Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(32): e2221533120, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37527347

ABSTRACT

Alterations in fMRI-based brain functional network connectivity (FNC) are associated with schizophrenia (SCZ) and the genetic risk or subthreshold clinical symptoms preceding the onset of SCZ, which often occurs in early adulthood. Thus, age-sensitive FNC changes may be relevant to SCZ risk-related FNC. We used independent component analysis to estimate FNC from childhood to adulthood in 9,236 individuals. To capture individual brain features more accurately than single-session fMRI, we studied an average of three fMRI scans per individual. To identify potential familial risk-related FNC changes, we compared age-related FNC in first-degree relatives of SCZ patients mostly including unaffected siblings (SIB) with neurotypical controls (NC) at the same age stage. Then, we examined how polygenic risk scores for SCZ influenced risk-related FNC patterns. Finally, we investigated the same risk-related FNC patterns in adult SCZ patients (oSCZ) and young individuals with subclinical psychotic symptoms (PSY). Age-sensitive risk-related FNC patterns emerge during adolescence and early adulthood, but not before. Young SIB always followed older NC patterns, with decreased FNC in a cerebellar-occipitoparietal circuit and increased FNC in two prefrontal-sensorimotor circuits when compared to young NC. Two of these FNC alterations were also found in oSCZ, with one exhibiting reversed pattern. All were linked to polygenic risk for SCZ in unrelated individuals (R2 varied from 0.02 to 0.05). Young PSY showed FNC alterations in the same direction as SIB when compared to NC. These results suggest that age-related neurotypical FNC correlates with genetic risk for SCZ and is detectable with MRI in young participants.


Subject(s)
Psychotic Disorders , Schizophrenia , Adult , Adolescent , Humans , Child , Young Adult , Schizophrenia/diagnostic imaging , Schizophrenia/genetics , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Risk Factors
2.
Mol Psychiatry ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532008

ABSTRACT

Cognitive dysfunctions are core-enduring symptoms of schizophrenia, with important sex-related differences. Genetic variants of the DTBPN1 gene associated with reduced dysbindin-1 protein (Dys) expression negatively impact cognitive functions in schizophrenia through a functional epistatic interaction with Catechol-O-methyltransferase (COMT). Dys is involved in the trafficking of dopaminergic receptors, crucial for prefrontal cortex (PFC) signaling regulation. Moreover, dopamine signaling is modulated by estrogens via inhibition of COMT expression. We hypothesized a sex dimorphism in Dys-related cognitive functions dependent on COMT and estrogen levels. Our multidisciplinary approach combined behavioral-molecular findings on genetically modified mice, human postmortem Dys expression data, and in vivo fMRI during a working memory task performance. We found cognitive impairments in male mice related to genetic variants characterized by reduced Dys protein expression (pBonferroni = 0.0001), as well as in male humans through a COMT/Dys functional epistatic interaction involving PFC brain activity during working memory (t(23) = -3.21; pFDR = 0.004). Dorsolateral PFC activity was associated with lower working memory performance in males only (p = 0.04). Also, male humans showed decreased Dys expression in dorsolateral PFC during adulthood (pFDR = 0.05). Female Dys mice showed preserved cognitive performances with deficits only with a lack of estrogen tested in an ovariectomy model (pBonferroni = 0.0001), suggesting that genetic variants reducing Dys protein expression could probably become functional in females when the protective effect of estrogens is attenuated, i.e., during menopause. Overall, our results show the differential impact of functional variants of the DTBPN1 gene interacting with COMT on cognitive functions across sexes in mice and humans, underlying the importance of considering sex as a target for patient stratification and precision medicine in schizophrenia.

3.
Psychol Med ; 54(8): 1876-1885, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38305128

ABSTRACT

BACKGROUND: Previous evidence suggests that early life complications (ELCs) interact with polygenic risk for schizophrenia (SCZ) in increasing risk for the disease. However, no studies have investigated this interaction on neurobiological phenotypes. Among those, anomalous emotion-related brain activity has been reported in SCZ, even if evidence of its link with SCZ-related genetic risk is not solid. Indeed, it is possible this relationship is influenced by non-genetic risk factors. Thus, this study investigated the interaction between SCZ-related polygenic risk and ELCs on emotion-related brain activity. METHODS: 169 healthy participants (HP) in a discovery and 113 HP in a replication sample underwent functional magnetic resonance imaging (fMRI) during emotion processing, were categorized for history of ELCs and genome-wide genotyped. Polygenic risk scores (PRSs) were computed using SCZ-associated variants considering the most recent genome-wide association study. Furthermore, 75 patients with SCZ also underwent fMRI during emotion processing to verify consistency of their brain activity patterns with those associated with risk factors for SCZ in HP. RESULTS: Results in the discovery and replication samples indicated no effect of PRSs, but an interaction between PRS and ELCs in left ventrolateral prefrontal cortex (VLPFC), where the greater the activity, the greater PRS only in presence of ELCs. Moreover, SCZ had greater VLPFC response than HP. CONCLUSIONS: These results suggest that emotion-related VLPFC response lies in the path from genetic and non-genetic risk factors to the clinical presentation of SCZ, and may implicate an updated concept of intermediate phenotype considering early non-genetic factors of risk for SCZ.


Subject(s)
Emotions , Magnetic Resonance Imaging , Multifactorial Inheritance , Schizophrenia , Humans , Schizophrenia/physiopathology , Schizophrenia/genetics , Schizophrenia/diagnostic imaging , Male , Female , Adult , Emotions/physiology , Young Adult , Genome-Wide Association Study , Risk Factors , Genetic Predisposition to Disease , Prefrontal Cortex/physiopathology , Prefrontal Cortex/diagnostic imaging , Brain/physiopathology , Brain/diagnostic imaging , Healthy Volunteers , Middle Aged , Genetic Risk Score
4.
Psychol Med ; 53(13): 6037-6045, 2023 10.
Article in English | MEDLINE | ID: mdl-36321391

ABSTRACT

BACKGROUND: Abnormal auditory processing of deviant stimuli, as reflected by mismatch negativity (MMN), is often reported in schizophrenia (SCZ). At present, it is still under debate whether this dysfunctional response is specific to the full-blown SCZ diagnosis or rather a marker of psychosis in general. The present study tested MMN in patients with SCZ, bipolar disorder (BD), first episode of psychosis (FEP), and in people at clinical high risk for psychosis (CHR). METHODS: Source-based MEG activity evoked during a passive auditory oddball task was recorded from 135 patients grouped according to diagnosis (SCZ, BD, FEP, and CHR) and 135 healthy controls also divided into four subgroups, age- and gender-matched with diagnostic subgroups. The magnetic MMN (mMMN) was analyzed as event-related field (ERF), Theta power, and Theta inter-trial phase coherence (ITPC). RESULTS: The clinical group as a whole showed reduced mMMN ERF amplitude, Theta power, and Theta ITPC, without any statistically significant interaction between diagnosis and mMMN reductions. The mMMN subgroup contrasts showed lower ERF amplitude in all the diagnostic subgroups. In the analysis of Theta frequency, SCZ showed significant power and ITPC reductions, while only indications of diminished ITPC were observed in CHR, but no significant decreases characterized BD and FEP. CONCLUSIONS: Significant mMMN alterations in people experiencing psychosis, also for diagnoses other than SCZ, suggest that this neurophysiological response may be a feature shared across psychotic disorders. Additionally, reduced Theta ITPC may be associated with risk for psychosis.


Subject(s)
Psychotic Disorders , Schizophrenia , Humans , Electroencephalography , Risk , Magnetic Phenomena , Evoked Potentials, Auditory/physiology
5.
Psychol Med ; 53(12): 5717-5728, 2023 09.
Article in English | MEDLINE | ID: mdl-36217912

ABSTRACT

BACKGROUND: Resilience is defined as the ability to modify thoughts to cope with stressful events. Patients with schizophrenia (SCZ) having higher resilience (HR) levels show less severe symptoms and better real-life functioning. However, the clinical factors contributing to determine resilience levels in patients remain unclear. Thus, based on psychological, historical, clinical and environmental variables, we built a supervised machine learning algorithm to classify patients with HR or lower resilience (LR). METHODS: SCZ from the Italian Network for Research on Psychoses (N = 598 in the Discovery sample, N = 298 in the Validation sample) underwent historical, clinical, psychological, environmental and resilience assessments. A Support Vector Machine algorithm (based on 85 variables extracted from the above-mentioned assessments) was built in the Discovery sample, and replicated in the Validation sample, to classify between HR and LR patients, within a nested, Leave-Site-Out Cross-Validation framework. We then investigated whether algorithm decision scores were associated with the cognitive and clinical characteristics of patients. RESULTS: The algorithm classified patients as HR or LR with a Balanced Accuracy of 74.5% (p < 0.0001) in the Discovery sample, and 80.2% in the Validation sample. Higher self-esteem, larger social network and use of adaptive coping strategies were the variables most frequently chosen by the algorithm to generate decisions. Correlations between algorithm decision scores, socio-cognitive abilities, and symptom severity were significant (pFDR < 0.05). CONCLUSIONS: We identified an accurate, meaningful and generalizable clinical-psychological signature associated with resilience in SCZ. This study delivers relevant information regarding psychological and clinical factors that non-pharmacological interventions could target in schizophrenia.


Subject(s)
Psychotic Disorders , Resilience, Psychological , Schizophrenia , Humans , Schizophrenia/diagnosis , Psychotic Disorders/psychology , Adaptation, Psychological , Cognition , Machine Learning
6.
J Psychiatry Neurosci ; 48(5): E357-E366, 2023.
Article in English | MEDLINE | ID: mdl-37751917

ABSTRACT

BACKGROUND: Among healthy participants, the interindividual variability of brain response to facial emotions is associated with genetic variation, including common risk variants for schizophrenia, a heritable brain disorder characterized by anomalies in emotion processing. We aimed to identify genetic variants associated with heritable brain activity during processing of facial emotions among healthy participants and to explore the impact of these identified variants among patients with schizophrenia. METHODS: We conducted a data-driven stepwise study including samples of healthy twins, unrelated healthy participants and patients with schizophrenia. Participants approached or avoided pictures of faces with negative emotional valence during functional magnetic resonance imaging (fMRI). RESULTS: We investigated 3 samples of healthy participants - including 28 healthy twin pairs, 289 unrelated healthy participants (genome-wide association study [GWAS] discovery sample) and 90 unrelated healthy participants (replication sample) - and 1 sample of 48 patients with schizophrenia. Among healthy twins, we identified the amygdala as the brain region with the highest heritability during processing of angry faces (heritability estimate 0.54, p < 0.001). Subsequent GWAS in both discovery and replication samples of healthy non-twins indicated that amygdala activity was associated with a polymorphism in the miR-137 locus (rs1198575), a micro-RNA strongly involved in risk for schizophrenia. A significant effect in the same direction was found among patients with schizophrenia (p = 0.03). LIMITATIONS: The limited sample size available for GWAS analyses may require further replication of results. CONCLUSION: Our data-driven approach shows preliminary evidence that amygdala activity, as evaluated with our task, is heritable. Our genetic associations preliminarily suggest a role for miR-137 in brain activity during explicit processing of facial emotions among healthy participants and patients with schizophrenia, pointing to the amygdala as a brain region whose activity is related to miR-137.


Subject(s)
MicroRNAs , Schizophrenia , Humans , Amygdala/diagnostic imaging , Anger , Genome-Wide Association Study , Schizophrenia/diagnostic imaging , Schizophrenia/genetics , Case-Control Studies
7.
Mol Psychiatry ; 26(8): 3876-3883, 2021 08.
Article in English | MEDLINE | ID: mdl-32047264

ABSTRACT

Sensitivity to external demands is essential for adaptation to dynamic environments, but comes at the cost of increased risk of adverse outcomes when facing poor environmental conditions. Here, we apply a novel methodology to perform genome-wide association analysis of mean and variance in ten key brain features (accumbens, amygdala, caudate, hippocampus, pallidum, putamen, thalamus, intracranial volume, cortical surface area, and cortical thickness), integrating genetic and neuroanatomical data from a large lifespan sample (n = 25,575 individuals; 8-89 years, mean age 51.9 years). We identify genetic loci associated with phenotypic variability in thalamus volume and cortical thickness. The variance-controlling loci involved genes with a documented role in brain and mental health and were not associated with the mean anatomical volumes. This proof-of-principle of the hypothesis of a genetic regulation of brain volume variability contributes to establishing the genetic basis of phenotypic variance (i.e., heritability), allows identifying different degrees of brain robustness across individuals, and opens new research avenues in the search for mechanisms controlling brain and mental health.


Subject(s)
Genome-Wide Association Study , Magnetic Resonance Imaging , Brain/diagnostic imaging , Humans , Middle Aged , Putamen , Thalamus
8.
Exp Cell Res ; 408(2): 112859, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34637764

ABSTRACT

Angiogenesis plays a pivotal role in cancer initiation, maintenance, and progression. Diet may inhibit, retard or reverse these processes affecting angiogenesis (angioprevention). Nutraceuticals, such as omega-3 fatty acids, amino acids, proteins, vitamins, minerals, fibers, and phenolic compounds, improve health benefits as they are a source of bioactive compounds that, among other effects, can regulate angiogenesis. The literature concerning the pro-angiogenic and/or anti-angiogenic nutraceuticals and the possible activated pathways in cancer and other non-neoplastic diseases by in vivo and in vitro experiments are reviewed.


Subject(s)
Dietary Supplements , Immunotherapy , Neoplasms/diet therapy , Neovascularization, Pathologic/diet therapy , Angiogenesis Inhibitors/therapeutic use , Humans , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/pathology , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/immunology , Neovascularization, Pathologic/pathology
9.
Handb Exp Pharmacol ; 276: 175-212, 2022.
Article in English | MEDLINE | ID: mdl-34595583

ABSTRACT

One of the bridges that control the cross-talk between the innate and adaptive immune systems is toll-like receptors (TLRs). TLRs interact with molecules shared and maintained by the source pathogens, but also with endogenous molecules derived from injured tissues (damage/danger-associated molecular patterns - DAMPs). This is likely why some kinds of stem/progenitor cells (SCs) have been found to express TLRs. The role of TLRs in regulating basal motility, proliferation, processes of differentiation, self-renewal, and immunomodulation has been demonstrated in these cells. In this book chapter, we will discuss the many different functions assumed by the TLRs in SCs, pointing out that, depending on the context and the type of ligands they perceive, they may have different effects. In addition, the role of TLR in SC's response to specific tissue damage and in reparative processes will be addressed, as well as how the discovery of molecules mediating TLR signaling's differential function may be decisive for the development of new therapeutic strategies. Given the available studies on TLRs in SCs, the significance of TLRs in sensing an injury to stem/progenitor cells and evaluating their action and reparative activity, which depends on the circumstances, will be discussed here. It could also be possible that SCs used in therapy could theoretically be exposed to TLR ligands, which could modulate their in vivo therapeutic potential. In this context, we need to better understand the mechanisms of action of TLRs on SCs and learn how to regulate these receptors and their downstream pathways in a precise way in order to modulate SC proliferation, survival, migration, and differentiation in the pathological environment. In this way, cell therapy may be strengthened and made safer in the future.


Subject(s)
Signal Transduction , Toll-Like Receptors , Humans , Immunomodulation , Ligands , Stem Cells/metabolism , Toll-Like Receptors/metabolism
10.
J Neurosci ; 40(4): 932-941, 2020 01 22.
Article in English | MEDLINE | ID: mdl-31811028

ABSTRACT

Multiple schizophrenia (SCZ) risk loci may be involved in gene co-regulation mechanisms, and analysis of coexpressed gene networks may help to clarify SCZ molecular basis. We have previously identified a dopamine D2 receptor (DRD2) coexpression module enriched for SCZ risk genes and associated with cognitive and neuroimaging phenotypes of SCZ, as well as with response to treatment with antipsychotics. Here we aimed to identify regulatory factors modulating this coexpression module and their relevance to SCZ. We performed motif enrichment analysis to identify transcription factor (TF) binding sites in human promoters of genes coexpressed with DRD2. Then, we measured transcript levels of a group of these genes in primary mouse cortical neurons in basal conditions and upon overexpression and knockdown of predicted TFs. Finally, we analyzed expression levels of these TFs in dorsolateral prefrontal cortex (DLPFC) of SCZ patients. Our in silico analysis revealed enrichment for NURR1 and ERR1 binding sites. In neuronal cultures, the expression of genes either relevant to SCZ risk (Drd2, Gatad2a, Slc28a1, Cnr1) or indexing coexpression in our module (Btg4, Chit1, Osr1, Gpld1) was significantly modified by gain and loss of Nurr1 and Err1. Postmortem DLPFC expression data analysis showed decreased expression levels of NURR1 and ERR1 in patients with SCZ. For NURR1 such decreased expression is associated with treatment with antipsychotics. Our results show that NURR1 and ERR1 modulate the transcription of DRD2 coexpression partners and support the hypothesis that NURR1 is involved in the response to SCZ treatment.SIGNIFICANCE STATEMENT In the present study, we provide in silico and experimental evidence for a role of the TFs NURR1 and ERR1 in modulating the expression pattern of genes coexpressed with DRD2 in human DLPFC. Notably, genetic variations in these genes is associated with SCZ risk and behavioral and neuroimaging phenotypes of the disease, as well as with response to treatment. Furthermore, this study presents novel findings on a possible interplay between D2 receptor-mediated dopamine signaling involved in treatment with antipsychotics and the transcriptional regulation mechanisms exerted by NURR1. Our results suggest that coexpression and co-regulation mechanisms may help to explain some of the complex biology of genetic associations with SCZ.


Subject(s)
Genetic Predisposition to Disease , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Receptors, Dopamine D2/genetics , Receptors, Estrogen/genetics , Schizophrenia/genetics , Animals , Computer Simulation , Gene Regulatory Networks , Humans , Mice , Neurons/metabolism , Prefrontal Cortex/metabolism , Promoter Regions, Genetic , ERRalpha Estrogen-Related Receptor
11.
Neuroimage ; 238: 118200, 2021 09.
Article in English | MEDLINE | ID: mdl-34118398

ABSTRACT

We propose a novel optimization framework that integrates imaging and genetics data for simultaneous biomarker identification and disease classification. The generative component of our model uses a dictionary learning framework to project the imaging and genetic data into a shared low dimensional space. We have coupled both the data modalities by tying the linear projection coefficients to the same latent space. The discriminative component of our model uses logistic regression on the projection vectors for disease diagnosis. This prediction task implicitly guides our framework to find interpretable biomarkers that are substantially different between a healthy and disease population. We exploit the interconnectedness of different brain regions by incorporating a graph regularization penalty into the joint objective function. We also use a group sparsity penalty to find a representative set of genetic basis vectors that span a low dimensional space where subjects are easily separable between patients and controls. We have evaluated our model on a population study of schizophrenia that includes two task fMRI paradigms and single nucleotide polymorphism (SNP) data. Using ten-fold cross validation, we compare our generative-discriminative framework with canonical correlation analysis (CCA) of imaging and genetics data, parallel independent component analysis (pICA) of imaging and genetics data, random forest (RF) classification, and a linear support vector machine (SVM). We also quantify the reproducibility of the imaging and genetics biomarkers via subsampling. Our framework achieves higher class prediction accuracy and identifies robust biomarkers. Moreover, the implicated brain regions and genetic variants underlie the well documented deficits in schizophrenia.


Subject(s)
Brain/diagnostic imaging , Schizophrenia/diagnosis , Adult , Female , Genetic Markers , Humans , Magnetic Resonance Imaging , Male , Reproducibility of Results , Schizophrenia/diagnostic imaging , Schizophrenia/genetics
12.
Proc Natl Acad Sci U S A ; 115(21): 5582-5587, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29735686

ABSTRACT

Dopamine D1 receptor (D1R) signaling shapes prefrontal cortex (PFC) activity during working memory (WM). Previous reports found higher WM performance associated with alleles linked to greater expression of the gene coding for D1Rs (DRD1). However, there is no evidence on the relationship between genetic modulation of DRD1 expression in PFC and patterns of prefrontal activity during WM. Furthermore, previous studies have not considered that D1Rs are part of a coregulated molecular environment, which may contribute to D1R-related prefrontal WM processing. Thus, we hypothesized a reciprocal link between a coregulated (i.e., coexpressed) molecular network including DRD1 and PFC activity. To explore this relationship, we used three independent postmortem prefrontal mRNA datasets (total n = 404) to characterize a coexpression network including DRD1 Then, we indexed network coexpression using a measure (polygenic coexpression index-DRD1-PCI) combining the effect of single nucleotide polymorphisms (SNPs) on coexpression. Finally, we associated the DRD1-PCI with WM performance and related brain activity in independent samples of healthy participants (total n = 371). We identified and replicated a coexpression network including DRD1, whose coexpression was correlated with DRD1-PCI. We also found that DRD1-PCI was associated with lower PFC activity and higher WM performance. Behavioral and imaging results were replicated in independent samples. These findings suggest that genetically predicted expression of DRD1 and of its coexpression partners stratifies healthy individuals in terms of WM performance and related prefrontal activity. They also highlight genes and SNPs potentially relevant to pharmacological trials aimed to test cognitive enhancers modulating DRD1 signaling.


Subject(s)
Memory/physiology , Neuropsychological Tests , Polymorphism, Single Nucleotide , Prefrontal Cortex/physiology , Receptors, Dopamine D1/genetics , Receptors, Dopamine D1/metabolism , Transcriptome , Adult , Female , Healthy Volunteers , Humans , Magnetic Resonance Imaging , Male , Middle Aged
13.
Article in English | MEDLINE | ID: mdl-34249137

ABSTRACT

BACKGROUND: Cognitive deficits are core features of Schizophrenia, showing poor response to antipsychotic treatment, therefore non-pharmacological rehabilitative approaches to such a symptom domain need to be identified. However, since not all patients with Schizophrenia exhibit the same cognitive impairment profile, individualized rehabilitative approaches should be set up. OBJECTIVES: We explored the last five-year literature addressing the issue of cognitive dysfunction response to rehabilitative methodologies in Schizophrenia to identify possible predictors of response and individualized strategies to treat such a dysfunction. CONCLUSION: A total of 76 studies were reviewed. Possible predictors of cognitive rehabilitation outcome were identified among patient-specific and approach-specific variables and a general overview of rehabilitative strategies used in the last five years has been depicted. Studies suggest the existence of multifaced and multi-domain variables that could significantly predict pro-cognitive effects of cognitive rehabilitation, which could also be useful for identifying individual-specific rehabilitation trajectories over time.An individualized rehabilitative approach to cognitive impairment in Schizophrenia is possible if taking into account both patient and approach specific predictors of outcomes.

14.
Psychol Med ; 50(9): 1501-1509, 2020 07.
Article in English | MEDLINE | ID: mdl-31358071

ABSTRACT

BACKGROUND: Previous models suggest biological and behavioral continua among healthy individuals (HC), at-risk condition, and full-blown schizophrenia (SCZ). Part of these continua may be captured by schizotypy, which shares subclinical traits and biological phenotypes with SCZ, including thalamic structural abnormalities. In this regard, previous findings have suggested that multivariate volumetric patterns of individual thalamic nuclei discriminate HC from SCZ. These results were obtained using machine learning, which allows case-control classification at the single-subject level. However, machine learning accuracy is usually unsatisfactory possibly due to phenotype heterogeneity. Indeed, a source of misclassification may be related to thalamic structural characteristics of those HC with high schizotypy, which may resemble structural abnormalities of SCZ. We hypothesized that thalamic structural heterogeneity is related to schizotypy, such that high schizotypal burden would implicate misclassification of those HC whose thalamic patterns resemble SCZ abnormalities. METHODS: Following a previous report, we used Random Forests to predict diagnosis in a case-control sample (SCZ = 131, HC = 255) based on thalamic nuclei gray matter volumes estimates. Then, we investigated whether the likelihood to be classified as SCZ (π-SCZ) was associated with schizotypy in 174 HC, evaluated with the Schizotypal Personality Questionnaire. RESULTS: Prediction accuracy was 72.5%. Misclassified HC had higher positive schizotypy scores, which were correlated with π-SCZ. Results were specific to thalamic rather than whole-brain structural features. CONCLUSIONS: These findings strengthen the relevance of thalamic structural abnormalities to SCZ and suggest that multivariate thalamic patterns are correlates of the continuum between schizotypy in HC and the full-blown disease.


Subject(s)
Gray Matter/diagnostic imaging , Healthy Volunteers , Schizophrenia/diagnostic imaging , Schizotypal Personality Disorder/diagnostic imaging , Thalamic Nuclei/diagnostic imaging , Adolescent , Adult , Female , Humans , Machine Learning , Magnetic Resonance Imaging , Male , Middle Aged , Multivariate Analysis , Organ Size , Young Adult
15.
Eur Arch Psychiatry Clin Neurosci ; 270(5): 553-565, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31471679

ABSTRACT

Previous studies have indicated a link between socio-emotional processing and the oxytocin receptor. In this regard, a single nucleotide polymorphism in the oxytocin receptor coding gene (OXTR rs2268493) has been linked with lower social functioning, increased risk for autism spectrum disorders (ASDs) and with post-mortem OXTR mRNA expression levels. Indeed, the levels of expression of OXTR in brain regions involved in emotion processing are also associated with maternal care. Furthermore, maternal care has been associated with emotional correlates. Taken together, these previous findings suggest a possible combined effect of rs2268493 and maternal care on emotion-related brain phenotypes. A crucial biological mechanism subtending emotional processing is the amygdala-dorsolateral prefrontal cortex (DLPFC) functional connection. On this basis, our aim was to investigate the interaction between rs2268493 and maternal care on amygdala-DLPFC effective connectivity during emotional evaluation. We characterized through dynamic causal modeling (DCM) patterns of amygdala-DLPFC effective connectivity during explicit emotion processing in healthy controls (HC), profiled based on maternal care and rs2268493 genotype. In the whole sample, right top-down DLPFC-to-amygdala pattern was the most likely directional model of effective connectivity. This pattern of connectivity was the most likely for all rs2268493/maternal care subgroups, except for thymine homozygous (TT)/low maternal care individuals. Here, a right bottom-up amygdala-to-DLPFC was the most likely directional model. These results suggest a gene by environment interaction mediated by the oxytocin receptor on biological phenotypes relevant to emotion processing.


Subject(s)
Amygdala/physiology , Connectome , Emotions/physiology , Facial Recognition/physiology , Gene-Environment Interaction , Maternal Behavior/physiology , Prefrontal Cortex/physiology , Receptors, Oxytocin/genetics , Adult , Amygdala/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Phenotype , Prefrontal Cortex/diagnostic imaging , Young Adult
16.
Cereb Cortex ; 29(3): 1162-1173, 2019 03 01.
Article in English | MEDLINE | ID: mdl-29415163

ABSTRACT

Dopamine D2 receptors (D2Rs) contribute to the inverted U-shaped relationship between dopamine signaling and prefrontal function. Genetic networks from post-mortem human brain revealed 84 partner genes co-expressed with DRD2. Moreover, eight functional single nucleotide polymorphisms combined into a polygenic co-expression index (PCI) predicted co-expression of this DRD2 network and were associated with prefrontal function in humans. Here, we investigated the non-linear association of the PCI with behavioral and Working Memory (WM) related brain response to pharmacological D2Rs stimulation. Fifty healthy volunteers took part in a double-blind, placebo-controlled, functional MRI (fMRI) study with bromocriptine and performed the N-Back task. The PCI by drug interaction was significant on both WM behavioral scores (P = 0.046) and related prefrontal activity (all corrected P < 0.05) using a polynomial PCI model. Non-linear responses under placebo were reversed by bromocriptine administration. fMRI results on placebo were replicated in an independent sample of 50 participants who did not receive drug administration (P = 0.034). These results match earlier evidence in non-human primates and confirm the physiological relevance of this DRD2 co-expression network. Results show that in healthy subjects, different alleles evaluated as an ensemble are associated with non-linear prefrontal responses. Therefore, brain response to a dopaminergic drug may depend on a complex system of allelic patterns associated with DRD2 co-expression.


Subject(s)
Memory, Short-Term/physiology , Multifactorial Inheritance , Prefrontal Cortex/physiology , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/physiology , Adult , Brain Mapping , Bromocriptine/administration & dosage , Cross-Over Studies , Dopamine Agonists/administration & dosage , Double-Blind Method , Female , Humans , Magnetic Resonance Imaging , Male , Memory, Short-Term/drug effects , Polymorphism, Single Nucleotide , Prefrontal Cortex/drug effects , Young Adult
17.
Proc Natl Acad Sci U S A ; 112(33): E4610-9, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26240334

ABSTRACT

Inhibition of glycogen synthase kinase 3ß (GSK3ß) is a shared action believed to be involved in the regulation of behavior by psychoactive drugs such as antipsychotics and mood stabilizers. However, little is known about the identity of the substrates through which GSK3ß affects behavior. We identified fragile X mental retardation-related protein 1 (FXR1P), a RNA binding protein associated to genetic risk for schizophrenia, as a substrate for GSK3ß. Phosphorylation of FXR1P by GSK3ß is facilitated by prior phosphorylation by ERK2 and leads to its down-regulation. In contrast, behaviorally effective chronic mood stabilizer treatments in mice inhibit GSK3ß and increase FXR1P levels. In line with this, overexpression of FXR1P in the mouse prefrontal cortex also leads to comparable mood-related responses. Furthermore, functional genetic polymorphisms affecting either FXR1P or GSK3ß gene expression interact to regulate emotional brain responsiveness and stability in humans. These observations uncovered a GSK3ß/FXR1P signaling pathway that contributes to regulating mood and emotion processing. Regulation of FXR1P by GSK3ß also provides a mechanistic framework that may explain how inhibition of GSK3ß can contribute to the regulation of mood by psychoactive drugs in mental illnesses such as bipolar disorder. Moreover, this pathway could potentially be implicated in other biological functions, such as inflammation and cell proliferation, in which FXR1P and GSK3 are known to play a role.


Subject(s)
Affect , Emotions , Gene Expression Regulation , Glycogen Synthase Kinase 3/metabolism , RNA-Binding Proteins/physiology , Adult , Animals , Behavior, Animal , Facial Expression , Female , Genotype , Glycogen Synthase Kinase 3 beta , HEK293 Cells , Humans , Magnetic Resonance Imaging , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Activity , Movement , Phosphorylation , Polymorphism, Single Nucleotide , Prefrontal Cortex/physiology , Valproic Acid/administration & dosage , Young Adult
18.
Clin Neurophysiol ; 162: 121-128, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38603947

ABSTRACT

AIM: The aim of this study was to investigate the characteristics of the electrophysiological brain response elicited in a passive acoustic oddball paradigm, i.e. mismatch negativity (MMN), in patients with Huntington's disease (HD) in the premanifest (pHD) and manifest (mHD) phases. In this regard, we correlated the results of event-related potentials (ERP) with disease characteristics. METHODS: This was an observational cross-sectional MMN study. In addition to the MMN recording of the passive oddball task, all subjects with first-degree inheritance for HD underwent genetic testing for mutant HTT, the Huntington's Disease Rating Scale, the Total Functional Capacity Scale, the Problem Behaviors Assessment short form, and the Mini-Mental State Examination. RESULTS: We found that global field power (GFP) was reduced in the MMN time window in mHD patients compared to pHD and normal controls (NC). In the pHD group, MMN amplitude was only slightly and not significantly increased compared to mHD, while pHD patients showed increased theta coherence between trials compared to mHD. In the entire sample of HD gene carriers, the main MMN traits were not correlated with motor performance, cognitive impairment and functional disability. CONCLUSION: These results suggest an initial and subtle deterioration of pre-attentive mechanisms in the presymptomatic phase of HD, with an increasing phase shift in the MMN time frame. This result could indicate initial functional changes with a possible compensatory effect. SIGNIFICANCE: An initial and slight decrease in MMN associated with increased phase coherence in the corresponding EEG frequencies could indicate an early functional involvement of pre-attentive resources that could precede the clinical expression of HD.


Subject(s)
Huntington Disease , Humans , Huntington Disease/physiopathology , Huntington Disease/genetics , Male , Female , Adult , Middle Aged , Cross-Sectional Studies , Electroencephalography/methods , Evoked Potentials, Auditory/physiology , Acoustic Stimulation/methods , Auditory Perception/physiology , Prodromal Symptoms
19.
Article in English | MEDLINE | ID: mdl-38000716

ABSTRACT

BACKGROUND: miR-137 is a microRNA involved in brain development, regulating neurogenesis and neuronal maturation. Genome-wide association studies have implicated miR-137 in schizophrenia risk but do not explain its involvement in brain function and underlying biology. Polygenic risk for schizophrenia mediated by miR-137 targets is associated with working memory, although other evidence points to emotion processing. We characterized the functional brain correlates of miR-137 target genes associated with schizophrenia while disentangling previously reported associations of miR-137 targets with working memory and emotion processing. METHODS: Using RNA sequencing data from postmortem prefrontal cortex (N = 522), we identified a coexpression gene set enriched for miR-137 targets and schizophrenia risk genes. We validated the relationship of this set to miR-137 in vitro by manipulating miR-137 expression in neuroblastoma cells. We translated this gene set into polygenic scores of coexpression prediction and associated them with functional magnetic resonance imaging activation in healthy volunteers (n1 = 214; n2 = 136; n3 = 2075; n4 = 1800) and with short-term treatment response in patients with schizophrenia (N = 427). RESULTS: In 4652 human participants, we found that 1) schizophrenia risk genes were coexpressed in a biologically validated set enriched for miR-137 targets; 2) increased expression of miR-137 target risk genes was mediated by low prefrontal miR-137 expression; 3) alleles that predict greater gene set coexpression were associated with greater prefrontal activation during emotion processing in 3 independent healthy cohorts (n1, n2, n3) in interaction with age (n4); and 4) these alleles predicted less improvement in negative symptoms following antipsychotic treatment in patients with schizophrenia. CONCLUSIONS: The functional translation of miR-137 target gene expression linked with schizophrenia involves the neural substrates of emotion processing.


Subject(s)
MicroRNAs , Schizophrenia , Humans , Genome-Wide Association Study , Brain , MicroRNAs/genetics , MicroRNAs/metabolism , Emotions
20.
Nat Commun ; 15(1): 3342, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38688917

ABSTRACT

The polygenic architecture of schizophrenia implicates several molecular pathways involved in synaptic function. However, it is unclear how polygenic risk funnels through these pathways to translate into syndromic illness. Using tensor decomposition, we analyze gene co-expression in the caudate nucleus, hippocampus, and dorsolateral prefrontal cortex of post-mortem brain samples from 358 individuals. We identify a set of genes predominantly expressed in the caudate nucleus and associated with both clinical state and genetic risk for schizophrenia that shows dopaminergic selectivity. A higher polygenic risk score for schizophrenia parsed by this set of genes predicts greater dopamine synthesis in the striatum and greater striatal activation during reward anticipation. These results translate dopamine-linked genetic risk variation into in vivo neurochemical and hemodynamic phenotypes in the striatum that have long been implicated in the pathophysiology of schizophrenia.


Subject(s)
Corpus Striatum , Dopamine , Schizophrenia , Humans , Dopamine/metabolism , Dopamine/biosynthesis , Schizophrenia/genetics , Schizophrenia/metabolism , Male , Female , Corpus Striatum/metabolism , Adult , Caudate Nucleus/metabolism , Signal Transduction , Middle Aged , Hippocampus/metabolism , Multifactorial Inheritance , Genetic Predisposition to Disease , Dorsolateral Prefrontal Cortex/metabolism , Reward
SELECTION OF CITATIONS
SEARCH DETAIL