Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Article in English | MEDLINE | ID: mdl-31658970

ABSTRACT

Upregulated expression of efflux pumps, lpxC target mutations, LpxC protein overexpression, and mutations in fabG were previously shown to mediate single-step resistance to the LpxC inhibitor CHIR-090 in P. aeruginosa Single-step selection experiments using three recently described LpxC inhibitors (compounds 2, 3, and 4) and mutant characterization showed that these mechanisms affect susceptibility to additional novel LpxC inhibitors. Serial passaging of P. aeruginosa wild-type and efflux pump-defective strains using the LpxC inhibitor CHIR-090 or compound 1 generated substantial shifts in susceptibility and underscored the interplay of efflux and nonefflux mechanisms. Whole-genome sequencing of CHIR-090 passage mutants identified efflux pump overexpression, fabG mutations, and novel mutations in fabF1 and in PA4465 as determinants of reduced susceptibility. Two new lpxC mutations, encoding A214V and G208S, that reduce susceptibility to certain LpxC inhibitors were identified in these studies, and we show that these and other target mutations differentially affect different LpxC inhibitor scaffolds. Lastly, the combination of target alteration (LpxCA214V) and upregulated expression of LpxC was shown to be tolerated in P. aeruginosa and could mediate significant decreases in susceptibility.


Subject(s)
Pseudomonas aeruginosa/drug effects , Amidohydrolases/genetics , Amidohydrolases/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Microbial Sensitivity Tests , Mutation/genetics , Pseudomonas aeruginosa/genetics , Whole Genome Sequencing
2.
Article in English | MEDLINE | ID: mdl-30420483

ABSTRACT

Efflux pumps contribute to antibiotic resistance in Gram-negative pathogens. Correspondingly, efflux pump inhibitors (EPIs) may reverse this resistance. D13-9001 specifically inhibits MexAB-OprM in Pseudomonas aeruginosa Mutants with decreased susceptibility to MexAB-OprM inhibition by D13-9001 were identified, and these fell into two categories: those with alterations in the target MexB (F628L and ΔV177) and those with an alteration in a putative sensor kinase of unknown function, PA1438 (L172P). The alterations in MexB were consistent with reported structural studies of the D13-9001 interaction with MexB. The PA1438L172P alteration mediated a >150-fold upregulation of MexMN pump gene expression and a >50-fold upregulation of PA1438 and the neighboring response regulator gene, PA1437. We propose that these be renamed mmnR and mmnS for MexMN regulator and MexMN sensor, respectively. MexMN was shown to partner with the outer membrane channel protein OprM and to pump several ß-lactams, monobactams, and tazobactam. Upregulated MexMN functionally replaced MexAB-OprM to efflux these compounds but was insusceptible to inhibition by D13-9001. MmnSL172P also mediated a decrease in susceptibility to imipenem and biapenem that was independent of MexMN-OprM. Expression of oprD, encoding the uptake channel for these compounds, was downregulated, suggesting that this channel is also part of the MmnSR regulon. Transcriptome sequencing (RNA-seq) of cells encoding MmnSL172P revealed, among other things, an interrelationship between the regulation of mexMN and genes involved in heavy metal resistance.


Subject(s)
Piperidines/pharmacology , Pseudomonas aeruginosa/drug effects , Quaternary Ammonium Compounds/pharmacology , beta-Lactams/pharmacology , Imipenem/pharmacology , Microbial Sensitivity Tests , Monobactams/pharmacology , Pseudomonas aeruginosa/genetics , Tazobactam/pharmacology , Thienamycins/pharmacology , Transcriptome/genetics
3.
Article in English | MEDLINE | ID: mdl-30061296

ABSTRACT

Twenty-three Klebsiella pneumoniae (blaDHA-1) clinical isolates exhibited a range of susceptibilities to LYS228, with MICs of ≥8 µg/ml for 9 of these. Mutants with decreased susceptibility to LYS228 and upregulated expression of blaDHA-1 were selected from representative isolates. These had mutations in the chromosomal peptidoglycan recycling gene mpl or ampD Preexisting mpl mutations were also found in some of the clinical isolates examined, and these had strongly upregulated expression of blaDHA-1.


Subject(s)
Anti-Bacterial Agents/pharmacology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/enzymology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , Mutation/genetics , Plasmids/genetics , beta-Lactamases/genetics , beta-Lactamases/metabolism
4.
Article in English | MEDLINE | ID: mdl-30038040

ABSTRACT

LYS228 is a novel monobactam with potent activity against Enterobacteriaceae LYS228 is stable to metallo-ß-lactamases (MBLs) and serine carbapenemases, including Klebsiella pneumoniae carbapenemases (KPCs), resulting in potency against the majority of extended-spectrum ß-lactamase (ESBL)-producing and carbapenem-resistant Enterobacteriaceae strains tested. Overall, LYS228 demonstrated potent activity against 271 Enterobacteriaceae strains, including multidrug-resistant isolates. Based on MIC90 values, LYS228 (MIC90, 1 µg/ml) was ≥32-fold more active against those strains than were aztreonam, ceftazidime, ceftazidime-avibactam, cefepime, and meropenem. The tigecycline MIC90 was 4 µg/ml against the strains tested. Against Enterobacteriaceae isolates expressing ESBLs (n = 37) or displaying carbapenem resistance (n = 77), LYS228 had MIC90 values of 1 and 4 µg/ml, respectively. LYS228 exhibited potent bactericidal activity, as indicated by low minimal bactericidal concentration (MBC) to MIC ratios (MBC/MIC ratios of ≤4) against 97.4% of the Enterobacteriaceae strains tested (264/271 strains). In time-kill studies, LYS228 consistently achieved reductions in CFU per milliliter of 3 log10 units (≥99.9% killing) at concentrations ≥4× MIC for Escherichia coli and K. pneumoniae reference strains, as well as isolates encoding TEM-1, SHV-1, CTX-M-14, CTX-M-15, KPC-2, KPC-3, and NDM-1 ß-lactamases.


Subject(s)
Anti-Bacterial Agents/pharmacology , Enterobacteriaceae/drug effects , Monobactams/pharmacology , Azabicyclo Compounds/pharmacology , Aztreonam/pharmacology , Cefepime/pharmacology , Ceftazidime/pharmacology , Drug Combinations , Drug Resistance, Multiple, Bacterial/genetics , Enterobacteriaceae/genetics , Meropenem/pharmacology , Microbial Sensitivity Tests , Tigecycline/pharmacology , beta-Lactamases/genetics
5.
mSphere ; 4(4)2019 07 03.
Article in English | MEDLINE | ID: mdl-31270174

ABSTRACT

Penicillin-binding proteins (PBPs) are essential for bacterial cell wall biosynthesis, and several are clinically validated antibacterial targets of ß-lactam antibiotics. We identified mutations in the mrdA gene encoding the PBP2 protein in two Escherichia coliblaNDM-1 clinical isolates that reduce susceptibility to carbapenems and to the intrinsic antibacterial activity of a diazabicyclooctane (DBO) PBP2 and ß-lactamase inhibitor. These mutations coexisted with previously described mutations in ftsI (encoding PBP3) that reduce susceptibility to monobactams, penicillins, and cephalosporins. Clinical exposure to ß-lactams is driving the emergence of multifactorial resistance that may impact the therapeutic usefulness of existing antibacterials and novel compounds that target PBPs.IMPORTANCE Emerging antibacterial resistance is a consequence of the continued use of our current antibacterial therapies, and it is limiting their utility, especially for infections caused by multidrug-resistant isolates. ß-Lactams have enjoyed extensive clinical success, but their broad usage is linked to perhaps the most extensive and progressive example of resistance development for any antibacterial scaffold. In Gram-negative pathogens, this largely involves constant evolution of new ß-lactamases able to degrade successive generations of this scaffold. In addition, more recently, alterations in the targets of these compounds, penicillin-binding proteins (PBPs), are being described in clinical isolates, which often also have multiple ß-lactamases. This study underscores the multifactorial nature of ß-lactam resistance by uncovering alterations of PBP2 that reduce susceptibility to carbapenems in E. coli clinical isolates that also have alterations of PBP3 and express the NDM-1 ß-lactamase. The changes in PBP2 also reduced susceptibility to the intrinsic antibacterial activity of some diazabicyclooctane (DBO) compounds that can target PBP2. This may have implications for the development and use of the members of this relatively newer scaffold that are inhibitors of PBP2 in addition to their inhibition of serine-ß-lactamases.


Subject(s)
Anti-Bacterial Agents/pharmacology , Azabicyclo Compounds/pharmacology , Carbapenems/pharmacology , Escherichia coli Proteins/genetics , Escherichia coli/drug effects , Escherichia coli/genetics , Penicillin-Binding Proteins/genetics , Peptidoglycan Glycosyltransferase/genetics , Azabicyclo Compounds/chemistry , Microbial Sensitivity Tests , Mutation , beta-Lactam Resistance , beta-Lactamases/genetics , beta-Lactams/pharmacology
6.
ACS Chem Biol ; 14(6): 1217-1226, 2019 06 21.
Article in English | MEDLINE | ID: mdl-31184469

ABSTRACT

Beta-lactams comprise one of the earliest classes of antibiotic therapies. These molecules covalently inhibit enzymes from the family of penicillin-binding proteins (PBPs), which are essential in construction of the bacterial cell wall. As a result, beta-lactams cause striking changes to cellular morphology, the nature of which varies by the range of PBPs simultaneously engaged in the cell. The traditional method of exploring beta-lactam polyspecificity is a gel-based binding assay which is low-throughput and typically is run  ex situ in cell extracts. Here, we describe a medium-throughput, image-based assay combined with machine learning methods to automatically profile the activity of beta-lactams in E. coli cells. By testing for morphological change across a panel of strains with perturbations to individual PBP enzymes, our approach automatically and quantifiably relates different beta-lactam antibiotics according to their preferences for individual PBPs in cells. We show the potential of our approach for guiding the design of novel inhibitors toward different PBP-binding profiles by predicting the mechanisms of two recently reported PBP inhibitors.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , beta-Lactams/pharmacology , Escherichia coli/metabolism , Machine Learning , Markov Chains , Microbial Sensitivity Tests , Penicillin-Binding Proteins/metabolism
7.
J Med Chem ; 60(12): 5002-5014, 2017 06 22.
Article in English | MEDLINE | ID: mdl-28549219

ABSTRACT

Over the past several decades, the frequency of antibacterial resistance in hospitals, including multidrug resistance (MDR) and its association with serious infectious diseases, has increased at alarming rates. Pseudomonas aeruginosa is a leading cause of nosocomial infections, and resistance to virtually all approved antibacterial agents is emerging in this pathogen. To address the need for new agents to treat MDR P. aeruginosa, we focused on inhibiting the first committed step in the biosynthesis of lipid A, the deacetylation of uridyldiphospho-3-O-(R-hydroxydecanoyl)-N-acetylglucosamine by the enzyme LpxC. We approached this through the design, synthesis, and biological evaluation of novel hydroxamic acid LpxC inhibitors, exemplified by 1, where cytotoxicity against mammalian cell lines was reduced, solubility and plasma-protein binding were improved while retaining potent anti-pseudomonal activity in vitro and in vivo.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Amidohydrolases/chemistry , Animals , Anti-Bacterial Agents/chemical synthesis , Chemistry Techniques, Synthetic , Crystallography, X-Ray , Drug Design , Drug Evaluation, Preclinical/methods , Drug Resistance, Multiple, Bacterial/drug effects , Enzyme Inhibitors/chemical synthesis , Female , Hep G2 Cells/drug effects , Humans , K562 Cells/drug effects , Mice, Inbred BALB C , Microbial Sensitivity Tests , Molecular Docking Simulation , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL