Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Cell ; 186(25): 5606-5619.e24, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38065081

ABSTRACT

Patient-derived organoids (PDOs) can model personalized therapy responses; however, current screening technologies cannot reveal drug response mechanisms or how tumor microenvironment cells alter therapeutic performance. To address this, we developed a highly multiplexed mass cytometry platform to measure post-translational modification (PTM) signaling, DNA damage, cell-cycle activity, and apoptosis in >2,500 colorectal cancer (CRC) PDOs and cancer-associated fibroblasts (CAFs) in response to clinical therapies at single-cell resolution. To compare patient- and microenvironment-specific drug responses in thousands of single-cell datasets, we developed "Trellis"-a highly scalable, tree-based treatment effect analysis method. Trellis single-cell screening revealed that on-target cell-cycle blockage and DNA-damage drug effects are common, even in chemorefractory PDOs. However, drug-induced apoptosis is rarer, patient-specific, and aligns with cancer cell PTM signaling. We find that CAFs can regulate PDO plasticity-shifting proliferative colonic stem cells (proCSCs) to slow-cycling revival colonic stem cells (revCSCs) to protect cancer cells from chemotherapy.


Subject(s)
Cancer-Associated Fibroblasts , Humans , Apoptosis , Organoids , Signal Transduction , Single-Cell Analysis , Drug Evaluation, Preclinical , Algorithms , Stem Cells
2.
PLoS Genet ; 16(1): e1008558, 2020 01.
Article in English | MEDLINE | ID: mdl-31923184

ABSTRACT

Autophagy, particularly with BECN1, has paradoxically been highlighted as tumor promoting in Ras-driven cancers, but potentially tumor suppressing in breast and ovarian cancers. However, studying the specific role of BECN1 at the genetic level is complicated due to its genomic proximity to BRCA1 on both human (chromosome 17) and murine (chromosome 11) genomes. In human breast and ovarian cancers, the monoallelic deletion of these genes is often co-occurring. To investigate the potential tumor suppressor roles of two of the most commonly deleted autophagy genes in ovarian cancer, BECN1 and MAP1LC3B were knocked-down in atypical (BECN1+/+ and MAP1LC3B+/+) ovarian cancer cells. Ultra-performance liquid chromatography mass-spectrometry metabolomics revealed reduced levels of acetyl-CoA which corresponded with elevated levels of glycerophospholipids and sphingolipids. Migration rates of ovarian cancer cells were increased upon autophagy gene knockdown. Genomic instability was increased, resulting in copy-number alteration patterns which mimicked high grade serous ovarian cancer. We further investigated the causal role of Becn1 haploinsufficiency for oncogenesis in a MISIIR SV40 large T antigen driven spontaneous ovarian cancer mouse model. Tumors were evident earlier among the Becn1+/- mice, and this correlated with an increase in copy-number alterations per chromosome in the Becn1+/- tumors. The results support monoallelic loss of BECN1 as permissive for tumor initiation and potentiating for genomic instability in ovarian cancer.


Subject(s)
Beclin-1/genetics , Chromosomal Instability , Haploinsufficiency , Microtubule-Associated Proteins/genetics , Ovarian Neoplasms/genetics , Animals , Carcinogenesis/genetics , Cell Line, Tumor , Cell Movement , Female , Metabolome , Mice , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology
3.
Cell Rep ; 37(9): 110062, 2021 11 30.
Article in English | MEDLINE | ID: mdl-34852229

ABSTRACT

A common mechanism in inherited ataxia is a vulnerability of DNA damage. Spinocerebellar ataxia type 7 (SCA7) is a CAG-polyglutamine-repeat disorder characterized by cerebellar and retinal degeneration. Polyglutamine-expanded ataxin-7 protein incorporates into STAGA co-activator complex and interferes with transcription by altering histone acetylation. We performed chromatic immunoprecipitation sequencing ChIP-seq on cerebellum from SCA7 mice and observed increased H3K9-promoter acetylation in DNA repair genes, resulting in increased expression. After detecting increased DNA damage in SCA7 cells, mouse primary cerebellar neurons, and patient stem-cell-derived neurons, we documented reduced homology-directed repair (HDR) and single-strand annealing (SSA). To evaluate repair at endogenous DNA in native chromosome context, we modified linear amplification-mediated high-throughput genome-wide translocation sequencing and found that DNA translocations are less frequent in SCA7 models, consistent with decreased HDR and SSA. Altered DNA repair function in SCA7 may predispose the subject to excessive DNA damage, leading to neuron demise and highlights DNA repair as a therapy target.


Subject(s)
Ataxin-7/metabolism , Cerebellar Diseases/pathology , DNA Repair , Histones/metabolism , Neurons/pathology , Peptides/genetics , Spinocerebellar Ataxias/complications , Acetylation , Animals , Ataxin-7/genetics , Cerebellar Diseases/etiology , Cerebellar Diseases/metabolism , Female , Histones/genetics , Humans , Male , Mice , Neurons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL