Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
J Proteome Res ; 23(2): 618-632, 2024 02 02.
Article in English | MEDLINE | ID: mdl-38226771

ABSTRACT

Cell surface proteins represent an important class of molecules for therapeutic targeting and cellular phenotyping. However, their enrichment and detection via mass spectrometry-based proteomics remains challenging due to low abundance, post-translational modifications, hydrophobic regions, and processing requirements. To improve their identification, we optimized a Cell-Surface Capture (CSC) workflow that incorporates magnetic bead-based processing. Using this approach, we evaluated labeling conditions (biotin tags and catalysts), enrichment specificity (streptavidin beads), missed cleavages (lysis buffers), nonenzymatic deamidation (digestion and deglycosylation buffers), and data acquisition methods (DDA, DIA, and TMT). Our findings support the use of alkoxyamine-PEG4-biotin plus 5-methoxy-anthranilic acid, SDS/urea-based lysis buffers, single-pot solid-phased-enhanced sample-preparation (SP3), and streptavidin magnetic beads for maximal surfaceome coverage. Notably, with semiautomated processing, sample handling was simplified and between ∼600 and 900 cell surface N-glycoproteins were identified from only 25-200 µg of HeLa protein. CSC also revealed significant differences between in vitro monolayer cultures and in vivo tumor xenografts of murine CT26 colon adenocarcinoma samples that may aid in target identification for drug development. Overall, the improved efficiency of the magnetic-based CSC workflow identified both previously reported and novel N-glycosites with less material and high reproducibility that should help advance the field of surfaceomics by providing insight in cellular phenotypes not previously documented.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , Humans , Animals , Mice , Proteomics/methods , Biotin , Workflow , Streptavidin , Reproducibility of Results , Membrane Glycoproteins , Magnetic Phenomena , Proteome
2.
Mol Cell ; 59(2): 321-32, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-26073543

ABSTRACT

Protein acylation links energetic substrate flux with cellular adaptive responses. SIRT5 is a NAD(+)-dependent lysine deacylase and removes both succinyl and malonyl groups. Using affinity enrichment and label free quantitative proteomics, we characterized the SIRT5-regulated lysine malonylome in wild-type (WT) and Sirt5(-/-) mice. 1,137 malonyllysine sites were identified across 430 proteins, with 183 sites (from 120 proteins) significantly increased in Sirt5(-/-) animals. Pathway analysis identified glycolysis as the top SIRT5-regulated pathway. Importantly, glycolytic flux was diminished in primary hepatocytes from Sirt5(-/-) compared to WT mice. Substitution of malonylated lysine residue 184 in glyceraldehyde 3-phosphate dehydrogenase with glutamic acid, a malonyllysine mimic, suppressed its enzymatic activity. Comparison with our previous reports on acylation reveals that malonylation targets a different set of proteins than acetylation and succinylation. These data demonstrate that SIRT5 is a global regulator of lysine malonylation and provide a mechanism for regulation of energetic flux through glycolysis.


Subject(s)
Sirtuins/metabolism , Acylation , Amino Acid Substitution , Animals , Catalytic Domain , Cytosol/metabolism , Gene Knockdown Techniques , Glyceraldehyde-3-Phosphate Dehydrogenases/chemistry , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Glycolysis , HEK293 Cells , Humans , Liver/metabolism , Malonates/metabolism , Metabolic Networks and Pathways , Mice , Mice, Knockout , Mitochondrial Proteins/metabolism , Molecular Mimicry , Sirtuins/deficiency , Sirtuins/genetics
3.
J Biol Chem ; 292(24): 10239-10249, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28458255

ABSTRACT

SIRT5 is a lysine desuccinylase known to regulate mitochondrial fatty acid oxidation and the urea cycle. Here, SIRT5 was observed to bind to cardiolipin via an amphipathic helix on its N terminus. In vitro, succinyl-CoA was used to succinylate liver mitochondrial membrane proteins. SIRT5 largely reversed the succinyl-CoA-driven lysine succinylation. Quantitative mass spectrometry of SIRT5-treated membrane proteins pointed to the electron transport chain, particularly Complex I, as being highly targeted for desuccinylation by SIRT5. Correspondingly, SIRT5-/- HEK293 cells showed defects in both Complex I- and Complex II-driven respiration. In mouse liver, SIRT5 expression was observed to localize strictly to the periportal hepatocytes. However, homogenates prepared from whole SIRT5-/- liver did show reduced Complex II-driven respiration. The enzymatic activities of Complex II and ATP synthase were also significantly reduced. Three-dimensional modeling of Complex II suggested that several SIRT5-targeted lysine residues lie at the protein-lipid interface of succinate dehydrogenase subunit B. We postulate that succinylation at these sites may disrupt Complex II subunit-subunit interactions and electron transfer. Lastly, SIRT5-/- mice, like humans with Complex II deficiency, were found to have mild lactic acidosis. Our findings suggest that SIRT5 is targeted to protein complexes on the inner mitochondrial membrane via affinity for cardiolipin to promote respiratory chain function.


Subject(s)
Cardiolipins/metabolism , Electron Transport Chain Complex Proteins/metabolism , Hepatocytes/enzymology , Models, Molecular , Protein Processing, Post-Translational , Sirtuins/metabolism , Amino Acid Substitution , Animals , Cardiolipins/chemistry , Electron Transport Complex I/metabolism , Electron Transport Complex II/metabolism , HEK293 Cells , Hepatocytes/metabolism , Humans , Lysine/metabolism , Mice , Mice, Knockout , Mitochondria, Liver/enzymology , Mitochondria, Liver/metabolism , Mitochondrial Membranes/enzymology , Mitochondrial Membranes/metabolism , Mutation , Protein Transport , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sirtuins/chemistry , Sirtuins/genetics
4.
Mol Cell Proteomics ; 14(9): 2405-19, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25987414

ABSTRACT

Quantitative analysis of discovery-based proteomic workflows now relies on high-throughput large-scale methods for identification and quantitation of proteins and post-translational modifications. Advancements in label-free quantitative techniques, using either data-dependent or data-independent mass spectrometric acquisitions, have coincided with improved instrumentation featuring greater precision, increased mass accuracy, and faster scan speeds. We recently reported on a new quantitative method called MS1 Filtering (Schilling et al. (2012) Mol. Cell. Proteomics 11, 202-214) for processing data-independent MS1 ion intensity chromatograms from peptide analytes using the Skyline software platform. In contrast, data-independent acquisitions from MS2 scans, or SWATH, can quantify all fragment ion intensities when reference spectra are available. As each SWATH acquisition cycle typically contains an MS1 scan, these two independent label-free quantitative approaches can be acquired in a single experiment. Here, we have expanded the capability of Skyline to extract both MS1 and MS2 ion intensity chromatograms from a single SWATH data-independent acquisition in an Integrated Dual Scan Analysis approach. The performance of both MS1 and MS2 data was examined in simple and complex samples using standard concentration curves. Cases of interferences in MS1 and MS2 ion intensity data were assessed, as were the differentiation and quantitation of phosphopeptide isomers in MS2 scan data. In addition, we demonstrated an approach for optimization of SWATH m/z window sizes to reduce interferences using MS1 scans as a guide. Finally, a correlation analysis was performed on both MS1 and MS2 ion intensity data obtained from SWATH acquisitions on a complex mixture using a linear model that automatically removes signals containing interferences. This work demonstrates the practical advantages of properly acquiring and processing MS1 precursor data in addition to MS2 fragment ion intensity data in a data-independent acquisition (SWATH), and provides an approach to simultaneously obtain independent measurements of relative peptide abundance from a single experiment.


Subject(s)
Liver/enzymology , Peptides/isolation & purification , Protein Kinase Inhibitors/isolation & purification , Proteomics/methods , Animals , High-Throughput Screening Assays , Mice , Reproducibility of Results , Software
5.
Proc Natl Acad Sci U S A ; 110(16): 6601-6, 2013 Apr 16.
Article in English | MEDLINE | ID: mdl-23576753

ABSTRACT

Large-scale proteomic approaches have identified numerous mitochondrial acetylated proteins; however in most cases, their regulation by acetyltransferases and deacetylases remains unclear. Sirtuin 3 (SIRT3) is an NAD(+)-dependent mitochondrial protein deacetylase that has been shown to regulate a limited number of enzymes in key metabolic pathways. Here, we use a rigorous label-free quantitative MS approach (called MS1 Filtering) to analyze changes in lysine acetylation from mouse liver mitochondria in the absence of SIRT3. Among 483 proteins, a total of 2,187 unique sites of lysine acetylation were identified after affinity enrichment. MS1 Filtering revealed that lysine acetylation of 283 sites in 136 proteins was significantly increased in the absence of SIRT3 (at least twofold). A subset of these sites was independently validated using selected reaction monitoring MS. These data show that SIRT3 regulates acetylation on multiple proteins, often at multiple sites, across several metabolic pathways including fatty acid oxidation, ketogenesis, amino acid catabolism, and the urea and tricarboxylic acid cycles, as well as mitochondrial regulatory proteins. The widespread modification of key metabolic pathways greatly expands the number of known substrates and sites that are targeted by SIRT3 and establishes SIRT3 as a global regulator of mitochondrial protein acetylation with the capability of coordinating cellular responses to nutrient status and energy homeostasis.


Subject(s)
Lysine/metabolism , Metabolic Networks and Pathways/physiology , Mitochondria, Liver/metabolism , Mitochondrial Proteins/metabolism , Proteomics/methods , Sirtuin 3/metabolism , Acetylation , Animals , Computational Biology , Mass Spectrometry , Metabolic Networks and Pathways/genetics , Mice , Models, Biological , Sirtuin 3/deficiency
6.
Anal Chem ; 87(20): 10222-9, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26398777

ABSTRACT

Recent advances in commercial mass spectrometers with higher resolving power and faster scanning capabilities have expanded their functionality beyond traditional data-dependent acquisition (DDA) to targeted proteomics with higher precision and multiplexing. Using an orthogonal quadrupole time-of flight (QqTOF) LC-MS system, we investigated the feasibility of implementing large-scale targeted quantitative assays using scheduled, high resolution multiple reaction monitoring (sMRM-HR), also referred to as parallel reaction monitoring (sPRM). We assessed the selectivity and reproducibility of PRM, also referred to as parallel reaction monitoring, by measuring standard peptide concentration curves and system suitability assays. By evaluating up to 500 peptides in a single assay, the robustness and accuracy of PRM assays were compared to traditional SRM workflows on triple quadrupole instruments. The high resolution and high mass accuracy of the full scan MS/MS spectra resulted in sufficient selectivity to monitor 6-10 MS/MS fragment ions per target precursor, providing flexibility in postacquisition assay refinement and optimization. The general applicability of the sPRM workflow was assessed in complex biological samples by first targeting 532 peptide precursor ions in a yeast lysate, and then 466 peptide precursors from a previously generated candidate list of differentially expressed proteins in whole cell lysates from E. coli. Lastly, we found that sPRM assays could be rapidly and efficiently developed in Skyline from DDA libraries when acquired on the same QqTOF platform, greatly facilitating their successful implementation. These results establish a robust sPRM workflow on a QqTOF platform to rapidly transition from discovery analysis to highly multiplexed, targeted peptide quantitation.


Subject(s)
Mass Spectrometry/methods , Peptides/analysis , Software , Animals , Caenorhabditis elegans/cytology , Chromatography, High Pressure Liquid , Escherichia coli/cytology , Saccharomyces cerevisiae/cytology , Time Factors
7.
J Biol Chem ; 288(47): 33837-33847, 2013 Nov 22.
Article in English | MEDLINE | ID: mdl-24121500

ABSTRACT

Long-chain acyl-CoA dehydrogenase (LCAD) is a key mitochondrial fatty acid oxidation enzyme. We previously demonstrated increased LCAD lysine acetylation in SIRT3 knockout mice concomitant with reduced LCAD activity and reduced fatty acid oxidation. To study the effects of acetylation on LCAD and determine sirtuin 3 (SIRT3) target sites, we chemically acetylated recombinant LCAD. Acetylation impeded substrate binding and reduced catalytic efficiency. Deacetylation with recombinant SIRT3 partially restored activity. Residues Lys-318 and Lys-322 were identified as SIRT3-targeted lysines. Arginine substitutions at Lys-318 and Lys-322 prevented the acetylation-induced activity loss. Lys-318 and Lys-322 flank residues Arg-317 and Phe-320, which are conserved among all acyl-CoA dehydrogenases and coordinate the enzyme-bound FAD cofactor in the active site. We propose that acetylation at Lys-318/Lys-322 causes a conformational change which reduces hydride transfer from substrate to FAD. Medium-chain acyl-CoA dehydrogenase and acyl-CoA dehydrogenase 9, two related enzymes with lysines at positions equivalent to Lys-318/Lys-322, were also efficiently deacetylated by SIRT3 following chemical acetylation. These results suggest that acetylation/deacetylation at Lys-318/Lys-322 is a mode of regulating fatty acid oxidation. The same mechanism may regulate other acyl-CoA dehydrogenases.


Subject(s)
Fatty Acids/metabolism , Flavin-Adenine Dinucleotide/metabolism , Mitochondria, Liver/enzymology , Sirtuin 3/metabolism , Acetylation , Acyl-CoA Dehydrogenase, Long-Chain , Animals , Catalytic Domain/physiology , Fatty Acids/chemistry , Fatty Acids/genetics , Flavin-Adenine Dinucleotide/chemistry , Flavin-Adenine Dinucleotide/genetics , Humans , Mice , Mice, Knockout , Mitochondria, Liver/genetics , Oxidation-Reduction , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sirtuin 3/chemistry , Sirtuin 3/genetics
8.
Mol Cell Proteomics ; 11(5): 202-14, 2012 May.
Article in English | MEDLINE | ID: mdl-22454539

ABSTRACT

Despite advances in metabolic and postmetabolic labeling methods for quantitative proteomics, there remains a need for improved label-free approaches. This need is particularly pressing for workflows that incorporate affinity enrichment at the peptide level, where isobaric chemical labels such as isobaric tags for relative and absolute quantitation and tandem mass tags may prove problematic or where stable isotope labeling with amino acids in cell culture labeling cannot be readily applied. Skyline is a freely available, open source software tool for quantitative data processing and proteomic analysis. We expanded the capabilities of Skyline to process ion intensity chromatograms of peptide analytes from full scan mass spectral data (MS1) acquired during HPLC MS/MS proteomic experiments. Moreover, unlike existing programs, Skyline MS1 filtering can be used with mass spectrometers from four major vendors, which allows results to be compared directly across laboratories. The new quantitative and graphical tools now available in Skyline specifically support interrogation of multiple acquisitions for MS1 filtering, including visual inspection of peak picking and both automated and manual integration, key features often lacking in existing software. In addition, Skyline MS1 filtering displays retention time indicators from underlying MS/MS data contained within the spectral library to ensure proper peak selection. The modular structure of Skyline also provides well defined, customizable data reports and thus allows users to directly connect to existing statistical programs for post hoc data analysis. To demonstrate the utility of the MS1 filtering approach, we have carried out experiments on several MS platforms and have specifically examined the performance of this method to quantify two important post-translational modifications: acetylation and phosphorylation, in peptide-centric affinity workflows of increasing complexity using mouse and human models.


Subject(s)
Peptide Mapping/methods , Protein Processing, Post-Translational , Proteome/metabolism , Software , Acetylation , Amino Acid Sequence , Animals , Breast Neoplasms , Calibration/standards , Cell Line, Tumor , Chromatography, High Pressure Liquid , Culture Media, Conditioned/chemistry , Female , Fourier Analysis , Humans , Mice , Mice, Knockout , Mitochondria, Liver/enzymology , Mitochondria, Muscle/metabolism , Molecular Sequence Data , Peptide Fragments/chemistry , Phosphorylation , Proteome/chemistry , Proteome/isolation & purification , Proteomics , Pyruvate Dehydrogenase Complex/chemistry , Pyruvate Dehydrogenase Complex/isolation & purification , Pyruvate Dehydrogenase Complex/metabolism , Reference Standards , Tandem Mass Spectrometry/standards
9.
Hepatol Commun ; 8(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38696369

ABSTRACT

BACKGROUND: Human genetic studies have identified several mitochondrial amidoxime-reducing component 1 (MTARC1) variants as protective against metabolic dysfunction-associated steatotic liver disease. The MTARC1 variants are associated with decreased plasma lipids and liver enzymes and reduced liver-related mortality. However, the role of mARC1 in fatty liver disease is still unclear. METHODS: Given that mARC1 is mainly expressed in hepatocytes, we developed an N-acetylgalactosamine-conjugated mouse Mtarc1 siRNA, applying it in multiple in vivo models to investigate the role of mARC1 using multiomic techniques. RESULTS: In ob/ob mice, knockdown of Mtarc1 in mouse hepatocytes resulted in decreased serum liver enzymes, LDL-cholesterol, and liver triglycerides. Reduction of mARC1 also reduced liver weight, improved lipid profiles, and attenuated liver pathological changes in 2 diet-induced metabolic dysfunction-associated steatohepatitis mouse models. A comprehensive analysis of mARC1-deficient liver from a metabolic dysfunction-associated steatohepatitis mouse model by metabolomics, proteomics, and lipidomics showed that Mtarc1 knockdown partially restored metabolites and lipids altered by diet. CONCLUSIONS: Taken together, reducing mARC1 expression in hepatocytes protects against metabolic dysfunction-associated steatohepatitis in multiple murine models, suggesting a potential therapeutic approach for this chronic liver disease.


Subject(s)
Disease Models, Animal , Gene Knockdown Techniques , Hepatocytes , Animals , Mice , Hepatocytes/metabolism , Liver/metabolism , Male , RNA, Small Interfering/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/prevention & control , Mice, Inbred C57BL
10.
J Cell Biol ; 178(7): 1265-78, 2007 Sep 24.
Article in English | MEDLINE | ID: mdl-17893247

ABSTRACT

Bacterial toxins and effector proteins hijack eukaryotic enzymes that are spatially localized and display rapid signaling kinetics. However, the molecular mechanisms by which virulence factors engage highly dynamic substrates in the host cell environment are poorly understood. Here, we demonstrate that the enteropathogenic Escherichia coli (EPEC) type III effector protein EspF nucleates a multiprotein signaling complex composed of eukaryotic sorting nexin 9 (SNX9) and neuronal Wiskott-Aldrich syndrome protein (N-WASP). We demonstrate that a specific and high affinity association between EspF and SNX9 induces membrane remodeling in host cells. These membrane-remodeling events are directly coupled to N-WASP/Arp2/3-mediated actin nucleation. In addition to providing a biochemical mechanism of EspF function, we find that EspF dynamically localizes to membrane-trafficking organelles in a spatiotemporal pattern that correlates with SNX9 and N-WASP activity in living cells. Thus, our findings suggest that the EspF-dependent assembly of SNX9 and N-WASP represents a novel form of signaling mimicry used to promote EPEC pathogenesis and gastrointestinal disease.


Subject(s)
Carrier Proteins/metabolism , Cell Membrane/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Eukaryotic Cells/metabolism , Signal Transduction , Actin-Related Protein 2-3 Complex/metabolism , Actins/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Carrier Proteins/chemistry , Cell Polarity , Cell Survival , Dogs , Epithelial Cells/cytology , Escherichia coli Proteins/chemistry , Evolution, Molecular , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins , Ligands , Mice , Molecular Sequence Data , Protein Binding , Protein Transport , Vesicular Transport Proteins/chemistry , Vesicular Transport Proteins/metabolism , Wiskott-Aldrich Syndrome Protein, Neuronal/metabolism , src Homology Domains
11.
J Am Soc Mass Spectrom ; 33(9): 1590-1597, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-34645265

ABSTRACT

The class I major histocompatibility (MHC-I) complex is a set of diverse cell surface receptors encoded by the human leukocyte antigen gene complex. These receptors present intracellular antigens to cytotoxic T cells providing information on the state and health of cells. Changes in the immunopeptidome during cancer may provide novel targets for therapeutic intervention. To understand how the tumor immunopeptidome is altered, we developed a mass spectrometry (MS) based platform for isolating and identifying MHC-I peptide antigens in lung tumors. In the course of our work, we encountered several large unknown peptide contaminants which had not been previously reported. To understand the source of these major contaminants, we isolated them using offline fractionation and identified them by liquid chromatography-tandem mass spectrometry (LC-MS/MS) as members of the host defense protein family known as the defensins. To mitigate their detrimental effects, we modified our "Original" data-dependent acquisition (DDA) MS method to narrowly target the MHC-I peptides based on their physical properties including charge state and molecular weight ("z state" DDA), evaluated field asymmetric ion mobility spectrometry to attempt gas-phase separation prior to MS analysis, and developed an immunodepletion approach using defensin specific antibodies. This modified approach improves peptide identification and reduces the impact of defensin contamination in lung tissue samples.


Subject(s)
Neoplasms , Tandem Mass Spectrometry , Chromatography, Liquid , Defensins , Humans , Lung/chemistry , Peptides/chemistry
12.
Sci Rep ; 12(1): 14804, 2022 08 31.
Article in English | MEDLINE | ID: mdl-36045139

ABSTRACT

Post-translational modifications, such as lysine acetylation, regulate the activity of diverse proteins across many cellular compartments. Protein deacetylation in mitochondria is catalyzed by the enzymatic activity of the NAD+-dependent deacetylase sirtuin 3 (SIRT3), however it remains unclear whether corresponding mitochondrial acetyltransferases exist. We used a bioinformatics approach to search for mitochondrial proteins with an acetyltransferase catalytic domain, and identified a novel splice variant of ELP3 (mt-ELP3) of the elongator complex, which localizes to the mitochondrial matrix in mammalian cells. Unexpectedly, mt-ELP3 does not mediate mitochondrial protein acetylation but instead induces a post-transcriptional modification of mitochondrial-transfer RNAs (mt-tRNAs). Overexpression of mt-ELP3 leads to the protection of mt-tRNAs against the tRNA-specific RNase angiogenin, increases mitochondrial translation, and furthermore increases expression of OXPHOS complexes. This study thus identifies mt-ELP3 as a non-canonical mt-tRNA modifying enzyme.


Subject(s)
Histone Acetyltransferases , RNA Processing, Post-Transcriptional , Animals , Histone Acetyltransferases/metabolism , Mammals/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Protein Biosynthesis , RNA, Mitochondrial/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism
13.
Nat Commun ; 11(1): 5927, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33230181

ABSTRACT

Mitochondrial acyl-coenzyme A species are emerging as important sources of protein modification and damage. Succinyl-CoA ligase (SCL) deficiency causes a mitochondrial encephalomyopathy of unknown pathomechanism. Here, we show that succinyl-CoA accumulates in cells derived from patients with recessive mutations in the tricarboxylic acid cycle (TCA) gene succinyl-CoA ligase subunit-ß (SUCLA2), causing global protein hyper-succinylation. Using mass spectrometry, we quantify nearly 1,000 protein succinylation sites on 366 proteins from patient-derived fibroblasts and myotubes. Interestingly, hyper-succinylated proteins are distributed across cellular compartments, and many are known targets of the (NAD+)-dependent desuccinylase SIRT5. To test the contribution of hyper-succinylation to disease progression, we develop a zebrafish model of the SCL deficiency and find that SIRT5 gain-of-function reduces global protein succinylation and improves survival. Thus, increased succinyl-CoA levels contribute to the pathology of SCL deficiency through post-translational modifications.


Subject(s)
Acyl Coenzyme A/metabolism , Mitochondrial Diseases/pathology , Succinate-CoA Ligases/genetics , Animals , Cells, Cultured , Female , Humans , Infant , Lysine/metabolism , Male , Mice , Mice, Knockout , Mitochondria/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mutation , Proteomics , Sirtuins/deficiency , Sirtuins/genetics , Sirtuins/metabolism , Succinate-CoA Ligases/deficiency , Succinate-CoA Ligases/metabolism , Survival Analysis , Zebrafish
14.
Mol Cancer Ther ; 19(9): 1875-1888, 2020 09.
Article in English | MEDLINE | ID: mdl-32518207

ABSTRACT

Despite advances in the treatment of acute myeloid leukemia (AML), novel therapies are needed to induce deeper and more durable clinical response. Bispecific T-cell Engager (BiTE) molecules, which redirect patient T cells to lyse tumor cells, are a clinically validated modality for hematologic malignancies. Due to broad AML expression and limited normal tissue expression, fms-related tyrosine kinase 3 (FLT3) is proposed to be an optimal BiTE molecule target. Expression profiling of FLT3 was performed in primary AML patient samples and normal hematopoietic cells and nonhematopoietic tissues. Two novel FLT3 BiTE molecules, one with a half-life extending (HLE) Fc moiety and one without, were assessed for T-cell-dependent cellular cytotoxicity (TDCC) of FLT3-positive cell lines in vitro, in vivo, and ex vivo FLT3 protein was detected on the surface of most primary AML bulk and leukemic stem cells but only a fraction of normal hematopoietic stem and progenitor cells. FLT3 protein detected in nonhematopoietic cells was cytoplasmic. FLT3 BiTE molecules induced TDCC of FLT3-positive cells in vitro, reduced tumor growth and increased survival in AML mouse models in vivo Both molecules exhibited reproducible pharmacokinetic and pharmacodynamic profiles in cynomolgus monkeys in vivo, including elimination of FLT3-positive cells in blood and bone marrow. In ex vivo cultures of primary AML samples, patient T cells induced TDCC of FLT3-positive target cells. Combination with PD-1 blockade increased BiTE activity. These data support the clinical development of an FLT3 targeting BiTE molecule for the treatment of AML.


Subject(s)
Antibodies, Bispecific/administration & dosage , Immune Checkpoint Inhibitors/administration & dosage , Leukemia, Myeloid, Acute/drug therapy , fms-Like Tyrosine Kinase 3/metabolism , Animals , Antibodies, Bispecific/pharmacology , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Cell Survival , Cytotoxicity, Immunologic , Drug Synergism , Humans , Immune Checkpoint Inhibitors/pharmacology , K562 Cells , Leukemia, Myeloid, Acute/metabolism , Macaca fascicularis , Mice , Treatment Outcome , fms-Like Tyrosine Kinase 3/antagonists & inhibitors
15.
Anal Biochem ; 389(2): 157-64, 2009 Jun 15.
Article in English | MEDLINE | ID: mdl-19341700

ABSTRACT

The pyruvate dehydrogenase multienzyme complex (PDC) is a key regulatory point in cellular metabolism linking glycolysis to the citric acid cycle and lipogenesis. Reversible phosphorylation of the pyruvate dehydrogenase enzyme is a critical regulatory mechanism and an important point for monitoring metabolic activity. To directly determine the regulation of the PDC by phosphorylation, we developed a complete set of phospho-antibodies against the three known phosphorylation sites on the E1 alpha subunit of pyruvate dehydrogenase (PDHE1alpha). We demonstrate phospho-site specificity of each antibody in a variety of cultured cells and tissue extracts. In addition, we show sensitivity of these antibodies to PDH activity using the pyruvate dehydrogenase kinase-specific inhibitor dichloroacetate. We go on to use these antibodies to assess PDH phosphorylation in a patient suffering from Leigh's syndrome. Finally, we observe changes in individual phosphorylation states following a small molecule screen, demonstrating that these reagents should be useful for monitoring phosphorylation of PDHE1alpha and, therefore, overall metabolism in the disease state as well as in response to a myriad of physiological and pharmacological stimuli.


Subject(s)
Pyruvate Dehydrogenase Complex/chemistry , Adolescent , Amino Acid Sequence , Animals , Antibodies/chemistry , Antibodies/pharmacology , Binding Sites , Cell Line , Cells, Cultured , Child , Humans , Leigh Disease/enzymology , Male , Mice , Mice, Inbred C57BL , Mitochondria/enzymology , Molecular Sequence Data , Phosphorylation , Pyruvate Dehydrogenase Complex/antagonists & inhibitors , Pyruvate Dehydrogenase Complex/metabolism , Rabbits , Sequence Alignment , Young Adult
16.
J Am Soc Mass Spectrom ; 29(6): 1327-1330, 2018 06.
Article in English | MEDLINE | ID: mdl-29667163

ABSTRACT

Proper sample preparation in proteomic workflows is essential to the success of modern mass spectrometry experiments. Complex workflows often require reagents which are incompatible with MS analysis (e.g., detergents) necessitating a variety of sample cleanup procedures. Efforts to understand and mitigate sample contamination are a continual source of disruption with respect to both time and resources. To improve the ability to rapidly assess sample contamination from a diverse array of sources, I developed a molecular library in Skyline for rapid extraction of contaminant precursor signals using MS1 filtering. This contaminant template library is easily managed and can be modified for a diverse array of mass spectrometry sample preparation workflows. Utilization of this template allows rapid assessment of sample integrity and indicates potential sources of contamination. Graphical Abstract ᅟ.

17.
PLoS One ; 13(12): e0208973, 2018.
Article in English | MEDLINE | ID: mdl-30586434

ABSTRACT

Dietary macronutrient composition alters metabolism through several mechanisms, including post-translational modification (PTM) of proteins. To connect diet and molecular changes, here we performed short- and long-term feeding of mice with standard chow diet (SCD) and high-fat diet (HFD), with or without glucose or fructose supplementation, and quantified liver metabolites, 861 proteins, and 1,815 protein level-corrected mitochondrial acetylation and succinylation sites. Nearly half the acylation sites were altered by at least one diet; nutrient-specific changes in protein acylation sometimes encompass entire pathways. Although acetyl-CoA is an intermediate in both sugar and fat metabolism, acetyl-CoA had a dichotomous fate depending on its source; chronic feeding of dietary sugars induced protein hyperacetylation, whereas the same duration of HFD did not. Instead, HFD resulted in citrate accumulation, anaplerotic metabolism of amino acids, and protein hypo-succinylation. Together, our results demonstrate novel connections between dietary macronutrients, protein post-translational modifications, and regulation of fuel selection in liver.


Subject(s)
Fatty Liver/metabolism , Liver/metabolism , Mitochondria, Liver/drug effects , Mitochondrial Proteins/genetics , Acetylation/drug effects , Animals , Citric Acid/metabolism , Diet, High-Fat/adverse effects , Fatty Liver/genetics , Fatty Liver/pathology , Glucose/metabolism , Humans , Lipid Metabolism/drug effects , Liver/drug effects , Mice , Mitochondria/drug effects , Mitochondria/genetics , Mitochondrial Proteins/drug effects , Protein Processing, Post-Translational/drug effects , Protein Processing, Post-Translational/genetics
18.
J Am Soc Mass Spectrom ; 27(11): 1758-1771, 2016 11.
Article in English | MEDLINE | ID: mdl-27590315

ABSTRACT

Post-translational modification of lysine residues by NƐ-acylation is an important regulator of protein function. Many large-scale protein acylation studies have assessed relative changes of lysine acylation sites after antibody enrichment using mass spectrometry-based proteomics. Although relative acylation fold-changes are important, this does not reveal site occupancy, or stoichiometry, of individual modification sites, which is critical to understand functional consequences. Recently, methods for determining lysine acetylation stoichiometry have been proposed based on ratiometric analysis of endogenous levels to those introduced after quantitative per-acetylation of proteins using stable isotope-labeled acetic anhydride. However, in our hands, we find that these methods can overestimate acetylation stoichiometries because of signal interferences when endogenous levels of acylation are very low, which is especially problematic when using MS1 scans for quantification. In this study, we sought to improve the accuracy of determining acylation stoichiometry using data-independent acquisition (DIA). Specifically, we use SWATH acquisition to comprehensively collect both precursor and fragment ion intensity data. The use of fragment ions for stoichiometry quantification not only reduces interferences but also allows for determination of site-level stoichiometry from peptides with multiple lysine residues. We also demonstrate the novel extension of this method to measurements of succinylation stoichiometry using deuterium-labeled succinic anhydride. Proof of principle SWATH acquisition studies were first performed using bovine serum albumin for both acetylation and succinylation occupancy measurements, followed by the analysis of more complex samples of E. coli cell lysates. Although overall site occupancy was low (<1%), some proteins contained lysines with relatively high acetylation occupancy. Graphical Abstract ᅟ.


Subject(s)
Lysine/chemistry , Mass Spectrometry , Acetylation , Escherichia coli , Protein Processing, Post-Translational , Proteins/metabolism
19.
PLoS One ; 10(3): e0122297, 2015.
Article in English | MEDLINE | ID: mdl-25811481

ABSTRACT

SIRT3 and SIRT5 have been shown to regulate mitochondrial fatty acid oxidation but the molecular mechanisms behind the regulation are lacking. Here, we demonstrate that SIRT3 and SIRT5 both target human very long-chain acyl-CoA dehydrogenase (VLCAD), a key fatty acid oxidation enzyme. SIRT3 deacetylates and SIRT5 desuccinylates K299 which serves to stabilize the essential FAD cofactor in the active site. Further, we show that VLCAD binds strongly to cardiolipin and isolated mitochondrial membranes via a domain near the C-terminus containing lysines K482, K492, and K507. Acetylation or succinylation of these residues eliminates binding of VLCAD to cardiolipin. SIRT3 deacetylates K507 while SIRT5 desuccinylates K482, K492, and K507. Sirtuin deacylation of recombinant VLCAD rescues membrane binding. Endogenous VLCAD from SIRT3 and SIRT5 knockout mouse liver shows reduced binding to cardiolipin. Thus, SIRT3 and SIRT5 promote fatty acid oxidation by converging upon VLCAD to promote its activity and membrane localization. Regulation of cardiolipin binding by reversible lysine acylation is a novel mechanism that is predicted to extrapolate to other metabolic proteins that localize to the inner mitochondrial membrane.


Subject(s)
Acyl-CoA Dehydrogenase, Long-Chain/metabolism , Cardiolipins/metabolism , Sirtuin 3/metabolism , Sirtuins/metabolism , Acyl-CoA Dehydrogenase, Long-Chain/chemistry , Acylation , Amino Acid Sequence , Animals , Binding Sites , Cardiolipins/chemistry , Catalytic Domain , Enzyme Activation , Flavin-Adenine Dinucleotide/chemistry , Flavin-Adenine Dinucleotide/metabolism , Mice , Mice, Knockout , Mitochondria, Liver/metabolism , Mitochondrial Membranes/metabolism , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Sequence Alignment , Sirtuin 3/chemistry , Sirtuin 3/genetics , Sirtuins/chemistry , Sirtuins/genetics
20.
Methods Mol Biol ; 1077: 121-31, 2013.
Article in English | MEDLINE | ID: mdl-24014403

ABSTRACT

Mass spectrometry (MS) allows for the large-scale identification of multiple peptide analytes in complex mixtures. However, the low abundance of acetylated peptides in the overall mixture requires an enrichment step. After enrichment, the resulting acetylated peptides of interest can be quantitated using selected reaction monitoring (SRM)-MS with stable isotope dilution. Here, we describe the enrichment of lysine acetylated peptides from typsin digested mouse liver mitochondria, and the targeted quantitation of a known lysine acetylation site in succinate dehydrogenase A using SRM-MS on a triple quadrupole instrument.


Subject(s)
Chromatography, Liquid/methods , Immunoprecipitation/methods , Lysine/metabolism , Mitochondria, Liver/enzymology , Peptide Fragments/metabolism , Protein Processing, Post-Translational , Succinate Dehydrogenase/metabolism , Tandem Mass Spectrometry/methods , Acetylation , Animals , Chromatography, Affinity , Indicator Dilution Techniques , Mice
SELECTION OF CITATIONS
SEARCH DETAIL