Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Blood ; 142(22): 1859-1870, 2023 11 30.
Article in English | MEDLINE | ID: mdl-37729609

ABSTRACT

Polycythemia vera (PV) belongs to the BCR-ABL1-negative myeloproliferative neoplasms and is characterized by activating mutations in JAK2 and clinically presents with erythrocytosis, variable degrees of systemic and vasomotor symptoms, and an increased risk of both thromboembolic events and progression to myelofibrosis and acute myeloid leukemia (AML). Treatment selection is based on a patient's age and a history of thrombosis in patients with low-risk PV treated with therapeutic phlebotomy and aspirin alone, whereas cytoreductive therapy with either hydroxyurea or interferon alfa (IFN-α) is added for high-risk disease. However, other disease features such as significant disease-related symptoms and splenomegaly, concurrent thrombocytosis and leukocytosis, or intolerance of phlebotomy can constitute an indication for cytoreductive therapy in patients with otherwise low-risk disease. Additionally, recent studies demonstrating the safety and efficacy (ie, reduction in phlebotomy requirements and molecular responses) of ropegylated IFN-α2b support its use for patients with low-risk PV. Additionally, emerging data suggest that early treatment is associated with higher rates of molecular responses, which might eventually enable time-limited therapy. Nonetheless, longer follow-up is needed to assess whether molecular responses associate with clinically meaningful outcome measures such as thrombosis and progression to myelofibrosis or AML. In this article, we provide an overview of the current and evolving treatment landscape of PV and outline our vision for a patient-centered, phlebotomy-free, treatment approach using time-limited, disease-modifying treatment modalities early in the disease course, which could ultimately affect the natural history of the disease.


Subject(s)
Leukemia, Myeloid, Acute , Polycythemia Vera , Primary Myelofibrosis , Thrombocytosis , Thrombosis , Humans , Polycythemia Vera/complications , Polycythemia Vera/genetics , Polycythemia Vera/therapy , Primary Myelofibrosis/drug therapy , Thrombocytosis/therapy , Hydroxyurea/therapeutic use , Thrombosis/therapy , Thrombosis/chemically induced , Interferon-alpha/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Janus Kinase 2/genetics
2.
Blood ; 141(6): 567-578, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36399715

ABSTRACT

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematologic malignancy with historically poor outcomes and no worldwide consensus treatment approach. Unique among most hematologic malignancies for its frequent cutaneous involvement, BPDCN can also invade other extramedullary compartments, including the central nervous system. Generally affecting older adults, many patients are unfit to receive intensive chemotherapy, and although hematopoietic stem cell transplantation is preferred for younger, fit individuals, not all are eligible. One recent therapeutic breakthrough is that all BPDCNs express CD123 (IL3Rα) and that this accessible surface marker can be pharmacologically targeted. The first-in-class agent for BPDCN, tagraxofusp, which targets CD123, was approved in December 2018 in the United States for patients with BPDCN aged ≥2 years. Despite favorable response rates in the frontline setting, many patients still relapse in the setting of monotherapy, and outcomes in patients with relapsed/refractory BPDCN remain dismal. Therefore, novel approaches targeting both CD123 and other targets are actively being investigated. To begin to formally address the state of the field, we formed a new collaborative initiative, the North American BPDCN Consortium (NABC). This group of experts, which includes a multidisciplinary panel of hematologists/oncologists, hematopoietic stem cell transplant physicians, pathologists, dermatologists, and pediatric oncologists, was tasked with defining the current standard of care in the field and identifying the most important research questions and future directions in BPDCN. The position findings of the NABC's inaugural meetings are presented herein.


Subject(s)
Hematologic Neoplasms , Myeloproliferative Disorders , Skin Neoplasms , Child , Humans , Aged , Standard of Care , Interleukin-3 Receptor alpha Subunit , Dendritic Cells/pathology , Neoplasm Recurrence, Local/pathology , Myeloproliferative Disorders/pathology , Hematologic Neoplasms/pathology , Skin Neoplasms/pathology , Acute Disease , North America
3.
Br J Haematol ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38613141

ABSTRACT

Histiocytic neoplasms are diverse clonal haematopoietic disorders, and clinical disease is mediated by tumorous infiltration as well as uncontrolled systemic inflammation. Individual subtypes include Langerhans cell histiocytosis (LCH), Rosai-Dorfman-Destombes disease (RDD) and Erdheim-Chester disease (ECD), and these have been characterized with respect to clinical phenotypes, driver mutations and treatment paradigms. Less is known about patients with mixed histiocytic neoplasms (MXH), that is two or more coexisting disorders. This international collaboration examined patients with biopsy-proven MXH with respect to component disease subtypes, oncogenic driver mutations and responses to conventional (chemotherapeutic or immunosuppressive) versus targeted (BRAF or MEK inhibitor) therapies. Twenty-seven patients were studied with ECD/LCH (19/27), ECD/RDD (6/27), RDD/LCH (1/27) and ECD/RDD/LCH (1/27). Mutations previously undescribed in MXH were identified, including KRAS, MAP2K2, MAPK3, non-V600-BRAF, RAF1 and a BICD2-BRAF fusion. A repeated-measure generalized estimating equation demonstrated that targeted treatment was statistically significantly (1) more likely to result in a complete response (CR), partial response (PR) or stable disease (SD) (odds ratio [OR]: 17.34, 95% CI: 2.19-137.00, p = 0.007), and (2) less likely to result in progression (OR: 0.08, 95% CI: 0.03-0.23, p < 0.0001). Histiocytic neoplasms represent an entity with underappreciated clinical and molecular diversity, poor responsiveness to conventional therapy and exquisite sensitivity to targeted therapy.

4.
Blood ; 140(22): 2371-2384, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36054916

ABSTRACT

We found that in regenerative erythropoiesis, the erythroid progenitor landscape is reshaped, and a previously undescribed progenitor population with colony-forming unit-erythroid (CFU-E) activity (stress CFU-E [sCFU-E]) is expanded markedly to restore the erythron. sCFU-E cells are targets of erythropoietin (Epo), and sCFU-E expansion requires signaling from the Epo receptor (EpoR) cytoplasmic tyrosines. Molecularly, Epo promotes sCFU-E expansion via JAK2- and STAT5-dependent expression of IRS2, thus engaging the progrowth signaling from the IGF1 receptor (IGF1R). Inhibition of IGF1R and IRS2 signaling impairs sCFU-E cell growth, whereas exogenous IRS2 expression rescues cell growth in sCFU-E expressing truncated EpoR-lacking cytoplasmic tyrosines. This sCFU-E pathway is the major pathway involved in erythrocytosis driven by the oncogenic JAK2 mutant JAK2(V617F) in myeloproliferative neoplasm. Inability to expand sCFU-E cells by truncated EpoR protects against JAK2(V617F)-driven erythrocytosis. In samples from patients with myeloproliferative neoplasm, the number of sCFU-E-like cells increases, and inhibition of IGR1R and IRS2 signaling blocks Epo-hypersensitive erythroid cell colony formation. In summary, we identified a new stress-specific erythroid progenitor cell population that links regenerative erythropoiesis to pathogenic erythrocytosis.


Subject(s)
Erythropoietin , Myeloproliferative Disorders , Neoplasms , Polycythemia , Humans , Erythropoiesis/physiology , Receptors, Erythropoietin/genetics , Receptors, Erythropoietin/metabolism , Polycythemia/metabolism , Erythropoietin/metabolism , Myeloproliferative Disorders/metabolism , Erythroid Precursor Cells/metabolism , Neoplasms/metabolism , Receptor, IGF Type 1/metabolism
5.
Blood ; 139(18): 2797-2815, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35286385

ABSTRACT

Myeloproliferative neoplasms (MPNs) transform to myelofibrosis (MF) and highly lethal acute myeloid leukemia (AML), although the actionable mechanisms driving progression remain elusive. Here, we elucidate the role of the high mobility group A1 (HMGA1) chromatin regulator as a novel driver of MPN progression. HMGA1 is upregulated in MPN, with highest levels after transformation to MF or AML. To define HMGA1 function, we disrupted gene expression via CRISPR/Cas9, short hairpin RNA, or genetic deletion in MPN models. HMGA1 depletion in JAK2V617F AML cell lines disrupts proliferation, clonogenicity, and leukemic engraftment. Surprisingly, loss of just a single Hmga1 allele prevents progression to MF in JAK2V617F mice, decreasing erythrocytosis, thrombocytosis, megakaryocyte hyperplasia, and expansion of stem and progenitors, while preventing splenomegaly and fibrosis within the spleen and BM. RNA-sequencing and chromatin immunoprecipitation sequencing revealed HMGA1 transcriptional networks and chromatin occupancy at genes that govern proliferation (E2F, G2M, mitotic spindle) and cell fate, including the GATA2 master regulatory gene. Silencing GATA2 recapitulates most phenotypes observed with HMGA1 depletion, whereas GATA2 re-expression partially rescues leukemogenesis. HMGA1 transactivates GATA2 through sequences near the developmental enhancer (+9.5), increasing chromatin accessibility and recruiting active histone marks. Further, HMGA1 transcriptional networks, including proliferation pathways and GATA2, are activated in human MF and MPN leukemic transformation. Importantly, HMGA1 depletion enhances responses to the JAK2 inhibitor, ruxolitinib, preventing MF and prolonging survival in murine models of JAK2V617F AML. These findings illuminate HMGA1 as a key epigenetic switch involved in MPN transformation and a promising therapeutic target to treat or prevent disease progression.


Subject(s)
GATA2 Transcription Factor , HMGA1a Protein , Leukemia, Myeloid, Acute , Myeloproliferative Disorders , Primary Myelofibrosis , Animals , Cell Proliferation , Chromatin/genetics , GATA2 Transcription Factor/genetics , Gene Regulatory Networks , HMGA1a Protein/genetics , HMGA1a Protein/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Leukemia, Myeloid, Acute/genetics , Mice , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Primary Myelofibrosis/genetics
6.
Blood ; 139(25): 3630-3646, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35421216

ABSTRACT

Leukemic transformation (LT) of myeloproliferative neoplasm (MPN) has a dismal prognosis and is largely fatal. Mutational inactivation of TP53 is the most common somatic event in LT; however, the mechanisms by which TP53 mutations promote LT remain unresolved. Using an allelic series of mouse models of Jak2/Trp53 mutant MPN, we identify that only biallelic inactivation of Trp53 results in LT (to a pure erythroleukemia [PEL]). This PEL arises from the megakaryocyte-erythroid progenitor population. Importantly, the bone morphogenetic protein 2/SMAD pathway is aberrantly activated during LT and results in abnormal self-renewal of megakaryocyte-erythroid progenitors. Finally, we identify that Jak2/Trp53 mutant PEL is characterized by recurrent copy number alterations and DNA damage. Using a synthetic lethality strategy, by targeting active DNA repair pathways, we show that this PEL is highly sensitive to combination WEE1 and poly(ADP-ribose) polymerase inhibition. These observations yield new mechanistic insights into the process of p53 mutant LT and offer new, clinically translatable therapeutic approaches.


Subject(s)
Myeloproliferative Disorders , Tumor Suppressor Protein p53 , Animals , Bone Morphogenetic Protein 2/genetics , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Megakaryocyte-Erythroid Progenitor Cells/metabolism , Megakaryocytes/metabolism , Mice , Mutation , Myeloproliferative Disorders/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
7.
Blood ; 140(12): 1408-1418, 2022 09 22.
Article in English | MEDLINE | ID: mdl-35667047

ABSTRACT

To determine the survival benefit of allogeneic hematopoietic cell transplantation (allo-HCT) in chronic myelomonocytic leukemias (CMML), we assembled a retrospective cohort of CMML patients 18-70 years old diagnosed between 2000 and 2014 from an international CMML dataset (n = 730) and the EBMT registry (n = 384). The prognostic impact of allo-HCT was analyzed through univariable and multivariable time-dependent models and with a multistate model, accounting for age, sex, CMML prognostic scoring system (low or intermediate-1 grouped as lower-risk, intermediate-2 or high as higher-risk) at diagnosis, and AML transformation. In univariable analysis, lower-risk CMMLs had a 5-year overall survival (OS) of 20% with allo-HCT vs 42% without allo-HCT (P < .001). In higher-risk patients, 5-year OS was 27% with allo-HCT vs 15% without allo-HCT (P = .13). With multistate models, performing allo-HCT before AML transformation reduced OS in patients with lower-risk CMML, and a survival benefit was predicted for men with higher-risk CMML. In a multivariable analysis of lower-risk patients, performing allo-HCT before transformation to AML significantly increased the risk of death within 2 years of transplantation (hazard ratio [HR], 3.19; P < .001), with no significant change in long-term survival beyond this time point (HR, 0.98; P = .92). In higher-risk patients, allo-HCT significantly increased the risk of death in the first 2 years after transplant (HR 1.46; P = .01) but not beyond (HR, 0.60; P = .09). Performing allo-HCT before AML transformation decreases life expectancy in lower-risk patients but may be considered in higher-risk patients.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myelomonocytic, Chronic , Leukemia, Myelomonocytic, Juvenile , Adolescent , Adult , Aged , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Leukemia, Myelomonocytic, Chronic/diagnosis , Leukemia, Myelomonocytic, Chronic/therapy , Male , Middle Aged , Retrospective Studies , Transplantation, Homologous , Young Adult
8.
Blood ; 139(19): 2931-2941, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35007321

ABSTRACT

The goal of therapy for patients with essential thrombocythemia (ET) and polycythemia vera (PV) is to reduce thrombotic events by normalizing blood counts. Hydroxyurea (HU) and interferon-α (IFN-α) are the most frequently used cytoreductive options for patients with ET and PV at high risk for vascular complications. Myeloproliferative Disorders Research Consortium 112 was an investigator-initiated, phase 3 trial comparing HU to pegylated IFN-α (PEG) in treatment-naïve, high-risk patients with ET/PV. The primary endpoint was complete response (CR) rate at 12 months. A total of 168 patients were treated for a median of 81.0 weeks. CR for HU was 37% and 35% for PEG (P = .80) at 12 months. At 24 to 36 months, CR was 20% to 17% for HU and 29% to 33% for PEG. PEG led to a greater reduction in JAK2V617F at 24 months, but histopathologic responses were more frequent with HU. Thrombotic events and disease progression were infrequent in both arms, whereas grade 3/4 adverse events were more frequent with PEG (46% vs 28%). At 12 months of treatment, there was no significant difference in CR rates between HU and PEG. This study indicates that PEG and HU are both effective treatments for PV and ET. With longer treatment, PEG was more effective in normalizing blood counts and reducing driver mutation burden, whereas HU produced more histopathologic responses. Despite these differences, both agents did not differ in limiting thrombotic events and disease progression in high-risk patients with ET/PV. This trial was registered at www.clinicaltrials.gov as #NCT01259856.


Subject(s)
Polycythemia Vera , Thrombocythemia, Essential , Thrombosis , Disease Progression , Humans , Hydroxyurea/adverse effects , Interferon-alpha/adverse effects , Polycythemia Vera/drug therapy , Polycythemia Vera/genetics , Thrombocythemia, Essential/drug therapy , Thrombocythemia, Essential/genetics , Thrombosis/chemically induced , Thrombosis/prevention & control
9.
Br J Haematol ; 203(3): 389-394, 2023 11.
Article in English | MEDLINE | ID: mdl-37400251

ABSTRACT

Little is known about outcomes following interruption of targeted therapy in adult patients with histiocytic neoplasms. This is an IRB-approved study of patients with histiocytic neoplasms whose BRAF and MEK inhibitors were interrupted after achieving complete or partial response by 18-fluorodeoxyglucose positron emission tomography (FDG-PET). 17/22 (77%) of patients experienced disease relapse following treatment interruption. Achieving a complete response prior to interruption, having a mutation other than BRAFV600E, and receiving MEK inhibition only were each associated with a statistically significant improvement in relapse-free survival. Relapse is common following treatment interruption however some patients may be suitable for limited-duration treatment.


Subject(s)
Neoplasms , Adult , Humans , Positron-Emission Tomography , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Mitogen-Activated Protein Kinase Kinases , Recurrence , Fluorodeoxyglucose F18 , Proto-Oncogene Proteins B-raf/genetics
10.
Blood ; 137(10): 1377-1391, 2021 03 11.
Article in English | MEDLINE | ID: mdl-32871587

ABSTRACT

Plasmacytoid dendritic cells (pDCs) are the principal natural type I interferon-producing dendritic cells. Neoplastic expansion of pDCs and pDC precursors leads to blastic plasmacytoid dendritic cell neoplasm (BPDCN), and clonal expansion of mature pDCs has been described in chronic myelomonocytic leukemia. The role of pDC expansion in acute myeloid leukemia (AML) is poorly studied. Here, we characterize patients with AML with pDC expansion (pDC-AML), which we observe in ∼5% of AML cases. pDC-AMLs often possess cross-lineage antigen expression and have adverse risk stratification with poor outcome. RUNX1 mutations are the most common somatic alterations in pDC-AML (>70%) and are much more common than in AML without pDC expansion and BPDCN. We demonstrate that pDCs are clonally related to, as well as originate from, leukemic blasts in pDC-AML. We further demonstrate that leukemic blasts from RUNX1-mutated AML upregulate a pDC transcriptional program, poising the cells toward pDC differentiation and expansion. Finally, tagraxofusp, a targeted therapy directed to CD123, reduces leukemic burden and eliminates pDCs in a patient-derived xenograft model. In conclusion, pDC-AML is characterized by a high frequency of RUNX1 mutations and increased expression of a pDC transcriptional program. CD123 targeting represents a potential treatment approach for pDC-AML.


Subject(s)
Core Binding Factor Alpha 2 Subunit/genetics , Dendritic Cells/pathology , Leukemia, Myeloid, Acute/genetics , Adult , Aged , Blast Crisis/genetics , Blast Crisis/pathology , Dendritic Cells/metabolism , Female , Humans , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Mutation
11.
Blood ; 136(1): 61-70, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32430500

ABSTRACT

Secondary acute myeloid leukemias (AMLs) evolving from an antecedent myeloproliferative neoplasm (MPN) are characterized by a unique set of cytogenetic and molecular features distinct from de novo AML. Given the high frequency of poor-risk cytogenetic and molecular features, malignant clones are frequently insensitive to traditional AML chemotherapeutic agents. Allogeneic stem cell transplant, the only treatment modality shown to have any beneficial long-term outcome, is often not possible given the advanced age of patients at time of diagnosis and frequent presence of competing comorbidities. Even in this setting, relapse rates remain high. As a result, outcomes are generally poor and there remains a significant unmet need for novel therapeutic strategies. Although advances in cancer genomics have dramatically enhanced our understanding of the molecular events governing clonal evolution in MPNs, the cell-intrinsic and -extrinsic mechanisms driving leukemic transformation at this level remain poorly understood. Here, we review known risk factors for the development of leukemic transformation in MPNs, recent progress made in our understanding of the molecular features associated with leukemic transformation, current treatment strategies, and emerging therapeutic options for this high-risk myeloid malignancy.


Subject(s)
Leukemia, Myeloid, Acute/etiology , Myeloproliferative Disorders/pathology , Abnormal Karyotype , Allografts , Antineoplastic Agents/therapeutic use , Cell Transformation, Neoplastic , Chromosome Aberrations , Clonal Evolution , Combined Modality Therapy , Comorbidity , Disease Progression , Drug Resistance, Neoplasm , Drugs, Investigational/therapeutic use , Genes, Neoplasm , Hematopoietic Stem Cell Transplantation , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/therapy , Models, Biological , Mutation , Myeloproliferative Disorders/genetics , Neoplasm Proteins/genetics , Recurrence , Risk Factors , Single-Cell Analysis , Therapies, Investigational
12.
Blood ; 134(8): 678-687, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31243042

ABSTRACT

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an uncommon hematologic malignancy with poor outcomes. Existing data on the clinical behavior of BPDCN are limited because reported outcomes are from small retrospective series, and standardized treatment guidelines are lacking. The interleukin-3 cytotoxin conjugate tagraxofusp was recently tested in phase 1/2 trials that led to US Food and Drug Administration approval, the first ever for BPDCN. However, because there was no matched internal comparator in this or any clinical study to date, results of BPDCN trials testing new drugs are difficult to compare with alternative therapies. We therefore sought to define the clinical characteristics and outcomes of a group of patients with BPDCN treated at 3 US cancer centers in the modern era but before tagraxofusp was available. In 59 studied patients with BPDCN, the median overall survival from diagnosis was 24 months, and outcomes were similar in patients with "skin only" or with systemic disease at presentation. Intensive first-line therapy and "lymphoid-type" chemotherapy regimens were associated with better outcomes. Only 55% of patients received intensive chemotherapy, and 42% of patients underwent stem cell transplantation. Clinical characteristics at diagnosis associated with poorer outcomes included age >60 years, abnormal karyotype, and terminal deoxynucleotidyltransferase (TdT) negativity in the BPDCN cells. We also identified disease responses to pralatrexate and enasidenib in some patients. This study highlights poor outcomes for patients with BPDCN in the modern era and the need for new treatments. Outcomes from ongoing clinical trials for BPDCN can be evaluated relative to this contemporary cohort.


Subject(s)
Dendritic Cells/pathology , Hematologic Neoplasms/therapy , Skin Neoplasms/therapy , Adolescent , Adult , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Benchmarking , Child , Cohort Studies , Female , Hematologic Neoplasms/complications , Hematologic Neoplasms/diagnosis , Hematopoietic Stem Cell Transplantation , Humans , Male , Middle Aged , Multicenter Studies as Topic , Skin Neoplasms/complications , Skin Neoplasms/diagnosis , Treatment Outcome , Young Adult
13.
Blood ; 132(26): 2707-2721, 2018 12 27.
Article in English | MEDLINE | ID: mdl-30366920

ABSTRACT

Myeloproliferative neoplasms (MPNs) are a group of blood cancers that arise following the sequential acquisition of genetic lesions in hematopoietic stem and progenitor cells (HSPCs). We identify mutational cooperation between Jak2V617F expression and Dnmt3a loss that drives progression from early-stage polycythemia vera to advanced myelofibrosis. Using in vivo, clustered regularly interspaced short palindromic repeats (CRISPR) with CRISPR-associated protein 9 (Cas9) disruption of Dnmt3a in Jak2V617F knockin HSPC, we show that Dnmt3a loss blocks the accumulation of erythroid elements and causes fibrotic infiltration within the bone marrow and spleen. Transcriptional analysis and integration with human data sets identified a core DNMT3A-driven gene-expression program shared across multiple models and contexts of Dnmt3a loss. Aberrant self-renewal and inflammatory signaling were seen in Dnmt3a-/- Jak2V617F HSPC, driven by increased chromatin accessibility at enhancer elements. These findings identify oncogenic cooperativity between Jak2V617F-driven MPN and Dnmt3a loss, leading to activation of HSPC enhancer-driven inflammatory signaling.


Subject(s)
Amino Acid Substitution , DNA (Cytosine-5-)-Methyltransferases , Hematologic Neoplasms , Hematopoietic Stem Cells , Mutation, Missense , Primary Myelofibrosis , Signal Transduction/genetics , Animals , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A , Hematologic Neoplasms/enzymology , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Hematopoietic Stem Cells/enzymology , Hematopoietic Stem Cells/pathology , Humans , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Mice , Mice, Mutant Strains , Primary Myelofibrosis/enzymology , Primary Myelofibrosis/genetics , Primary Myelofibrosis/pathology
14.
Biol Blood Marrow Transplant ; 25(6): 1142-1151, 2019 06.
Article in English | MEDLINE | ID: mdl-30625392

ABSTRACT

Mutational profiling has demonstrated utility in predicting the likelihood of disease progression in patients with myelofibrosis (MF). However, there is limited data regarding the prognostic utility of genetic profiling in MF patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HCT). We performed high-throughput sequencing of 585 genes on pre-transplant samples from 101 patients with MF who underwent allo-HCT and evaluated the association of mutations and clinical variables with transplantation outcomes. Overall survival (OS) at 5 years post-transplantation was 52%, and relapse-free survival (RFS) was 51.1 % for this cohort. Nonrelapse mortality (NRM) accounted for most deaths. Patient's age, donor's age, donor type, and Dynamic International Prognostic Scoring System score at diagnosis did not predict for outcomes. Mutations known to be associated with increased risk of disease progression, such as ASXL1, SRSF2, IDH1/2, EZH2, and TP53, did not impact OS or RFS. The presence of U2AF1 (P = .007) or DNMT3A (P = .034) mutations was associated with worse OS. A Mutation-Enhanced International Prognostic Scoring System 70 score was available for 80 patients (79%), and there were no differences in outcomes between patients with high risk scores and those with intermediate and low risk scores. Collectively, these data identify mutational predictors of outcome in MF patients undergoing allo-HCT. These genetic biomarkers in conjunction with clinical variables may have important utility in guiding transplantation decision making.


Subject(s)
Primary Myelofibrosis/therapy , Aged , Disease Progression , Female , Humans , Male , Middle Aged , Mutation , Primary Myelofibrosis/pathology , Prognosis , Retrospective Studies , Risk Factors , Treatment Outcome
15.
Cancer Treat Res ; 179: 159-178, 2019.
Article in English | MEDLINE | ID: mdl-31317487

ABSTRACT

The myeloproliferative neoplasms (MPNs) are clonal stem cell-derived diseases. This chapter focuses on the subcategory of Philadelphia (Ph) chromosome-negative classical MPNs, polycythemia vera (PV), essential thrombocythemia (ET), primary myelofibrosis (PMF). These MPNs are associated with both microvascular and macrovascular thrombosis, which may occur in the venous and arterial circulation. Erythrocytosis, leukocytosis, and increased JAK2V617F allele burden are known to be risk factors. In this chapter, we review the thrombotic and hemostatic manifestations of the Philadelphia (Ph) chromosome-negative classical MPNs, including the clinical manifestations, the pathophysiology, as well as management.


Subject(s)
Myeloproliferative Disorders/complications , Thrombosis , Bone Marrow Neoplasms/complications , Bone Marrow Neoplasms/genetics , Hemostasis/physiology , Humans , Mutation , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/physiopathology , Philadelphia Chromosome , Polycythemia Vera/complications , Primary Myelofibrosis/complications , Thrombocythemia, Essential/complications , Thrombosis/diagnosis , Thrombosis/etiology , Thrombosis/physiopathology , Thrombosis/therapy
17.
Blood ; 127(24): 3004-14, 2016 06 16.
Article in English | MEDLINE | ID: mdl-26966091

ABSTRACT

The spectrum of somatic alterations in hematologic malignancies includes substitutions, insertions/deletions (indels), copy number alterations (CNAs), and a wide range of gene fusions; no current clinically available single assay captures the different types of alterations. We developed a novel next-generation sequencing-based assay to identify all classes of genomic alterations using archived formalin-fixed paraffin-embedded blood and bone marrow samples with high accuracy in a clinically relevant time frame, which is performed in our Clinical Laboratory Improvement Amendments-certified College of American Pathologists-accredited laboratory. Targeted capture of DNA/RNA and next-generation sequencing reliably identifies substitutions, indels, CNAs, and gene fusions, with similar accuracy to lower-throughput assays that focus on specific genes and types of genomic alterations. Profiling of 3696 samples identified recurrent somatic alterations that impact diagnosis, prognosis, and therapy selection. This comprehensive genomic profiling approach has proved effective in detecting all types of genomic alterations, including fusion transcripts, which increases the ability to identify clinically relevant genomic alterations with therapeutic relevance.


Subject(s)
DNA Fingerprinting/methods , Gene Expression Profiling/methods , Genomics/methods , Hematologic Neoplasms/genetics , Hematologic Neoplasms/metabolism , Chromosome Aberrations , Clinical Laboratory Techniques/methods , DNA Mutational Analysis/methods , DNA, Neoplasm/analysis , Gene Expression Regulation, Neoplastic , Hematologic Neoplasms/pathology , High-Throughput Nucleotide Sequencing , Humans , Mutation , Polymorphism, Genetic , RNA, Neoplasm/analysis , Sensitivity and Specificity , Systems Integration
SELECTION OF CITATIONS
SEARCH DETAIL