Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cereb Cortex ; 32(19): 4243-4254, 2022 09 19.
Article in English | MEDLINE | ID: mdl-34969088

ABSTRACT

Deciphering and analyzing the neural correlates of different movements from the same limb using electroencephalography (EEG) would represent a notable breakthrough in the field of sensorimotor neurophysiology. Functional movements involve concurrent posture co-ordination and head and eye movements, which create electrical activity that affects EEG recordings. In this paper, we revisit the identification of brain signatures of different reaching movements using EEG and present, test, and validate a protocol to separate the effect of head and eye movements from a reaching task-related visuomotor brain activity. Ten healthy participants performed reaching movements under two different conditions: avoiding head and eye movements and moving with no constrains. Reaching movements can be identified from EEG with unconstrained eye and head movement, whereas the discriminability of the signals drops to chance level otherwise. These results show that neural patterns associated with different arm movements could only be extracted from EEG if the eye and head movements occurred concurrently with the task, polluting the recordings. Although these findings do not imply that brain correlates of reaching directions cannot be identified from EEG, they show the consequences that ignoring these events can have in any EEG study that includes a visuomotor task.


Subject(s)
Electroencephalography , Upper Extremity , Brain/physiology , Electroencephalography/methods , Eye Movements , Humans , Movement/physiology
2.
J Neuroeng Rehabil ; 20(1): 150, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37941036

ABSTRACT

BACKGROUND: Previous studies showed that repetitive transcranial magnetic stimulation (rTMS) reduces spasticity after stroke. However, clinical assessments like the modified Ashworth scale, cannot discriminate stretch reflex-mediated stiffness (spasticity) from passive stiffness components of resistance to muscle stretch. The mechanisms through which rTMS might influence spasticity are also not understood. METHODS: We measured the effects of contralesional motor cortex 1 Hz rTMS (1200 pulses + 50 min physiotherapy: 3×/week, for 4-6 weeks) on spasticity of the wrist flexor muscles in 54 chronic stroke patients using a hand-held dynamometer for objective quantification of the stretch reflex response. In addition, we measured the excitability of three spinal mechanisms thought to be related to post-stroke spasticity: post-activation depression, presynaptic inhibition and reciprocal inhibition before and after the intervention. Effects on motor impairment and function were also assessed using standardized stroke-specific clinical scales. RESULTS: The stretch reflex-mediated torque in the wrist flexors was significantly reduced after the intervention, while no change was detected in the passive stiffness. Additionally, there was a significant improvement in the clinical tests of motor impairment and function. There were no significant changes in the excitability of any of the measured spinal mechanisms. CONCLUSIONS: We demonstrated that contralesional motor cortex 1 Hz rTMS and physiotherapy can reduce the stretch reflex-mediated component of resistance to muscle stretch without affecting passive stiffness in chronic stroke. The specific physiological mechanisms driving this spasticity reduction remain unresolved, as no changes were observed in the excitability of the investigated spinal mechanisms.


Subject(s)
Motor Cortex , Stroke Rehabilitation , Stroke , Humans , Transcranial Magnetic Stimulation , Stroke/complications , Muscle Spasticity/etiology , Physical Therapy Modalities
3.
Hum Brain Mapp ; 43(1): 129-148, 2022 01.
Article in English | MEDLINE | ID: mdl-32310331

ABSTRACT

The goal of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Stroke Recovery working group is to understand brain and behavior relationships using well-powered meta- and mega-analytic approaches. ENIGMA Stroke Recovery has data from over 2,100 stroke patients collected across 39 research studies and 10 countries around the world, comprising the largest multisite retrospective stroke data collaboration to date. This article outlines the efforts taken by the ENIGMA Stroke Recovery working group to develop neuroinformatics protocols and methods to manage multisite stroke brain magnetic resonance imaging, behavioral and demographics data. Specifically, the processes for scalable data intake and preprocessing, multisite data harmonization, and large-scale stroke lesion analysis are described, and challenges unique to this type of big data collaboration in stroke research are discussed. Finally, future directions and limitations, as well as recommendations for improved data harmonization through prospective data collection and data management, are provided.


Subject(s)
Magnetic Resonance Imaging , Neuroimaging , Stroke , Humans , Multicenter Studies as Topic , Stroke/diagnostic imaging , Stroke/pathology , Stroke/physiopathology , Stroke Rehabilitation
4.
BMC Psychiatry ; 21(1): 540, 2021 10 30.
Article in English | MEDLINE | ID: mdl-34717567

ABSTRACT

BACKGROUND: Mental disorders are prevalent and cause considerable burden of disease. Exercise has been shown to be efficacious to treat major depressive disorders, insomnia, panic disorder with and without agoraphobia and post traumatic stress disorder (PTSD). METHODS: This pragmatic, two arm, multi-site randomised controlled trial will evaluate the efficacy and cost-effectiveness of the manualized, group-based six-months exercise intervention "ImPuls", among physically inactive patients with major depressive disorders, insomnia, panic disorder, agoraphobia and PTSD within a naturalistic outpatient context in Germany. A minimum of 375 eligible outpatients from 10 different study sites will be block-randomized to either ImPuls in addition to treatment as usual (TAU) or TAU only. ImPuls will be conducted by trained exercise therapists and delivered in groups of six patients. The program will combine (a) moderate to vigorous aerobic exercise carried out two-three times a week for at least 30 min with (b) behavior change techniques for sustained exercise behavior change. All outcomes will be assessed pre-treatment, post-treatment (six months after randomization) and at follow-up (12 months after randomization). Primary outcome will be self-reported global symptom severity assessed with the Brief Symptom Inventory (BSI-18). Secondary outcomes will be accelerometry-based moderate to vigorous physical activity, self-reported exercise, disorder-specific symptoms, quality-adjusted life years (QALY) and healthcare costs. Intention-to-treat analyses will be conducted using mixed models. Cost-effectiveness and cost-utility analysis will be conducted using incremental cost-effectiveness and cost-utility ratios. DISCUSSION: Despite its promising therapeutic effects, exercise programs are currently not provided within the outpatient mental health care system in Germany. This trial will inform service providers and policy makers about the efficacy and cost-effectiveness of the group-based exercise intervention ImPuls within a naturalistic outpatient health care setting. Group-based exercise interventions might provide an option to close the treatment gap within outpatient mental health care settings. TRIAL REGISTRATION: The study was registered in the German Clinical Trials Register (ID: DRKS00024152 , 05/02/2021).


Subject(s)
Depressive Disorder, Major , Agoraphobia , Cost-Benefit Analysis , Exercise Therapy , Humans , Multicenter Studies as Topic , Pragmatic Clinical Trials as Topic , Quality-Adjusted Life Years , Randomized Controlled Trials as Topic
5.
Hum Brain Mapp ; 41(5): 1296-1308, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31778265

ABSTRACT

In the present work, we investigated the relationship of oscillatory sensorimotor brain activity to motor recovery. The neurophysiological data of 30 chronic stroke patients with severe upper-limb paralysis are the basis of the observational study presented here. These patients underwent an intervention including movement training based on combined brain-machine interfaces and physiotherapy of several weeks recorded in a double-blinded randomized clinical trial. We analyzed the alpha oscillations over the motor cortex of 22 of these patients employing multilevel linear predictive modeling. We identified a significant correlation between the evolution of the alpha desynchronization during rehabilitative intervention and clinical improvement. Moreover, we observed that the initial alpha desynchronization conditions its modulation during intervention: Patients showing a strong alpha desynchronization at the beginning of the training improved if they increased their alpha desynchronization. Patients showing a small alpha desynchronization at initial training stages improved if they decreased it further on both hemispheres. In all patients, a progressive shift of desynchronization toward the ipsilesional hemisphere correlates significantly with clinical improvement regardless of lesion location. The results indicate that initial alpha desynchronization might be key for stratification of patients undergoing BMI interventions and that its interhemispheric balance plays an important role in motor recovery.


Subject(s)
Brain/physiopathology , Electroencephalography , Recovery of Function , Stroke Rehabilitation/methods , Stroke/physiopathology , Adolescent , Adult , Aged , Aged, 80 and over , Alpha Rhythm , Biomarkers , Brain-Computer Interfaces , Double-Blind Method , Electroencephalography Phase Synchronization , Female , Functional Laterality , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Motor Cortex/physiopathology , Paralysis/physiopathology , Physical Therapy Modalities , Predictive Value of Tests , Young Adult
6.
Magn Reson Med ; 79(5): 2784-2794, 2018 05.
Article in English | MEDLINE | ID: mdl-28921633

ABSTRACT

PURPOSE: Assessment of temporal and spatial relations between spontaneous mechanical activities in musculature (SMAM) at rest as revealed by diffusion-weighted imaging (DWI) and electrical muscular activities in surface EMG (sEMG). Potential influences of static and radiofrequency magnetic fields on muscular activity on sEMG measurements at rest were examined systematically. METHODS: Series of diffusion-weighted stimulated echo planar imaging were recorded with concurrent sEMG measurements. Electrical activities in sEMG were analyzed by non-parametric Friedman and two-sample Kolmogorov-Smirnov test. Direct correlation of both modalities was investigated by temporal mapping of electrical activity in sEMG to DWI repetition interval. RESULTS: Electrical activities in sEMG and number of visible SMAMs in DWI showed a strong correlation (ρ = 0.9718). High accordance between sEMG activities and visible SMAMs in DWI in a near-surface region around sEMG electrodes was achieved. Characteristics of sEMG activities were almost similar under varying magnetic field conditions. CONCLUSION: Visible SMAMs in DWI have shown a close and direct relation to concurrent signals recorded by sEMG. MR-related magnetic fields had no significant effects on findings in sEMG. Hence, appearance of SMAMs in DWI should not be considered as imaging artifact or as effects originating from the special conditions of MR examinations. Spatial and temporal distributions of SMAMs indicate characteristics of spontaneous (microscopic) mechanical muscular action at rest. Therefore, DWI techniques should be considered as non-invasive tools for studying physiology and pathophysiology of spontaneous activities in resting muscle. Magn Reson Med 79:2784-2794, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Electromyography/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Muscle, Skeletal/diagnostic imaging , Signal Processing, Computer-Assisted , Adult , Female , Humans , Leg/diagnostic imaging , Leg/physiology , Male , Middle Aged , Muscle, Skeletal/physiology , Young Adult
7.
J Neuroeng Rehabil ; 15(1): 110, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30458838

ABSTRACT

BACKGROUND: Brain machine interface (BMI) technology has demonstrated its efficacy for rehabilitation of paralyzed chronic stroke patients. The critical component in BMI-training consists of the associative connection (contingency) between the intention and the feedback provided. However, the relationship between the BMI design and its performance in stroke patients is still an open question. METHODS: In this study we compare different methodologies to design a BMI for rehabilitation and evaluate their effects on movement intention decoding performance. We analyze the data of 37 chronic stroke patients who underwent 4 weeks of BMI intervention with different types of association between their brain activity and the proprioceptive feedback. We simulate the pseudo-online performance that a BMI would have under different conditions, varying: (1) the cortical source of activity (i.e., ipsilesional, contralesional, bihemispheric), (2) the type of spatial filter applied, (3) the EEG frequency band, (4) the type of classifier; and also evaluated the use of residual EMG activity to decode the movement intentions. RESULTS: We observed a significant influence of the different BMI designs on the obtained performances. Our results revealed that using bihemispheric beta activity with a common average reference and an adaptive support vector machine led to the best classification results. Furthermore, the decoding results based on brain activity were significantly higher than those based on muscle activity. CONCLUSIONS: This paper underscores the relevance of the different parameters used to decode movement, using EEG in severely paralyzed stroke patients. We demonstrated significant differences in performance for the different designs, which supports further research that should elucidate if those approaches leading to higher accuracies also induce higher motor recovery in paralyzed stroke patients.


Subject(s)
Brain-Computer Interfaces , Electroencephalography/instrumentation , Signal Processing, Computer-Assisted , Stroke Rehabilitation/instrumentation , Aged , Double-Blind Method , Electroencephalography/methods , Female , Humans , Male , Middle Aged , Paralysis/rehabilitation , Stroke/complications , Stroke Rehabilitation/methods
8.
Brain ; 138(Pt 3): 679-93, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25558877

ABSTRACT

Dynamic modulations of large-scale network activity and synchronization are inherent to a broad spectrum of cognitive processes and are disturbed in neuropsychiatric conditions including Parkinson's disease. Here, we set out to address the motor network activity and synchronization in Parkinson's disease and its modulation with subthalamic stimulation. To this end, 20 patients with idiopathic Parkinson's disease with subthalamic nucleus stimulation were analysed on externally cued right hand finger movements with 1.5-s interstimulus interval. Simultaneous recordings were obtained from electromyography on antagonistic muscles (right flexor digitorum and extensor digitorum) together with 64-channel electroencephalography. Time-frequency event-related spectral perturbations were assessed to determine cortical and muscular activity. Next, cross-spectra in the time-frequency domain were analysed to explore the cortico-cortical synchronization. The time-frequency modulations enabled us to select a time-frequency range relevant for motor processing. On these time-frequency windows, we developed an extension of the phase synchronization index to quantify the global cortico-cortical synchronization and to obtain topographic differentiations of distinct electrode sites with respect to their contributions to the global phase synchronization index. The spectral measures were used to predict clinical and reaction time outcome using regression analysis. We found that movement-related desynchronization of cortical activity in the upper alpha and beta range was significantly facilitated with 'stimulation on' compared to 'stimulation off' on electrodes over the bilateral parietal, sensorimotor, premotor, supplementary-motor, and prefrontal areas, including the bilateral inferior prefrontal areas. These spectral modulations enabled us to predict both clinical and reaction time improvement from subthalamic stimulation. With 'stimulation on', interhemispheric cortico-cortical coherence in the beta band was significantly attenuated over the bilateral sensorimotor areas. Similarly, the global cortico-cortical phase synchronization was attenuated, and the topographic differentiation revealed stronger desynchronization over the (ipsilateral) right-hemispheric prefrontal, premotor and sensorimotor areas compared to 'stimulation off'. We further demonstrated that the cortico-cortical phase synchronization was largely dominated by genuine neuronal coupling. The clinical improvement with 'stimulation on' compared to 'stimulation off' could be predicted from this cortical decoupling with multiple regressions, and the reduction of synchronization over the right prefrontal area showed a linear univariate correlation with clinical improvement. Our study demonstrates wide-spread activity and synchronization modulations of the cortical motor network, and highlights subthalamic stimulation as a network-modulating therapy. Accordingly, subthalamic stimulation may release bilateral cortical computational resources by facilitating movement-related desynchronization. Moreover, the subthalamic nucleus is critical to balance inhibitory and facilitatory cortical players within the motor program.


Subject(s)
Cortical Synchronization/physiology , Deep Brain Stimulation/methods , Motor Cortex/physiopathology , Neural Pathways/physiopathology , Parkinson Disease/therapy , Subthalamus/physiology , Adult , Aged , Antiparkinson Agents/therapeutic use , Cortical Synchronization/drug effects , Evoked Potentials, Motor/physiology , Female , Humans , Levodopa/therapeutic use , Longitudinal Studies , Male , Middle Aged , Nerve Net/physiopathology , Parkinson Disease/pathology , Psychomotor Performance/drug effects , Time Factors , Treatment Outcome
9.
J Neurophysiol ; 113(10): 3663-82, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25810484

ABSTRACT

Noninvasive brain-computer-interfaces (BCI) coupled with prosthetic devices were recently introduced in the rehabilitation of chronic stroke and other disorders of the motor system. These BCI systems and motor rehabilitation in general involve several motor tasks for training. This study investigates the neurophysiological bases of an EEG-oscillation-driven BCI combined with a neuroprosthetic device to define the specific oscillatory signature of the BCI task. Controlling movements of a hand robotic orthosis with motor imagery of the same movement generates sensorimotor rhythm oscillation changes and involves three elements of tasks also used in stroke motor rehabilitation: passive and active movement, motor imagery, and motor intention. We recorded EEG while nine healthy participants performed five different motor tasks consisting of closing and opening of the hand as follows: 1) motor imagery without any external feedback and without overt hand movement, 2) motor imagery that moves the orthosis proportional to the produced brain oscillation change with online proprioceptive and visual feedback of the hand moving through a neuroprosthetic device (BCI condition), 3) passive and 4) active movement of the hand with feedback (seeing and feeling the hand moving), and 5) rest. During the BCI condition, participants received contingent online feedback of the decrease of power of the sensorimotor rhythm, which induced orthosis movement and therefore proprioceptive and visual information from the moving hand. We analyzed brain activity during the five conditions using time-frequency domain bootstrap-based statistical comparisons and Morlet transforms. Activity during rest was used as a reference. Significant contralateral and ipsilateral event-related desynchronization of sensorimotor rhythm was present during all motor tasks, largest in contralateral-postcentral, medio-central, and ipsilateral-precentral areas identifying the ipsilateral precentral cortex as an integral part of motor regulation. Changes in task-specific frequency power compared with rest were similar between motor tasks, and only significant differences in the time course and some narrow specific frequency bands were observed between motor tasks. We identified EEG features representing active and passive proprioception (with and without muscle contraction) and active intention and passive involvement (with and without voluntary effort) differentiating brain oscillations during motor tasks that could substantially support the design of novel motor BCI-based rehabilitation therapies. The BCI task induced significantly different brain activity compared with the other motor tasks, indicating neural processes unique to the use of body actuators control in a BCI context.


Subject(s)
Brain Mapping , Brain Waves/physiology , Brain/physiology , Feedback, Sensory/physiology , Movement/physiology , Adult , Brain-Computer Interfaces , Cues , Electroencephalography , Female , Humans , Imagination/physiology , Male , Orthotic Devices , Young Adult
10.
Ann Neurol ; 74(1): 100-8, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23494615

ABSTRACT

OBJECTIVE: Chronic stroke patients with severe hand weakness respond poorly to rehabilitation efforts. Here, we evaluated efficacy of daily brain-machine interface (BMI) training to increase the hypothesized beneficial effects of physiotherapy alone in patients with severe paresis in a double-blind sham-controlled design proof of concept study. METHODS: Thirty-two chronic stroke patients with severe hand weakness were randomly assigned to 2 matched groups and participated in 17.8 ± 1.4 days of training rewarding desynchronization of ipsilesional oscillatory sensorimotor rhythms with contingent online movements of hand and arm orthoses (experimental group, n = 16). In the control group (sham group, n = 16), movements of the orthoses occurred randomly. Both groups received identical behavioral physiotherapy immediately following BMI training or the control intervention. Upper limb motor function scores, electromyography from arm and hand muscles, placebo-expectancy effects, and functional magnetic resonance imaging (fMRI) blood oxygenation level-dependent activity were assessed before and after intervention. RESULTS: A significant group × time interaction in upper limb (combined hand and modified arm) Fugl-Meyer assessment (cFMA) motor scores was found. cFMA scores improved more in the experimental than in the control group, presenting a significant improvement of cFMA scores (3.41 ± 0.563-point difference, p = 0.018) reflecting a clinically meaningful change from no activity to some in paretic muscles. cFMA improvements in the experimental group correlated with changes in fMRI laterality index and with paretic hand electromyography activity. Placebo-expectancy scores were comparable for both groups. INTERPRETATION: The addition of BMI training to behaviorally oriented physiotherapy can be used to induce functional improvements in motor function in chronic stroke patients without residual finger movements and may open a new door in stroke neurorehabilitation.


Subject(s)
Brain-Computer Interfaces , Brain/physiology , Physical Therapy Modalities/instrumentation , Stroke Rehabilitation , Adolescent , Adult , Aged , Aged, 80 and over , Analysis of Variance , Arm/physiology , Brain/blood supply , Brain/physiopathology , Brain Waves , Case-Control Studies , Chronic Disease , Electroencephalography , Electromyography , Female , Hand/physiology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Motor Activity/physiology , Outcome Assessment, Health Care , Retrospective Studies , Stroke/pathology , Stroke/physiopathology , Young Adult
11.
Front Neurol ; 15: 1427198, 2024.
Article in English | MEDLINE | ID: mdl-39253360

ABSTRACT

Background: In healthy subjects, repetitive transcranial magnetic stimulation (rTMS) targeting the primary motor cortex (M1) demonstrated plasticity effects contingent on electroencephalography (EEG)-derived excitability states, defined by the phase of the ongoing sensorimotor µ-oscillation. The therapeutic potential of brain state-dependent rTMS in the rehabilitation of upper limb motor impairment post-stroke remains unexplored. Objective: Proof-of-concept trial to assess the efficacy of rTMS, synchronized to the sensorimotor µ-oscillation, in improving motor impairment and reducing upper-limb spasticity in stroke patients. Methods: We conducted a parallel group, randomized double-blind controlled trial in 30 chronic stroke patients (clinical trial registration number: NCT05005780). The experimental intervention group received EEG-triggered rTMS of the ipsilesional M1 [1,200 pulses; 0.33 Hz; 100% of the resting motor threshold (RMT)], while the control group received low-frequency rTMS of the contralesional motor cortex (1,200 pulses; 1 Hz, 115% RMT), i.e., an established treatment protocol. Both groups received 12 rTMS sessions (20 min, 3× per week, 4 weeks) followed by 50 min of physiotherapy. The primary outcome measure was the change in upper-extremity Fugl-Meyer assessment (FMA-UE) scores between baseline, immediately post-treatment and 3 months' follow-up. Results: Both groups showed significant improvement in the primary outcome measure (FMA-UE) and the secondary outcome measures. This included the reduction in spasticity, measured objectively using the hand-held dynamometer, and enhanced motor function as measured by the Wolf Motor Function Test (WMFT). There were no significant differences between the groups in any of the outcome measures. Conclusion: The application of brain state-dependent rTMS for rehabilitation in chronic stroke patients is feasible. This pilot study demonstrated that the brain oscillation-synchronized rTMS protocol produced beneficial effects on motor impairment, motor function and spasticity that were comparable to those observed with an established therapeutic rTMS protocol. Clinical Trial Registration: ClinicalTrials.gov, identifier [NCT05005780].

12.
Biomedicines ; 12(3)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38540095

ABSTRACT

Chronic constipation affects around 20% of the population and there is no efficient solution. This perspective review explores the potential of colonic electric stimulation (CES) using neural implants and methods of bioelectronic medicine as a therapeutic way to treat chronic constipation. The review covers the neurophysiology of colonic peristaltic function, the pathophysiology of chronic constipation, the technical aspects of CES, including stimulation parameters, electrode placement, and neuromodulation target selection, as well as a comprehensive analysis of various animal models highlighting their advantages and limitations in elucidating the mechanistic insights and translational relevance for CES. Finally, the main challenges and trends in CES are discussed.

13.
Brain Sci ; 14(7)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39061384

ABSTRACT

Motor intention is a high-level brain function related to planning for movement. Although studies have shown that motor intentions can be decoded from brain signals before movement execution, it is unclear whether intentions relating to mental imagery of movement can be decoded. Here, we investigated whether differences in spatial and temporal patterns of brain activation were elicited by intentions to perform different types of motor imagery and whether the patterns could be used by a multivariate pattern classifier to detect such differential intentions. The results showed that it is possible to decode intentions before the onset of different types of motor imagery from functional MR signals obtained from fronto-parietal brain regions, such as the premotor cortex and posterior parietal cortex, while controlling for eye movements and for muscular activity of the hands. These results highlight the critical role played by the aforementioned brain regions in covert motor intentions. Moreover, they have substantial implications for rehabilitating patients with motor disabilities.

14.
Front Bioeng Biotechnol ; 12: 1330330, 2024.
Article in English | MEDLINE | ID: mdl-38681960

ABSTRACT

Introduction: The primary constraint of non-invasive brain-machine interfaces (BMIs) in stroke rehabilitation lies in the poor spatial resolution of motor intention related neural activity capture. To address this limitation, hybrid brain-muscle-machine interfaces (hBMIs) have been suggested as superior alternatives. These hybrid interfaces incorporate supplementary input data from muscle signals to enhance the accuracy, smoothness and dexterity of rehabilitation device control. Nevertheless, determining the distribution of control between the brain and muscles is a complex task, particularly when applied to exoskeletons with multiple degrees of freedom (DoFs). Here we present a feasibility, usability and functionality study of a bio-inspired hybrid brain-muscle machine interface to continuously control an upper limb exoskeleton with 7 DoFs. Methods: The system implements a hierarchical control strategy that follows the biologically natural motor command pathway from the brain to the muscles. Additionally, it employs an innovative mirror myoelectric decoder, offering patients a reference model to assist them in relearning healthy muscle activation patterns during training. Furthermore, the multi-DoF exoskeleton enables the practice of coordinated arm and hand movements, which may facilitate the early use of the affected arm in daily life activities. In this pilot trial six chronic and severely paralyzed patients controlled the multi-DoF exoskeleton using their brain and muscle activity. The intervention consisted of 2 weeks of hBMI training of functional tasks with the system followed by physiotherapy. Patients' feedback was collected during and after the trial by means of several feedback questionnaires. Assessment sessions comprised clinical scales and neurophysiological measurements, conducted prior to, immediately following the intervention, and at a 2-week follow-up. Results: Patients' feedback indicates a great adoption of the technology and their confidence in its rehabilitation potential. Half of the patients showed improvements in their arm function and 83% improved their hand function. Furthermore, we found improved patterns of muscle activation as well as increased motor evoked potentials after the intervention. Discussion: This underscores the significant potential of bio-inspired interfaces that engage the entire nervous system, spanning from the brain to the muscles, for the rehabilitation of stroke patients, even those who are severely paralyzed and in the chronic phase.

15.
Lancet Psychiatry ; 11(6): 417-430, 2024 06.
Article in English | MEDLINE | ID: mdl-38670127

ABSTRACT

BACKGROUND: Globally, mental health conditions pose a substantial burden of disease. Despite the availability of evidence-based pharmacological and psychological treatments, the symptoms of a substantial subgroup of patients do not respond to these interventions, and only a minority of patients have access to them. This study aimed to assess the efficacy of ImPuls, a 6-month transdiagnostic group exercise intervention, plus treatment-as-usual, compared with treatment-as-usual alone in outpatients with various mental disorders. METHODS: In this pragmatic, two-arm, multisite, randomised controlled trial in Germany, ten outpatient rehabilitative and medical care facilities were involved as study sites. Participants were outpatients diagnosed according to ICD-10 with one or more of the following disorders based on structured clinical interviews: moderate or severe depression, primary insomnia, post-traumatic stress disorder (PTSD), panic disorder, or agoraphobia. Participants were required to be aged between 18 years and 65 years, insured by the health insurers Allgemeine Ortskrankenkasse Baden-Württemberg or Techniker Krankenkasse, fluent in German, and without medical contraindications for exercise. Blocks of six participants were randomly allocated to ImPuls plus treatment-as-usual or treatment-as-usual alone (allocation ratio: 1:1), stratified by study site. The randomisation sequence was generated by an external data manager. The team responsible for data collection and management was masked to the randomisation sequence. The ImPuls intervention comprised evidence-based outdoor exercises lasting 30 min, and aimed at achieving at least moderate intensity. It also incorporated behavioural change techniques targeting motivational and volitional determinants of exercise behaviour. Treatment-as-usual was representative of typical outpatient health care in Germany, allowing patients access to any standard treatments. The primary outcome was global symptom severity at 6 months after randomisation, measured using self-report on the Brief Symptom Inventory (BSI-18) and analysed in the intention-to-treat sample. No individuals with lived experience of mental illness were involved in conducting the study or writing the final publication. Safety was assessed in all participants. The trial was registered with the German Clinical Trials Register (DRKS00024152) with a completion date of June 30, 2024. FINDINGS: 600 patients provided informed consent, were recruited to the study, and underwent a diagnostic interview between Jan 1, 2021, and May 31, 2022. Following this, 199 were excluded on the basis of inclusion and exclusion criteria and one withdrew consent during the baseline assessment. Of the 400 eligible participants, 284 (71%) self-identified as female, 106 (27%) self-identified as male, and nine (2%) self-identified as other. The mean age was 42·20 years (SD 13·23; range 19-65). Ethnicity data were not assessed. 287 (72%) participants met the criteria for moderate or severe depression, 81 (20%) for primary insomnia, 37 (9%) for agoraphobia, 46 (12%) for panic disorder, and 72 (18%) for PTSD. 199 participants were allocated to the intervention group of ImPuls plus treatment-as-usual and 201 to the control group of treatment-as-usual alone. 38 (19%) participants did not receive the minimum ImPuls intervention dose. ImPuls plus treatment-as-usual demonstrated superior efficacy to treatment-as-usual alone in reducing global symptom severity, with an adjusted difference on BSI-18 of 4·11 (95% CI 1·74-6·48; d=0·35 [95% CI 0·14-0·56]; p=0·0007) at 6 months. There were no significant differences in the total number of adverse events or serious adverse events between the two groups. There was one serious adverse event (male, torn ligament) related to the intervention. INTERPRETATION: ImPuls is an efficacious transdiagnostic adjunctive treatment in outpatient mental health care. Our findings suggest that exercise therapy should be implemented in outpatient mental health care as an adjunctive transdiagnostic treatment for mental disorders such as depression, insomnia, panic disorder, agoraphobia, and PTSD. Transdiagnostic group exercise interventions might ameliorate the existing disparity in care provision between the many individuals in need of evidence-based treatment and the few who are receiving it. FUNDING: The German Innovation Fund of the Federal Joint Committee of Germany.


Subject(s)
Exercise Therapy , Mental Disorders , Adult , Aged , Female , Humans , Male , Middle Aged , Ambulatory Care/methods , Exercise Therapy/methods , Germany , Mental Disorders/therapy , Outpatients/statistics & numerical data , Psychotherapy, Group/methods , Treatment Outcome
16.
Front Syst Neurosci ; 17: 1045396, 2023.
Article in English | MEDLINE | ID: mdl-37025164

ABSTRACT

Introduction: Like alpha rhythm, the somatosensory mu rhythm is suppressed in the presence of somatosensory inputs by implying cortical excitation. Sensorimotor rhythm (SMR) can be classified into two oscillatory frequency components: mu rhythm (8-13 Hz) and beta rhythm (14-25 Hz). The suppressed/enhanced SMR is a neural correlate of cortical activation related to efferent and afferent movement information. Therefore, it would be necessary to understand cortical information processing in diverse movement situations for clinical applications. Methods: In this work, the EEG of 10 healthy volunteers was recorded while fingers were moved passively under different kinetic and kinematic conditions for proprioceptive stimulation. For the kinetics aspect, afferent brain activity (no simultaneous volition) was compared under two conditions of finger extension: (1) generated by an orthosis and (2) generated by the orthosis simultaneously combined and assisted with functional electrical stimulation (FES) applied at the forearm muscles related to finger extension. For the kinematic aspect, the finger extension was divided into two phases: (1) dynamic extension and (2) static extension (holding the extended position). Results: In the kinematic aspect, both mu and beta rhythms were more suppressed during a dynamic than a static condition. However, only the mu rhythm showed a significant difference between kinetic conditions (with and without FES) affected by attention to proprioception after transitioning from dynamic to static state, but the beta rhythm was not. Discussion: Our results indicate that mu rhythm was influenced considerably by muscle kinetics during finger movement produced by external devices, which has relevant implications for the design of neuromodulation and neurorehabilitation interventions.

17.
Clin Neurophysiol Pract ; 8: 97-110, 2023.
Article in English | MEDLINE | ID: mdl-37273789

ABSTRACT

Objective: We evaluated the resistance to externally induced wrist extension in chronic stroke patients. We aimed to objectively measure and distinguish passive (muscle and soft tissue stiffness) and active (spasticity and spastic dystonia) components of the resistance. Methods: We used a hand-held dynamometer, which measures torque, joint movement and electromyography (EMG) simultaneously, to assess the resistance to externally induced wrist extension. Slow and fast stretches were applied to the affected and unaffected wrists in 57 chronic stroke patients (57 ±â€¯11 years). We extracted from the data parameters that represent passive and muscle activity components and assessed the validity, test-retest reliability and the clinical utility of the measurement. Results: The analysis showed (1) a significant difference in the passive and muscle activity components between the affected and unaffected sides; (2) a significant correlation between passive and muscle activity components and the modified Ashworth scale (MAS); (3) a significant difference between the subgroups of patients stratified by the MAS; (4) an excellent intra-rater reliability on each of the passive and muscle activity components with intra-class coefficients between 0.92 and 0.99; (5) and small measurement error. Conclusions: Using a hand-held dynamometer, we were able to objectively measure the resistance to muscle stretch in the wrist joint in chronic stroke patients and discriminate muscle overactivity components from muscle and soft tissue stiffness. We demonstrated validity, test-retest reliability and the clinical utility of the measurement. Significance: Quantification of the different components of resistance to externally induced movement enables the objective evaluation of neurorehabilitation effects in chronic stroke patients.

18.
Front Hum Neurosci ; 17: 1070404, 2023.
Article in English | MEDLINE | ID: mdl-37789905

ABSTRACT

More than 85% of stroke survivors suffer from different degrees of disability for the rest of their lives. They will require support that can vary from occasional to full time assistance. These conditions are also associated to an enormous economic impact for their families and health care systems. Current rehabilitation treatments have limited efficacy and their long-term effect is controversial. Here we review different challenges related to the design and development of neural interfaces for rehabilitative purposes. We analyze current bibliographic evidence of the effect of neuro-feedback in functional motor rehabilitation of stroke patients. We highlight the potential of these systems to reconnect brain and muscles. We also describe all aspects that should be taken into account to restore motor control. Our aim with this work is to help researchers designing interfaces that demonstrate and validate neuromodulation strategies to enforce a contingent and functional neural linkage between the central and the peripheral nervous system. We thus give clues to design systems that can improve or/and re-activate neuroplastic mechanisms and open a new recovery window for stroke patients.

19.
Trials ; 24(1): 330, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37189210

ABSTRACT

BACKGROUND: Evidence suggests that patients suffering from different mental disorders benefit from exercise programs combined with behavior change techniques. Based on this evidence, we have developed an exercise program (ImPuls) specifically designed to provide an additional treatment option in the outpatient mental health care system. The implementation of such complex programs into the outpatient context requires research that goes beyond the evaluation of effectiveness, and includes process evaluation. So far, process evaluation related to exercise interventions has rarely been conducted. As part of a current pragmatic randomized controlled trial evaluating ImPuls treatment effects, we are therefore carrying out comprehensive process evaluation according to the Medical Research Council (MRC) framework. The central aim of our process evaluation is to support the findings of the ongoing randomized controlled trial. METHODS: The process evaluation follows a mixed-methods approach. We collect quantitative data via online-questionnaires from patients, exercise therapists, referring healthcare professionals and managers of outpatient rehabilitative and medical care facilities before, during, and after the intervention. In addition, documentation data as well as data from the ImPuls smartphone application are collected. Quantitative data is complemented by qualitative interviews with exercise therapists as well as a focus-group interview with managers. Treatment fidelity will be assessed through the rating of video-recorded sessions. Quantitative data analysis includes descriptive as well as mediation and moderation analyses. Qualitative data will be analyzed via qualitative content analysis. DISCUSSION: The results of our process evaluation will complement the evaluation of effectiveness and cost-effectiveness and will, for example, provide important information about mechanisms of impact, structural prerequisites, or provider qualification that may support the decision-making process of health policy stakeholders. It might contribute to paving the way for exercise programs like ImPuls to be made successively available for patients with heterogeneous mental disorders in the German outpatient mental health care system. TRIAL REGISTRATION: The parent clinical study was registered in the German Clinical Trials Register (ID: DRKS00024152, registered 05/02/2021, https://drks.de/search/en/trial/DRKS00024152 ).


Subject(s)
Mental Disorders , Mobile Applications , Humans , Exercise , Health Personnel , Mental Disorders/diagnosis , Mental Disorders/therapy , Outpatients , Randomized Controlled Trials as Topic , Pragmatic Clinical Trials as Topic
20.
Front Bioeng Biotechnol ; 10: 975037, 2022.
Article in English | MEDLINE | ID: mdl-36394044

ABSTRACT

Brain-controlled neuromodulation has emerged as a promising tool to promote functional recovery in patients with motor disorders. Brain-machine interfaces exploit this neuromodulatory strategy and could be used for restoring voluntary control of lower limbs. In this work, we propose a non-invasive brain-spine interface (BSI) that processes electroencephalographic (EEG) activity to volitionally control trans-spinal magnetic stimulation (ts-MS), as an approach for lower-limb neurorehabilitation. This novel platform allows to contingently connect motor cortical activation during leg motor imagery with the activation of leg muscles via ts-MS. We tested this closed-loop system in 10 healthy participants using different stimulation conditions. This BSI efficiently removed stimulation artifacts from EEG regardless of ts-MS intensity used, allowing continuous monitoring of cortical activity and real-time closed-loop control of ts-MS. Our BSI induced afferent and efferent evoked responses, being this activation ts-MS intensity-dependent. We demonstrated the feasibility, safety and usability of this non-invasive BSI. The presented system represents a novel non-invasive means of brain-controlled neuromodulation and opens the door towards its integration as a therapeutic tool for lower-limb rehabilitation.

SELECTION OF CITATIONS
SEARCH DETAIL