Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 230
Filter
Add more filters

Publication year range
1.
Cell ; 181(6): 1329-1345.e24, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32445698

ABSTRACT

Posterior fossa A (PFA) ependymomas are lethal malignancies of the hindbrain in infants and toddlers. Lacking highly recurrent somatic mutations, PFA ependymomas are proposed to be epigenetically driven tumors for which model systems are lacking. Here we demonstrate that PFA ependymomas are maintained under hypoxia, associated with restricted availability of specific metabolites to diminish histone methylation, and increase histone demethylation and acetylation at histone 3 lysine 27 (H3K27). PFA ependymomas initiate from a cell lineage in the first trimester of human development that resides in restricted oxygen. Unlike other ependymomas, transient exposure of PFA cells to ambient oxygen induces irreversible cellular toxicity. PFA tumors exhibit a low basal level of H3K27me3, and, paradoxically, inhibition of H3K27 methylation specifically disrupts PFA tumor growth. Targeting metabolism and/or the epigenome presents a unique opportunity for rational therapy for infants with PFA ependymoma.


Subject(s)
Ependymoma/genetics , Ependymoma/metabolism , Epigenome/genetics , Infratentorial Neoplasms/genetics , Infratentorial Neoplasms/metabolism , Animals , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line , Cell Proliferation/genetics , DNA Methylation/genetics , Epigenomics/methods , Histones/genetics , Histones/metabolism , Humans , Infant , Lysine/genetics , Lysine/metabolism , Male , Mice, Inbred C57BL , Mutation/genetics
2.
Cell ; 172(5): 1050-1062.e14, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29474906

ABSTRACT

While the preponderance of morbidity and mortality in medulloblastoma patients are due to metastatic disease, most research focuses on the primary tumor due to a dearth of metastatic tissue samples and model systems. Medulloblastoma metastases are found almost exclusively on the leptomeningeal surface of the brain and spinal cord; dissemination is therefore thought to occur through shedding of primary tumor cells into the cerebrospinal fluid followed by distal re-implantation on the leptomeninges. We present evidence for medulloblastoma circulating tumor cells (CTCs) in therapy-naive patients and demonstrate in vivo, through flank xenografting and parabiosis, that medulloblastoma CTCs can spread through the blood to the leptomeningeal space to form leptomeningeal metastases. Medulloblastoma leptomeningeal metastases express high levels of the chemokine CCL2, and expression of CCL2 in medulloblastoma in vivo is sufficient to drive leptomeningeal dissemination. Hematogenous dissemination of medulloblastoma offers a new opportunity to diagnose and treat lethal disseminated medulloblastoma.


Subject(s)
Medulloblastoma/blood supply , Medulloblastoma/pathology , Meningeal Neoplasms/blood supply , Meningeal Neoplasms/secondary , Allografts , Animals , Cell Line, Tumor , Chemokine CCL2/metabolism , Chromosomes, Human, Pair 10/genetics , Female , Humans , Male , Medulloblastoma/genetics , Mice, SCID , Neoplastic Cells, Circulating , Parabiosis
3.
Cell ; 171(5): 1042-1056.e10, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29056344

ABSTRACT

We present an extensive assessment of mutation burden through sequencing analysis of >81,000 tumors from pediatric and adult patients, including tumors with hypermutation caused by chemotherapy, carcinogens, or germline alterations. Hypermutation was detected in tumor types not previously associated with high mutation burden. Replication repair deficiency was a major contributing factor. We uncovered new driver mutations in the replication-repair-associated DNA polymerases and a distinct impact of microsatellite instability and replication repair deficiency on the scale of mutation load. Unbiased clustering, based on mutational context, revealed clinically relevant subgroups regardless of the tumors' tissue of origin, highlighting similarities in evolutionary dynamics leading to hypermutation. Mutagens, such as UV light, were implicated in unexpected cancers, including sarcomas and lung tumors. The order of mutational signatures identified previous treatment and germline replication repair deficiency, which improved management of patients and families. These data will inform tumor classification, genetic testing, and clinical trial design.


Subject(s)
Neoplasms/genetics , Adult , Child , Cluster Analysis , DNA Polymerase II/genetics , DNA Polymerase III/genetics , DNA Replication , Humans , Mutation , Neoplasms/classification , Neoplasms/pathology , Neoplasms/therapy , Poly-ADP-Ribose Binding Proteins/genetics
5.
Annu Rev Neurosci ; 41: 207-232, 2018 07 08.
Article in English | MEDLINE | ID: mdl-29641939

ABSTRACT

Brain tumors are the leading cause of cancer-related death in children, and medulloblastoma (MB) is the most common malignant pediatric brain tumor. Advances in surgery, radiation, and chemotherapy have improved the survival of MB patients. But despite these advances, 25-30% of patients still die from the disease, and survivors suffer severe long-term side effects from the aggressive therapies they receive. Although MB is often considered a single disease, molecular profiling has revealed a significant degree of heterogeneity, and there is a growing consensus that MB consists of multiple subgroups with distinct driver mutations, cells of origin, and prognosis. Here, we review recent progress in MB research, with a focus on the genes and pathways that drive tumorigenesis, the animal models that have been developed to study tumor biology, and the advances in conventional and targeted therapy.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Molecular Targeted Therapy/methods , Animals , Cerebellar Neoplasms/classification , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/therapy , Humans , Medulloblastoma/classification , Medulloblastoma/genetics , Medulloblastoma/therapy
6.
Nature ; 572(7767): 67-73, 2019 08.
Article in English | MEDLINE | ID: mdl-31043743

ABSTRACT

Study of the origin and development of cerebellar tumours has been hampered by the complexity and heterogeneity of cerebellar cells that change over the course of development. Here we use single-cell transcriptomics to study more than 60,000 cells from the developing mouse cerebellum and show that different molecular subgroups of childhood cerebellar tumours mirror the transcription of cells from distinct, temporally restricted cerebellar lineages. The Sonic Hedgehog medulloblastoma subgroup transcriptionally mirrors the granule cell hierarchy as expected, while group 3 medulloblastoma resembles Nestin+ stem cells, group 4 medulloblastoma resembles unipolar brush cells, and PFA/PFB ependymoma and cerebellar pilocytic astrocytoma resemble the prenatal gliogenic progenitor cells. Furthermore, single-cell transcriptomics of human childhood cerebellar tumours demonstrates that many bulk tumours contain a mixed population of cells with divergent differentiation. Our data highlight cerebellar tumours as a disorder of early brain development and provide a proximate explanation for the peak incidence of cerebellar tumours in early childhood.


Subject(s)
Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Evolution, Molecular , Fetus/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Neoplastic , Transcription, Genetic , Animals , Cerebellar Neoplasms/classification , Cerebellum/cytology , Cerebellum/embryology , Cerebellum/metabolism , Child , Female , Fetus/cytology , Glioma/classification , Glioma/genetics , Glioma/pathology , Humans , Medulloblastoma/classification , Medulloblastoma/genetics , Medulloblastoma/pathology , Mice , Sequence Analysis, RNA , Single-Cell Analysis , Time Factors , Transcriptome/genetics
7.
Trends Genet ; 37(3): 204-206, 2021 03.
Article in English | MEDLINE | ID: mdl-33455817

ABSTRACT

A recent study by Petralia et al. of 218 pediatric brain tumors across seven different entities applied an integrated approach incorporating proteomics, phosphoproteomics, whole-genome sequencing, and RNA sequencing. This elegant study unveiled new signaling pathways, the composition of tumor microenvironments, and functional effects of copy number variants and somatic mutations.


Subject(s)
Brain Neoplasms/genetics , Neoplasm Proteins/genetics , Pediatrics , Proteomics , Brain Neoplasms/pathology , Child , DNA Copy Number Variations/genetics , Humans , Mutation/genetics , Sequence Analysis, RNA , Signal Transduction/genetics , Tumor Microenvironment/genetics , Whole Genome Sequencing
8.
Anal Chem ; 96(3): 1019-1028, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38190738

ABSTRACT

Picosecond infrared laser mass spectrometry (PIRL-MS) is shown, through a retrospective patient tissue study, to differentiate medulloblastoma cancers from pilocytic astrocytoma and two molecular subtypes of ependymoma (PF-EPN-A, ST-EPN-RELA) using laser-extracted lipids profiled with PIRL-MS in 10 s of sampling and analysis time. The average sensitivity and specificity values for this classification, taking genomic profiling data as standard, were 96.41 and 99.54%, and this classification used many molecular features resolvable in 10 s PIRL-MS spectra. Data analysis and liquid chromatography coupled with tandem high-resolution mass spectrometry (LC-MS/MS) further allowed us to reduce the molecular feature list to only 18 metabolic lipid markers most strongly involved in this classification. The identified 'metabolite array' was comprised of a variety of phosphatidic and fatty acids, ceramides, and phosphatidylcholine/ethanolamine and could mediate the above-mentioned classification with average sensitivity and specificity values of 94.39 and 98.78%, respectively, at a 95% confidence in prediction probability threshold. Therefore, a rapid and accurate pathology classification of select pediatric brain cancer types from 10 s PIRL-MS analysis using known metabolic biomarkers can now be available to the neurosurgeon. Based on retrospective mining of 'survival' versus 'extent-of-resection' data, we further identified pediatric cancer types that may benefit from actionable 10 s PIRL-MS pathology feedback. In such cases, aggressiveness of the surgical resection can be optimized in a manner that is expected to benefit the patient's overall or progression-free survival. PIRL-MS is a promising tool to drive such personalized decision-making in the operating theater.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Humans , Child , Chromatography, Liquid , Lipidomics , Retrospective Studies , Infrared Rays , Tandem Mass Spectrometry , Lasers , Brain Neoplasms/diagnosis
9.
Radiology ; 310(2): e230777, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38349246

ABSTRACT

Published in 2021, the fifth edition of the World Health Organization (WHO) classification of tumors of the central nervous system (CNS) introduced new molecular criteria for tumor types that commonly occur in either pediatric or adult age groups. Adolescents and young adults (AYAs) are at the intersection of adult and pediatric care, and both pediatric-type and adult-type CNS tumors occur at that age. Mortality rates for AYAs with CNS tumors have increased by 0.6% per year for males and 1% per year for females from 2007 to 2016. To best serve patients, it is crucial that both pediatric and adult radiologists who interpret neuroimages are familiar with the various pediatric- and adult-type brain tumors and their typical imaging morphologic characteristics. Gliomas account for approximately 80% of all malignant CNS tumors in the AYA age group, with the most common types observed being diffuse astrocytic and glioneuronal tumors. Ependymomas and medulloblastomas also occur in the AYA population but are seen less frequently. Importantly, biologic behavior and progression of distinct molecular subgroups of brain tumors differ across ages. This review discusses newly added or revised gliomas in the fifth edition of the CNS WHO classification, as well as other CNS tumor types common in the AYA population.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Glioma , Medulloblastoma , Female , Male , Humans , Adolescent , Young Adult , Child , Brain Neoplasms/diagnostic imaging , Glioma/diagnostic imaging , World Health Organization
10.
J Neurooncol ; 167(3): 447-454, 2024 May.
Article in English | MEDLINE | ID: mdl-38443693

ABSTRACT

PURPOSE: The use of trametinib in the treatment of pediatric low-grade gliomas (PLGG) and plexiform neurofibroma (PN) is being investigated in an ongoing multicenter phase II trial (NCT03363217). Preliminary data shows potential benefits with significant response in the majority of PLGG and PN and an overall good tolerance. Moreover, possible benefits of MEK inhibitor therapy on cognitive functioning in neurofibromatosis type 1 (NF1) were recently shown which supports the need for further evaluation. METHODS: Thirty-six patients with NF1 (age range 3-19 years) enrolled in the phase II study of trametinib underwent a neurocognitive assessment at inclusion and at completion of the 72-week treatment. Age-appropriate Wechsler Intelligence Scales and the Trail Making Test (for children over 8 years old) were administered at each assessment. Paired t-tests and Reliable Change Index (RCI) analyses were performed to investigate change in neurocognitive outcomes. Regression analyses were used to investigate the contribution of age and baseline score in the prediction of change. RESULTS: Stable performance on neurocognitive tests was revealed at a group-level using paired t-tests. Clinically significant improvements were however found on specific indexes of the Wechsler intelligence scales and Trail Making Test, using RCI analyses. No significant impact of age on cognitive change was evidenced. However, lower initial cognitive performance was associated with increased odds of presenting clinically significant improvements on neurocognitive outcomes. CONCLUSION: These preliminary results show a potential positive effect of trametinib on cognition in patients with NF1. We observed significant improvements in processing speed, visuo-motor and verbal abilities. This study demonstrates the importance of including neuropsychological evaluations into clinical trial when using MEK inhibitors for patients with NF1.


Subject(s)
Neurofibromatosis 1 , Neuropsychological Tests , Pyridones , Pyrimidinones , Humans , Pyridones/therapeutic use , Pyrimidinones/therapeutic use , Pyrimidinones/pharmacology , Pyrimidinones/administration & dosage , Male , Female , Adolescent , Child , Neurofibromatosis 1/drug therapy , Neurofibromatosis 1/complications , Neurofibromatosis 1/psychology , Young Adult , Child, Preschool , Glioma/drug therapy , Glioma/psychology , Glioma/complications , Brain Neoplasms/drug therapy , Brain Neoplasms/psychology , Brain Neoplasms/complications , Adult , Protein Kinase Inhibitors/therapeutic use , Antineoplastic Agents/adverse effects
11.
J Neurooncol ; 161(3): 573-582, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36757527

ABSTRACT

PURPOSE: The overall survival and prognostic factors for children with multiply recurrent posterior fossa ependymoma are not well understood. We aimed to assess prognostic factors associated with survival for relapsed pediatric posterior fossa ependymoma. METHODS: An institutional database was queried for children with a primary diagnosis of posterior fossa ependymoma from 2000 to 2019. Kaplan-Meier survival analysis and Cox-proportional hazard regression were used to assess the relationship between treatment factors and overall survival. RESULTS: There were 60 patients identified; molecular subtype was available for 56, of which 49 (87.5%) were PF-A and 7 (12.5%) were PF-B. Relapse occurred in 29 patients (48%) at a mean time of 24 months following primary resection. Median 50% survival was 12.3 years for all patients and 3.3 years following diagnosis of first relapsed disease. GTR was associated with significantly improved survival following primary resection (HR 0.373, 95% CI 0.14-0.96). Presence of recurrent disease was significantly associated with worse survival (p < 0.0001). At recurrent disease diagnosis, disseminated disease was a negative prognostic factor (HR 11.0 95% CI 2.7-44) while GTR at first relapse was associated with improved survival HR 0.215 (95% CI: 0.048-0.96, p = 0.044). Beyond first relapse, the impact of GTR was not significant on survival, though surgery compared to no surgery was favorable with HR 0.155 (95% CI: 0.04-0.59). CONCLUSIONS: Disseminated disease at recurrence and extent of resection for first relapsed disease were important prognostic factors. Surgery compared to no surgery was associated with improved survival for the multiply recurrent ependymoma cohort.


Subject(s)
Brain Neoplasms , Ependymoma , Child , Humans , Neoplasm Recurrence, Local , Kaplan-Meier Estimate , Ependymoma/surgery , Ependymoma/diagnosis , Prognosis
12.
Nature ; 547(7663): 311-317, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28726821

ABSTRACT

Current therapies for medulloblastoma, a highly malignant childhood brain tumour, impose debilitating effects on the developing child, and highlight the need for molecularly targeted treatments with reduced toxicity. Previous studies have been unable to identify the full spectrum of driver genes and molecular processes that operate in medulloblastoma subgroups. Here we analyse the somatic landscape across 491 sequenced medulloblastoma samples and the molecular heterogeneity among 1,256 epigenetically analysed cases, and identify subgroup-specific driver alterations that include previously undiscovered actionable targets. Driver mutations were confidently assigned to most patients belonging to Group 3 and Group 4 medulloblastoma subgroups, greatly enhancing previous knowledge. New molecular subtypes were differentially enriched for specific driver events, including hotspot in-frame insertions that target KBTBD4 and 'enhancer hijacking' events that activate PRDM6. Thus, the application of integrative genomics to an extensive cohort of clinical samples derived from a single childhood cancer entity revealed a series of cancer genes and biologically relevant subtype diversity that represent attractive therapeutic targets for the treatment of patients with medulloblastoma.


Subject(s)
DNA Mutational Analysis , Genome, Human/genetics , Medulloblastoma/classification , Medulloblastoma/genetics , Whole Genome Sequencing , Carcinogenesis/genetics , Carrier Proteins/genetics , Cohort Studies , DNA Methylation , Datasets as Topic , Epistasis, Genetic , Genomics , Humans , Molecular Targeted Therapy , Muscle Proteins/genetics , Mutation , Oncogenes/genetics , Transcription Factors/genetics , Wnt Proteins/genetics
13.
Radiology ; 304(2): 406-416, 2022 08.
Article in English | MEDLINE | ID: mdl-35438562

ABSTRACT

Background Radiogenomics of pediatric medulloblastoma (MB) offers an opportunity for MB risk stratification, which may aid therapeutic decision making, family counseling, and selection of patient groups suitable for targeted genetic analysis. Purpose To develop machine learning strategies that identify the four clinically significant MB molecular subgroups. Materials and Methods In this retrospective study, consecutive pediatric patients with newly diagnosed MB at MRI at 12 international pediatric sites between July 1997 and May 2020 were identified. There were 1800 features extracted from T2- and contrast-enhanced T1-weighted preoperative MRI scans. A two-stage sequential classifier was designed-one that first identifies non-wingless (WNT) and non-sonic hedgehog (SHH) MB and then differentiates therapeutically relevant WNT from SHH. Further, a classifier that distinguishes high-risk group 3 from group 4 MB was developed. An independent, binary subgroup analysis was conducted to uncover radiomics features unique to infantile versus childhood SHH subgroups. The best-performing models from six candidate classifiers were selected, and performance was measured on holdout test sets. CIs were obtained by bootstrapping the test sets for 2000 random samples. Model accuracy score was compared with the no-information rate using the Wald test. Results The study cohort comprised 263 patients (mean age ± SD at diagnosis, 87 months ± 60; 166 boys). A two-stage classifier outperformed a single-stage multiclass classifier. The combined, sequential classifier achieved a microaveraged F1 score of 88% and a binary F1 score of 95% specifically for WNT. A group 3 versus group 4 classifier achieved an area under the receiver operating characteristic curve of 98%. Of the Image Biomarker Standardization Initiative features, texture and first-order intensity features were most contributory across the molecular subgroups. Conclusion An MRI-based machine learning decision path allowed identification of the four clinically relevant molecular pediatric medulloblastoma subgroups. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Chaudhary and Bapuraj in this issue.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Adolescent , Cerebellar Neoplasms/diagnostic imaging , Cerebellar Neoplasms/genetics , Child , Child, Preschool , Female , Hedgehog Proteins/genetics , Humans , Magnetic Resonance Imaging/methods , Male , Medulloblastoma/diagnostic imaging , Medulloblastoma/genetics , Retrospective Studies
14.
Pediatr Blood Cancer ; 69(10): e29838, 2022 10.
Article in English | MEDLINE | ID: mdl-35686728

ABSTRACT

Therapeutic strategies avoiding craniospinal irradiation were developed for young children with medulloblastoma to improve survival while protecting the neurocognitive outcomes of these vulnerable patients. These strategies most commonly rely on high-dose chemotherapy with stem cell rescue or conventional chemotherapy combined with intraventricular chemotherapy or conventional chemotherapy with adjuvant focal irradiation. Over the past decade, our growing understanding of the molecular landscape of medulloblastoma has transformed how we risk stratify and allocate treatment in this young age group. We present the results of the most recent approaches and clinical trials for medulloblastoma of early childhood, according to the different molecular subgroups. Overall, young children with sonic hedgehog medulloblastoma treated with intensive adjuvant chemotherapy achieve excellent survival and can safely be spared from radiotherapy. For patients with group 3 and 4 medulloblastomas, the interplay between molecular alterations and treatment intensity still needs to be further delineated. While recent clinical trials point toward more encouraging survival figure for a sizeable number of them, patients identified with very high-risk feature desperately needs innovative therapies.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cerebellar Neoplasms/drug therapy , Chemotherapy, Adjuvant , Child , Child, Preschool , Combined Modality Therapy , Hedgehog Proteins , Humans , Medulloblastoma/radiotherapy , Radiotherapy, Adjuvant
15.
Pediatr Blood Cancer ; 69(8): e29633, 2022 08.
Article in English | MEDLINE | ID: mdl-35289492

ABSTRACT

Neurofibromatosis type 1-associated plexiform neurofibromas can cause debilitating symptoms and be life threatening. Treatment options are limited, given their tendency to regrow following surgery and their propensity to transform into malignant tumours following radiation. Selumetinib is an oral selective inhibitor of RAS-mitogen-activated protein kinase (MAPK) 1 and 2, which has shown efficacy for tumour shrinkage/stabilisation and symptom improvement. We report a national case series of 19 children treated with selumetinib. All patients experienced symptom improvement or stabilisation with an acceptable toxicity profile, including those patients previously treated with trametinib. This real-world experience confirms previous trials showing significant clinical benefit for this patient population.


Subject(s)
Neurofibroma, Plexiform , Neurofibromatosis 1 , Benzimidazoles , Child , Humans , Neurofibroma, Plexiform/drug therapy , Neurofibroma, Plexiform/pathology , Neurofibromatosis 1/complications , Neurofibromatosis 1/drug therapy
16.
Pediatr Blood Cancer ; 69(9): e29726, 2022 09.
Article in English | MEDLINE | ID: mdl-35484912

ABSTRACT

BACKGROUND: Low- and middle-income countries sustain the majority of pediatric cancer burden, with significantly poorer survival rates compared to high-income countries. Collaboration between institutions in low- and middle-income countries and high-income countries is one of the ways to improve cancer outcomes. METHODS: Patient characteristics and effects of a pediatric neuro-oncology twinning program between the Hospital for Sick Children in Toronto, Canada and several hospitals in Karachi, Pakistan over 7 years are described in this article. RESULTS: A total of 460 patients were included in the study. The most common primary central nervous system tumors were low-grade gliomas (26.7%), followed by medulloblastomas (18%), high-grade gliomas (15%), ependymomas (11%), and craniopharyngiomas (11.7%). Changes to the proposed management plans were made in consultation with expert physicians from the Hospital for Sick Children in Toronto, Canada. On average, 24% of the discussed cases required a change in the original management plan over the course of the twinning program. However, a decreasing trend in change in management plans was observed, from 36% during the first 3.5 years to 16% in the last 3 years. This program also led to the launch of a national pediatric neuro-oncology telemedicine program in Pakistan. CONCLUSIONS: Multidisciplinary and collaborative efforts by experts from across the world have aided in the correct diagnosis and treatment of children with brain tumors and helped establish local treatment protocols. This experience may be a model for other low- and middle-income countries that are planning on creating similar programs.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Medulloblastoma , Brain Neoplasms/therapy , Canada , Child , Developing Countries , Ecosystem , Humans , Pakistan
17.
Nature ; 529(7586): 351-7, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26760213

ABSTRACT

The development of targeted anti-cancer therapies through the study of cancer genomes is intended to increase survival rates and decrease treatment-related toxicity. We treated a transposon-driven, functional genomic mouse model of medulloblastoma with 'humanized' in vivo therapy (microneurosurgical tumour resection followed by multi-fractionated, image-guided radiotherapy). Genetic events in recurrent murine medulloblastoma exhibit a very poor overlap with those in matched murine diagnostic samples (<5%). Whole-genome sequencing of 33 pairs of human diagnostic and post-therapy medulloblastomas demonstrated substantial genetic divergence of the dominant clone after therapy (<12% diagnostic events were retained at recurrence). In both mice and humans, the dominant clone at recurrence arose through clonal selection of a pre-existing minor clone present at diagnosis. Targeted therapy is unlikely to be effective in the absence of the target, therefore our results offer a simple, proximal, and remediable explanation for the failure of prior clinical trials of targeted therapy.


Subject(s)
Cerebellar Neoplasms/therapy , Clone Cells/drug effects , Clone Cells/metabolism , Medulloblastoma/therapy , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Selection, Genetic/drug effects , Animals , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Cerebellar Neoplasms/radiotherapy , Cerebellar Neoplasms/surgery , Clone Cells/pathology , Craniospinal Irradiation , DNA Mutational Analysis , Disease Models, Animal , Drosophila melanogaster/cytology , Drosophila melanogaster/genetics , Female , Genome, Human/genetics , Humans , Male , Medulloblastoma/genetics , Medulloblastoma/pathology , Medulloblastoma/radiotherapy , Medulloblastoma/surgery , Mice , Molecular Targeted Therapy/methods , Neoplasm Recurrence, Local/therapy , Radiotherapy, Image-Guided , Signal Transduction , Xenograft Model Antitumor Assays
18.
Acta Neuropathol ; 142(5): 859-871, 2021 11.
Article in English | MEDLINE | ID: mdl-34409497

ABSTRACT

Medulloblastoma, a common pediatric malignant central nervous system tumour, represent a small proportion of brain tumours in adults. Previously it has been shown that in adults, Sonic Hedgehog (SHH)-activated tumours predominate, with Wingless-type (WNT) and Group 4 being less common, but molecular risk stratification remains a challenge. We performed an integrated analysis consisting of genome-wide methylation profiling, copy number profiling, somatic nucleotide variants and correlation of clinical variables across a cohort of 191 adult medulloblastoma cases identified through the Medulloblastoma Advanced Genomics International Consortium. We identified 30 WNT, 112 SHH, 6 Group 3, and 41 Group 4 tumours. Patients with SHH tumours were significantly older at diagnosis compared to other subgroups (p < 0.0001). Five-year progression-free survival (PFS) for WNT, SHH, Group 3, and Group 4 tumours was 64.4 (48.0-86.5), 61.9% (51.6-74.2), 80.0% (95% CI 51.6-100.0), and 44.9% (95% CI 28.6-70.7), respectively (p = 0.06). None of the clinical variables (age, sex, metastatic status, extent of resection, chemotherapy, radiotherapy) were associated with subgroup-specific PFS. Survival among patients with SHH tumours was significantly worse for cases with chromosome 3p loss (HR 2.9, 95% CI 1.1-7.6; p = 0.02), chromosome 10q loss (HR 4.6, 95% CI 2.3-9.4; p < 0.0001), chromosome 17p loss (HR 2.3, 95% CI 1.1-4.8; p = 0.02), and PTCH1 mutations (HR 2.6, 95% CI 1.1-6.2; p = 0.04). The prognostic significance of 3p loss and 10q loss persisted in multivariable regression models. For Group 4 tumours, chromosome 8 loss was strongly associated with improved survival, which was validated in a non-overlapping cohort (combined cohort HR 0.2, 95% CI 0.1-0.7; p = 0.007). Unlike in pediatric medulloblastoma, whole chromosome 11 loss in Group 4 and chromosome 14q loss in SHH was not associated with improved survival, where MYCN, GLI2 and MYC amplification were rare. In sum, we report unique subgroup-specific cytogenetic features of adult medulloblastoma, which are distinct from those in younger patients, and correlate with survival disparities. Our findings suggest that clinical trials that incorporate new strategies tailored to high-risk adult medulloblastoma patients are urgently needed.


Subject(s)
Cerebellar Neoplasms/genetics , Medulloblastoma/genetics , Adolescent , Adult , Biomarkers, Tumor/genetics , Cerebellar Neoplasms/mortality , Cerebellar Neoplasms/pathology , Cohort Studies , Female , Humans , Male , Medulloblastoma/mortality , Medulloblastoma/pathology , Progression-Free Survival , Risk Factors , Young Adult
19.
J Neurooncol ; 155(1): 63-70, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34529227

ABSTRACT

INTRODUCTION: Choroid Plexus Tumours (CPTs) account for 1-4% of all brain tumours in children. Atypical choroid plexus papillomas (aCPPs) are a subset of these tumours, defined over a decade ago, yet no consensus exists on the optimal approach to their management. METHODS: We conducted a retrospective analysis of all patients treated for CPTs at the Hospital for Sick Children between January 1, 2000, and December 31, 2018, and focused on patients with aCPP. Data extracted from the patient records for analysis included: demographic and clinical features, radiological imaging, surgical and adjuvant therapies, key pathological features, immunohistochemical staining for TP53 and tumour karyotype. Six of seven aCPP samples were profiled using Illumina HumanMethylationEPIC arrays and the top 10,000 most variably methylated probes were visualized using tSNE. Copy number inferencing was also performed. RESULTS: Twenty-nine patients were diagnosed with CPT, seven of whom had a diagnosis of aCPP as confirmed by histological review. Methylation profiling demonstrated that aCPPs clustered with both choroid plexus papillomas (CPPs) and choroid plexus carcinomas (CPCs). Complete resection of the tumour was pursued in all cases of aCPP and no patient received adjuvant therapy. All aCPP patients were alive at last follow up. CONCLUSIONS: This limited case series suggests that paediatric aCPP can be successfully managed with surgical resection alone, followed by a 'watch and wait' approach thus avoiding adjuvant therapies. A deeper understanding of the biology of aCPP is required to identify objective markers which can help provide robust risk stratification and inform treatment strategies.


Subject(s)
Papilloma, Choroid Plexus , Carcinoma , Child , Choroid Plexus , Choroid Plexus Neoplasms/diagnostic imaging , Choroid Plexus Neoplasms/therapy , Glioma , Humans , Papilloma, Choroid Plexus/diagnostic imaging , Papilloma, Choroid Plexus/therapy , Retrospective Studies , Supratentorial Neoplasms
20.
J Pathol ; 251(3): 249-261, 2020 07.
Article in English | MEDLINE | ID: mdl-32391583

ABSTRACT

Central nervous system (CNS) tumors are the most common solid tumor in pediatrics, accounting for approximately 25% of all childhood cancers, and the second most common pediatric malignancy after leukemia. CNS tumors can be associated with significant morbidity, even those classified as low grade. Mortality from CNS tumors is disproportionately high compared to other childhood malignancies, although surgery, radiation, and chemotherapy have improved outcomes in these patients over the last few decades. Current therapeutic strategies lead to a high risk of side effects, especially in young children. Pediatric brain tumor survivors have unique sequelae compared to age-matched patients who survived other malignancies. They are at greater risk of significant impairment in cognitive, neurological, endocrine, social, and emotional domains, depending on the location and type of the CNS tumor. Next-generation genomics have shed light on the broad molecular heterogeneity of pediatric brain tumors and have identified important genes and signaling pathways that serve to drive tumor proliferation. This insight has impacted the research field by providing potential therapeutic targets for these diseases. In this review, we highlight recent progress in understanding the molecular basis of common pediatric brain tumors, specifically low-grade glioma, high-grade glioma, ependymoma, embryonal tumors, and atypical teratoid/rhabdoid tumor (ATRT). © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Cerebellar Neoplasms/genetics , Ependymoma/genetics , Glioma/genetics , Medulloblastoma/genetics , Rhabdoid Tumor/genetics , Teratoma/genetics , Age of Onset , Brain Neoplasms/classification , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Cerebellar Neoplasms/classification , Cerebellar Neoplasms/mortality , Cerebellar Neoplasms/pathology , Ependymoma/classification , Ependymoma/mortality , Ependymoma/pathology , Genetic Predisposition to Disease , Glioma/classification , Glioma/mortality , Glioma/pathology , Humans , Medulloblastoma/classification , Medulloblastoma/mortality , Medulloblastoma/pathology , Neoplasm Grading , Phenotype , Rhabdoid Tumor/classification , Rhabdoid Tumor/mortality , Rhabdoid Tumor/pathology , Teratoma/classification , Teratoma/mortality , Teratoma/pathology
SELECTION OF CITATIONS
SEARCH DETAIL