Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Science ; 203(4382): 775-7, 1979 Feb 23.
Article in English | MEDLINE | ID: mdl-17832993

ABSTRACT

Measurements of the changes in orbital period of the Pioneer Venus orbiter have yielded estimates of the density of the upper atmosphere of Venus at altitudes in the range from 150 to 200 kilometers. At the lower limit of this range, the density on the dayside of the terminator exhibits a temporal variation of amplitude near 4 x 10(-14) gram per cubic centimeter aboult a mean of approximately 1.4 x 10(-13) gram per cubic centimeter. The variation appears oscillatory, with a 4- to 5-day period, but barely one cycle was observed. The density on the nightside of the terminator, sampled inthe same 150-kilometer altitude range, fluctuates about a smaller mean of approximately 4 x 10(-14) gram per cubic centimeter. The density between the altitudes of 150 and 200 kilometers, sampled only on the dayside of the terminator, imply a scale height of between 15 and 20 kilometers. The interpretation of this estimate is uncertain, however, in view of the measurements at the different altitudes having been made at different times and, hence, at different values of solar phase.

2.
Science ; 193(4255): 803, 1976 Aug 27.
Article in English | MEDLINE | ID: mdl-17747784

ABSTRACT

Radio tracking data from the Viking lander have been used to determine the lander position and the orientation of the spin axis of Mars. The areocentric coordinates of the lander are 22.27 degrees N, 48.00 degrees W, and 3389.5 kilometers from the center of mass; the spin axis orientation, referred to Earth's mean equator and equinox of 1950.0, is 317.35 degrees right ascension and 52.71 degrees declination.

3.
Science ; 175(4019): 317-20, 1972 Jan 21.
Article in English | MEDLINE | ID: mdl-17814540

ABSTRACT

Analysis of the Mariner 9 radio-tracking data shows that the Martian gravity field is rougher than that of Earth or the moon, and that the accepted direction of Mars's rotation axis is in error by about 0.5 degrees . The new value for the pole direction for the epoch 1971.9, referred to the mean equatorial system of 1950.0, is right ascension alpha= 317.3 degrees +/- 0.3 degrees , declination delta = 52.6 degrees +/- 0.2 degrees . The values found for the coefficients of the low-order harmonics of Mars's gravity field are as follows: J(2)=(1.96+/-0.01)x10(-3), referred to an equatorial radius of 3394 kilometers; C(22) = -(5 +/- 1) x 10(-5); and S(22) = (3 +/- 1) x 10(-5). The value for J(2) is in excellent agreement with the result from, Wilkins' analysis of the observations of Phobos. The other two coefficients imply a value of (2.5 +/- 0.5) x 10(-4) for the fractional difference in the principal equatorial moments of inertia; the axis of the minimum moment passes near 105 degrees W.

4.
Science ; 183(4131): 1297-301, 1974 Mar 29.
Article in English | MEDLINE | ID: mdl-17791371

ABSTRACT

Analysis of the Doppler tracking data near encounter yields a value for the ratio of the mass of the sun to that of Venus of 408,523.9 +/- 1.2, which is in good agreement with prior determinations based on data from Mariner 2 and Mariner 5. Preliminary analysis indicates that the magnitudes of the fractional differences in the principal moments of inertia of Venus are no larger than 10(-4), given that the effects of gravity-field harmonics higher than the second are negligible. Additional analysis is needed to determine the influence of the higher order harmonics on this bound. Four distinct temperature inversions exist at altitudes of 56, 58, 61, and 63 kilometers. The X-band signal was much more rapidly attenuated than the S-band signal and disappeared completely at 52-kilometer altitude. The nightside ionosphere consists of two layers having a peak density of 10(4) electrons per cubic centimeter at altitudes of 140 and 120 kilometers. The dayside ionosphere has a peak density of 3 X 10(5) electrons per cubic centimeter at an altitude of 145 kilometers. The electron number density observed at higher altitudes was ten times less than that observed by Mariner 5, and no strong evidence for a well-defined plasmapause was found.

5.
Science ; 185(4146): 179-80, 1974 Jul 12.
Article in English | MEDLINE | ID: mdl-17810512

ABSTRACT

Analysis of the radio-tracking data from Mariner 10 yields 6,023,600 +/- 600 for the ratio of the mass of the sun to that of Mercury, in very good agreement with values determined earlier from radar data alone. Occultation measurements yielded values for the radius of Mercury of 2440 +/- 2 and 2438 +/- 2 kilometers at laditudes of 2 degrees N and 68 degrees N, respectively, again in close agreement with the average equatorial radius of 2439 +/- 1 kilometers determined from radar data. The mean density of 5.44 grams per cubic centimeter deduced for Mercury from Mariner 10 data thus virtually coincides with the prior determination. No evidence of either an ionosphere or an atmosphere was found, with the data yielding upper bounds on the electron density of about 1500 and 4000 electrons per cubic centimeter on the dayside and nightside, respectively, and an inferred upper bound on the surface pressure of 10(-8) millibar.

SELECTION OF CITATIONS
SEARCH DETAIL