids (r = -0.68, P < .0001), even when accounting for the M value. On the contrary, medullary GU was not associated with any clinical parameters. CONCLUSION: These data confirm differences in renal cortical GU between people with obesity and healthy nonobese controls. Moreover, the negative correlations between renal cortex GU and free fatty acids, ketone bodies, and citrate are suggestive of substrate competition in the renal cortex.


Subject(s)
Insulin Resistance , Humans , Fatty Acids, Nonesterified , Fluorodeoxyglucose F18 , Glucose/metabolism , Insulin , Positron-Emission Tomography , Obesity , Citrates , Radiopharmaceuticals
16.
EJNMMI Radiopharm Chem ; 9(1): 16, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38393497

ABSTRACT

BACKGROUND: Fatty acid binding protein 3 (FABP3) is a target with clinical relevance and the peptide ligand ACooP has been identified for FABP3 targeting. ACooP is a linear decapeptide containing a free amino and thiol group, which provides opportunities for conjugation. This work is to develop methods for radiolabeling of ACooP with fluorine-18 (18F) for positron emission tomography (PET) applications, and evaluate the binding of the radiolabeled ACooP in human tumor tissue sections with high FABP3 expression. RESULTS: The prosthetic compound 6-[18F]fluoronicotinic acid 4-nitrophenyl ester was conveniently prepared with an on-resin 18F-fluorination in 29.9% radiochemical yield and 96.6% radiochemical purity. Interestingly, 6-[18F]fluoronicotinic acid 4-nitrophenyl ester conjugated to ACooP exclusively by S-acylation instead of the expected N-acylation, and the chemical identity of the product [18F]FNA-S-ACooP was confirmed. In the in vitro binding experiments, [18F]FNA-S-ACooP exhibited heterogeneous and high focal binding in malignant tissue sections, where we also observed abundant FABP3 positivity by immunofluorescence staining. Blocking study further confirmed the [18F]FNA-S-ACooP binding specificity. CONCLUSIONS: FABP3 targeted ACooP peptide was successfully radiolabeled by S-acylation using 6-[18F]fluoronicotinic acid 4-nitrophenyl ester as the prosthetic compound. The tissue binding and blocking studies together with anti-FABP3 immunostaining confirmed [18F]FNA-S-ACooP binding specificity. Further preclinical studies of [18F]FNA-S-ACooP are warranted.

17.
EJNMMI Res ; 14(1): 53, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869780

ABSTRACT

BACKGROUND: Fatty acid uptake can be measured using PET and 14-(R,S)-[18F]fluoro-6-thia-heptadecanoic acid ([18F]FTHA). However, the relatively rapid rate of [18F]FTHA metabolism significantly affects kinetic modeling of tissue uptake. Thus, there is a need for accurate chromatographic methods to analyze the unmetabolized [18F]FTHA (parent fraction). Here we present a new radiometabolite analysis (RMA) method, with comparison to a previous method for parent fraction analysis, and its use in a test-retest clinical study under fasting and postprandial conditions. We developed a new thin-layer chromatography (TLC) RMA method for analysis of [18F]FTHA parent fraction and its radiometabolites from plasma, by testing stationary phases and eluent combinations. Next, we analyzed [18F]FTHA, its radiometabolites, and plasma radioactivity from subjects participating in a clinical study. A total of 17 obese or overweight participants were dosed with [18F]FTHA twice under fasting, and twice under postprandial conditions and plasma samples were obtained between 14 min (mean of first sample) and 72 min (mean of last sample) post-injection. Aliquots of 70 plasma samples were analyzed using both methods, enabling head-to-head comparisons. We performed test-retest and group comparisons of the parent fraction and plasma radioactivity. RESULTS: The new TLC method separated seven [18F]FTHA radiometabolite peaks, while the previous method separated three. The new method revealed at least one radiometabolite that was not previously separable from [18F]FTHA. From the plasma samples, the mean parent fraction value was on average 7.2 percentage points lower with the new method, compared to the previous method. Repeated [18F]FTHA investigations on the same subject revealed reproducible plasma SUV and parent fractions, with different kinetics between the fasted and postprandial conditions. CONCLUSIONS: The newly developed improved radio-TLC method for [18F]FTHA RMA enables accurate parent fraction correction, which is required to obtain quantitative data for modelling [18F]FTHA PET data. Our test-retest study of fasted and postprandial conditions showed robust reproducibility, and revealed clear differences in the [18F]FTHA metabolic rate under different study settings. TRIAL REGISTRATION: EudraCT No: 2020-005211-48, 04Feb2021; and Clinical Trials registry NCT05132335, 29Oct2021, URL: https://classic. CLINICALTRIALS: gov/ct2/show/NCT05132335 .

18.
Exp Neurol ; 373: 114673, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38163475

ABSTRACT

Hypoxic-ischemic encephalopathy due to insufficient oxygen delivery to brain tissue is a leading cause of death or severe morbidity in neonates. The early recognition of the most severely affected individuals remains a clinical challenge. We hypothesized that hypoxic-ischemic injury can be detected using PET radiotracers for hypoxia ([18F]EF5), glucose metabolism ([18F]FDG), and inflammation ([18F]F-DPA). METHODS: A preclinical model of neonatal hypoxic-ischemic brain injury was made in 9-d-old rat pups by permanent ligation of the left common carotid artery followed by hypoxia (8% oxygen and 92% nitrogen) for 120 min. In vivo PET imaging was performed immediately after injury induction or at different timepoints up to 21 d later. After imaging, ex vivo brain autoradiography was performed. Brain sections were stained with cresyl violet to evaluate the extent of the brain injury and to correlate it with [18F]FDG uptake. RESULTS: PET imaging revealed that all three of the radiotracers tested had significant uptake in the injured brain hemisphere. Ex vivo autoradiography revealed high [18F]EF5 uptake in the hypoxic hemisphere immediately after the injury (P < 0.0001), decreasing to baseline even 1 d postinjury. [18F]FDG uptake was highest in the injured hemisphere on the day of injury (P < 0.0001), whereas [18F]F-DPA uptake was evident after 4 d (P = 0.029), peaking 7 d postinjury (P < 0.0001), and remained significant 21 d after the injury. Targeted evaluation demonstrated that [18F]FDG uptake measured by in vivo imaging 1 d postinjury correlated positively with the brain volume loss detected 21 d later (r = 0.72, P = 0.028). CONCLUSION: Neonatal hypoxic-ischemic brain injury can be detected using PET imaging. Different types of radiotracers illustrate distinct phases of hypoxic brain damage. PET may be a new useful technique, worthy of being explored for clinical use, to predict and evaluate the course of the injury.


Subject(s)
Brain Injuries , Hypoxia-Ischemia, Brain , Rats , Animals , Hypoxia-Ischemia, Brain/diagnostic imaging , Fluorodeoxyglucose F18 , Positron-Emission Tomography/methods , Brain/diagnostic imaging , Disease Models, Animal , Oxygen , Animals, Newborn
19.
J Cereb Blood Flow Metab ; 44(3): 407-418, 2024 03.
Article in English | MEDLINE | ID: mdl-37824728

ABSTRACT

The human brain undergoes metabolic adaptations in obesity, but the underlying mechanisms have remained largely unknown. We compared concentrations of often reported brain metabolites measured with magnetic resonance spectroscopy (1H-MRS, 3 T MRI) in the occipital lobe in subjects with obesity and lean controls under different metabolic conditions (fasting, insulin clamp, following weight loss). Brain glucose uptake (BGU) quantified with 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET)) was also performed in a subset of subjects during clamp. In dataset A, 48 participants were studied during fasting with brain 1H-MRS, while in dataset B 21 participants underwent paired brain 1H-MRS acquisitions under fasting and clamp conditions. In dataset C 16 subjects underwent brain 18F-FDG-PET and 1H-MRS during clamp. In the fasting state, total N-acetylaspartate was lower in subjects with obesity, while brain myo-inositol increased in response to hyperinsulinemia similarly in both lean participants and subjects with obesity. During clamp, BGU correlated positively with brain glutamine/glutamate, total choline, and total creatine levels. Following weight loss, brain creatine levels were increased, whereas increases in other metabolites remained not significant. To conclude, insulin signaling and glucose metabolism are significantly coupled with several of the changes in brain metabolites that occur in obesity.


Subject(s)
Obesity, Morbid , Humans , Obesity, Morbid/metabolism , Insulin , Fluorodeoxyglucose F18/metabolism , Creatine/metabolism , Brain/diagnostic imaging , Brain/metabolism , Obesity/diagnostic imaging , Obesity/metabolism , Weight Loss/physiology , Neuroimaging , Glucose/metabolism , Choline/metabolism
20.
Biomolecules ; 14(9)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39334836

ABSTRACT

Obesity and sedentarism are associated with increased liver and pancreatic fat content (LFC and PFC, respectively) as well as impaired organ metabolism. Exercise training is known to decrease organ ectopic fat but its effects on organ metabolism are unclear. Genetic background affects susceptibility to obesity and the response to training. We studied the effects of regular exercise training on LFC, PFC, and metabolism in monozygotic twin pairs discordant for BMI. We recruited 12 BMI-discordant monozygotic twin pairs (age 40.4, SD 4.5 years; BMI 32.9, SD 7.6, 8 female pairs). Ten pairs completed six months of training intervention. We measured hepatic insulin-stimulated glucose uptake using [18F]FDG-PET and fat content using magnetic resonance spectroscopy before and after the intervention. At baseline LFC, PFC, gamma-glutamyl transferase (GT), and hepatic glucose uptake were significantly higher in the heavier twins compared to the leaner co-twins (p = 0.018, p = 0.02 and p = 0.01, respectively). Response to training in liver glucose uptake and GT differed between the twins (Time*group p = 0.04 and p = 0.004, respectively). Liver glucose uptake tended to decrease, and GT decreased only in the heavier twins (p = 0.032). In BMI-discordant twins, heavier twins showed higher LFC and PFC, which may underlie the observed increase in liver glucose uptake and GT. These alterations were mitigated by exercise. The small number of participants makes the results preliminary, and future research with a larger pool of participants is warranted.


Subject(s)
Body Mass Index , Exercise , Glucose , Lipid Metabolism , Liver , Obesity , Pancreas , Positron-Emission Tomography , Humans , Female , Liver/metabolism , Liver/diagnostic imaging , Adult , Obesity/metabolism , Obesity/genetics , Glucose/metabolism , Positron-Emission Tomography/methods , Male , Pancreas/metabolism , Pancreas/diagnostic imaging , Twins, Monozygotic , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL