Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
J Toxicol Environ Health A ; 87(12): 516-531, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38619152

ABSTRACT

The bark extract from Endopleura uchi has been widely used in traditional medicine to treat gynecological-related disorders, diabetes, and dyslipidemias albeit without scientific proof. In addition, E. uchi bark extract safety, especially regarding mutagenic activities, is not known. The aim of this study was to determine the chemical composition, antitumor, and toxicological parameters attributed to an E. uchi bark aqueous extract. The phytochemical constitution was assessed by colorimetric and chromatographic analyzes. The antiproliferative effect was determined using sulforhodamine B (SRB) assay using 4 cancer cell lines. Cytotoxic and genotoxic activities were assessed utilizing MTT and comet assays, respectively, while mutagenicity was determined through micronucleus and Salmonella/microsome assays. The chromatographic analysis detected predominantly the presence of gallic acid and isoquercitrin. The antiproliferative effect was more pronounced in human colon adenocarcinoma (HT-29) and human breast cancer (MCF-7) cell lines. In the MTT assay, the extract presented an IC50 = 39.1 µg/ml and exhibited genotoxic (comet assay) and mutagenic (micronucleus test) activities at 20 and 40 µg/ml in mouse fibroblast cell line (L929) and mutagenicity in the TA102 and TA97a strains in the absence of S9 mix. Data demonstrated that E. uchi bark possesses bioactive compounds which exert cytotoxic and genotoxic effects that might be associated with its antitumor potential. Therefore, E. uchi bark aqueous extract consumption needs to be approached with caution in therapeutic applications.


Subject(s)
Adenocarcinoma , Antineoplastic Agents , Colonic Neoplasms , Humans , Mice , Animals , Plant Extracts/chemistry , Plant Bark/chemistry , DNA Damage , Water , Mutagens , MCF-7 Cells
2.
Neurochem Res ; 46(5): 1129-1140, 2021 May.
Article in English | MEDLINE | ID: mdl-33547616

ABSTRACT

Neuroinflammation is an event that occurs in several pathologies of brain. Rubus sp. (blackberry) is a powerful antioxidant fruit, and its extract has neuroprotective activity. The aim of this study was to investigate the blackberry extract properties on lipopolysaccharide (LPS)-induced neuroinflammation, in relation to oxidative parameters and acetylcholinesterase activity in the brain structures of mice. We also investigated interleukin-10 levels in serum. Mice were submitted to Rubus sp. extract treatment once daily for 14 days. On the fifteenth day, LPS was injected in a single dose. LPS induced oxidative brain damage and the blackberry extract demonstrated preventive effects in LPS-challenged mice. LPS administration increased reactive oxygen species levels in the cerebral cortex and striatum, as well as lipid peroxidation in the cerebral cortex. However, the blackberry extract prevented all these parameters. Furthermore, LPS decreased thiol content in the striatum and hippocampus, while a neuroprotective effect of blackberry extract treatment was observed in relation to this parameter. The blackberry extract also prevented a decrease in catalase activity in all the brain structures and of superoxide dismutase in the striatum. An increase in acetylcholinesterase activity was detected in the cerebral cortex in the LPS group, but this activity was decreased in the Rubus sp. extract group. Serum IL-10 levels were reduced by LPS, and the extract was not able to prevent this change. Finally, we observed an antioxidant effect of blackberry extract in LPS-challenged mice suggesting that this anthocyanin-rich extract could be considered as a potential nutritional therapeutic agent for preventive damage associated with neuroinflammation.


Subject(s)
Antioxidants/therapeutic use , Inflammation/drug therapy , Neuroprotective Agents/therapeutic use , Oxidative Stress/drug effects , Plant Extracts/therapeutic use , Acetylcholinesterase/metabolism , Animals , Brain/drug effects , Brain/metabolism , Fruit/chemistry , GPI-Linked Proteins/metabolism , Inflammation/metabolism , Interleukin-10/metabolism , Lipopolysaccharides/pharmacology , Male , Mice , Rubus/chemistry
3.
Mediators Inflamm ; 2021: 7688153, 2021.
Article in English | MEDLINE | ID: mdl-34759771

ABSTRACT

Ilex paraguariensis A. St. Hil. (Aquifoliaceae), popularly known as "yerba mate," has great economic and social significance for the population of Southern Latin America. This study was conducted (1) to investigate the phytochemical composition of four different standardized extracts, (2) to investigate its free radical scavenging properties, and (3) to investigate the anti-inflammatory action of I. paraguariensis and its major chemical markers. The chemical profile was achieved by Folin-Ciocalteu, by LC/DAD, and by LC/MS assays, while the antioxidant and anti-inflammatory properties were investigated, respectively, by DPPH assay and by inhibition of nitric oxide (Griess reaction) and TNF-α (ELISA). Our results demonstrated that the IA (aqueous infusion extract) showed higher amounts of total phenolic contents (266.62 ± 10.85 mg CAE·g-1 DE), the highest amounts of all six chemical markers (theobromine, 5-O-caffeoylquinic acid, 4-O-caffeoylquinic acid, 3-O-caffeoylquinic acid, caffeine, and rutin), and stronger antioxidant activity (EC50 = 54.4 ± 5.14 µg · mL-1). The IA extract also showed the lowest inhibition of NOx secretion (50.10 ± 8.97%) as well as inhibition of TNF-α (83.33 ± 4.01%). Regarding the chemical markers, all compounds showed strong inhibition of NOx secretion, especially theobromine, which was 200x more potent than dexamethasone. Furthermore, TNF-α secretion was also significantly decreased by THEO at 0.033 µM (22.15 ± 6.49%), NCA at 1.97 µM (27.46 ± 3.98%), CCA at 0.35 µM (39.76 ± 5.73%), CGA at 0.56 µM (23.58 ± 5.79%), CAF at 0.52 µM (26.45 ± 5.34%), and RUT at 0.16 µM (40.18 ± 3.70%). Our results suggest that I. paraguariensis and its major chemical markers have strong free radical scavenging properties as well as showed important anti-inflammatory activity and that these compounds in a plant extract may work based on several different mechanisms synergistically, resulting in moderating the immune system.


Subject(s)
Ilex paraguariensis , Anti-Inflammatory Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Free Radicals , Ilex paraguariensis/chemistry , Phenols , Plant Extracts/chemistry , Plant Extracts/pharmacology
4.
Chem Res Toxicol ; 33(9): 2408-2419, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32786546

ABSTRACT

The use of medicinal plants concomitantly with conventional drugs can result in herb-drug interactions that cause fluctuations in drug bioavailability and consequent therapeutic failure and/or toxic effects. The CYP superfamily of enzymes plays an important role in herb-drug interactions. Among CYP enzymes, CYP3A4 and CYP2D6 are the most relevant since they metabolize about 50% and 30% of the drugs on the market, respectively. Thus, the main goal of this study was to evaluate the occurrence of in vitro interactions between medicinal plant extracts and drug substrates of CYP3A4 and CYP2D6 enzymes. Standardized extracts from nine medicinal plants (Bauhinia forficata, Cecropia glaziovii, Cimicifuga racemosa, Cynara scolymus, Echinacea sp., Ginkgo biloba, Glycine max, Ilex paraguariensis, and Matricaria recutita) were evaluated for their potential interactions mediated by CYP3A4 and CYP2D6 enzymes. Among the extracts tested, C. glaziovii (red embaúba) showed the most relevant inhibitory effects of CYP3A4 and CYP2D6 activity, while I. paraguariensis (yerba mate) inhibited CYP3A4 activity. Both extracts were chemically analyzed by UPLC-MS/MS, and these inhibitory effects could lead to clinically potential and relevant interactions with the drug substrates of these isoenzymes.


Subject(s)
Cytochrome P-450 CYP2D6/metabolism , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Plant Extracts/pharmacology , Plants, Medicinal/metabolism , Chromatography, High Pressure Liquid , Cytochrome P-450 Enzyme Inhibitors/chemistry , Cytochrome P-450 Enzyme Inhibitors/metabolism , Humans , Plant Extracts/chemistry , Plant Extracts/metabolism , Plants, Medicinal/chemistry , Recombinant Proteins/metabolism , Tandem Mass Spectrometry
5.
J Toxicol Environ Health A ; 83(19-20): 659-671, 2020 10 17.
Article in English | MEDLINE | ID: mdl-32865139

ABSTRACT

CECROPIA PACHYSTACHYA: leaves are popularly used to treat asthma and diabetes. Despite the widespread consumption of this plant, there are few scientific studies regarding its toxicological potential. In order to conduct a thorough study concerning the potential adverse effects, the aim of this study was to assess acute and subacute toxicity tests of crude aqueous extract from C. pachystachya leaves (CAE-Cp) using in vivomodel, as well as in vitro cytotoxicity, genotoxicity and antioxidant activity. In addition, genotoxicity, and cytotoxicity of chlorogenic acid (CGA) and cytotoxicity of isoorientin (ISOO) were also evaluated. The antioxidant activity was verified by DPPH, cytotoxicity using sulforhodamine B (SRB) assay and genotoxicity by comet assay on V79 cells. The phytochemical analysis of CAE-Cp detected flavonoids and tannins, CGA and ISOO as the major compounds utilizing HPLC. The total flavonoid content (6.52 mg/g EQ) and antioxidant activity (EC50 = 62.15 µg/ml) of CAE-Cp were determined. In vitro evaluations with CAE-Cp showed genotoxic effects at 0.31 to 2.5 mg/ml and an expressive cytotoxicity on HT-29 (IC50 = 4.43 µg/ml) cells. CGA was genotoxic against V79 cells at 0.07 mg/ml and cytotoxic against to HT-29 (IC50 = 71.70 µg/ml), OVCAR-3 (IC50 = 80.07 µg/ml), MCF-7 (IC50 = 45.58 µg/ml) and, NCI-H460 (IC50 = 71.89 µg/ml) cancer cell lines. Wistar rats treated with a single dose (2,000 mg/kg) CAE-Cp decreased hemoglobin levels after 14 days, although no significant toxicity was observed in animals after 28 days. In view of the in vitro cytotoxicity and genotoxicity detected, further studies are necessary to establish the safe use of CAE-Cp.


Subject(s)
Antioxidants/toxicity , Cecropia Plant/chemistry , Chlorogenic Acid/toxicity , Cytotoxins/toxicity , Luteolin/toxicity , Mutagens/toxicity , Plant Extracts/toxicity , Animals , Male , Plant Extracts/chemistry , Plant Leaves/chemistry , Rats , Rats, Wistar , Toxicity Tests, Acute , Toxicity Tests, Subacute
6.
J Toxicol Environ Health A ; 82(17): 956-968, 2019.
Article in English | MEDLINE | ID: mdl-31570063

ABSTRACT

Myrciaria dubia is a native plant from the Amazon region which produces red-purplish fruit rich in antioxidant compounds such as ascorbic acid, carotenoids, and phenolic. M. dubia fruit is used to prepare juices considered to possess high nutritional content providing health benefits. The aim of this study was to examine the ability of M. dubia juice to protect DNA against genomic instability induced by sub-acute ethanol consumption attributed to oxidative stress. Mice were treated for 28 days with juice at 25% and 50% diluted in distilled water or with the diluted combination juice plus ethanol (5 g/kg). The genotoxic/antigenotoxic and mutagenic/antimutagenic effects were assessed using comet assay in blood, liver, and kidney and micronucleus (MN) test with bone marrow. In addition, the mutagenicity was also evaluated using Salmonella/microsome assay. Phytochemical compounds were determined using HPLC/PDA/MS/MS. The juice did not induce genotoxic effects in blood, kidney, and liver cells at both doses. In combination with ethanol, the juice reduced the alcohol-mediated DNA damage in all tissues analyzed. Further, the juice did not produce mutagenic effects and decreased mutagenicity induced by ethanol in the bone marrow. The anthocyanins were major compounds detected by HPLC/PDA/MS/MS, which modulated genotoxic and mutagenic effects initiated by ethanol and at least in part appeared responsible for the observed antigenotoxic and antimutagenic effects of M. dubia juice.


Subject(s)
Antimutagenic Agents/chemistry , DNA Damage/drug effects , Fruit/chemistry , Mutagens/adverse effects , Myrtaceae/chemistry , Plant Extracts/adverse effects , Plant Extracts/chemistry , Animals , Brazil , Male , Mice
7.
Metab Brain Dis ; 34(2): 605-619, 2019 04.
Article in English | MEDLINE | ID: mdl-30535659

ABSTRACT

Bipolar disorder is a psychiatric disease characterized by recurrent episodes of mania and depression. Blueberries contain bioactive compounds with important pharmacological effects such as neuroprotective and antioxidant actions. The aim of this study was to investigate the effects of blueberry extract and/or lithium on oxidative stress, and acetylcholinesterase (AChE) and Na+, K+-ATPase activity in an experimental ketamine-induced model of mania. Male Wistar rats were pretreated with vehicle, blueberry extract (200 mg/kg), and/or lithium (45 mg/kg or 22.5 mg/kg twice daily) for 14 days. Between the 8th and 14th days, the animals also received an injection of ketamine (25 mg/kg) or vehicle. On the 15th day the animals received a single injection of ketamine; after 30 min, the locomotor activity was evaluated in an open field test. Ketamine administration induced an increase in locomotor activity. In the cerebral cortex, hippocampus and striatum, ketamine also induced an increase in reactive oxygen species, lipid peroxidation and nitrite levels, as well a decrease in antioxidant enzyme activity. Pretreatment with blueberry extract or lithium was able to prevent this change. Ketamine increased the AChE and Na+, K+-ATPase activity in brain structures, while the blueberry extract partially prevented these alterations. In addition, our results showed that the neuroprotective effect was not potentiated when lithium and blueberry extract treatment were given together. In conclusion, our findings suggest that blueberry extract has a neuroprotective effect against an experimental model of mania. However, more studies should be performed to evaluate its effects as an adjuvant therapy.


Subject(s)
Antimanic Agents/pharmacology , Bipolar Disorder/drug therapy , Blueberry Plants , Lithium/pharmacology , Animals , Antioxidants/pharmacology , Behavior, Animal/drug effects , Lipid Peroxidation/drug effects , Locomotion/drug effects , Male , Models, Theoretical , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Rats, Wistar , Thiobarbituric Acid Reactive Substances/pharmacology
8.
Metab Brain Dis ; 33(5): 1551-1562, 2018 10.
Article in English | MEDLINE | ID: mdl-29882020

ABSTRACT

In this work, we evaluated the effects of Psidium cattleianum (Red Type) (PcRT) fruit extract on metabolic, behavioral, and neurochemical parameters in rats fed with a highly palatable diet (HPD) consisted of sucrose (65% carbohydrates being 34% from condensed milk, 8% from sucrose and 23% from starch, 25% protein and 10% fat). Animals were divided into 4 groups: standard chow, standard chow + PcRT extract (200 mg/Kg/day by gavage), HPD, HPD + extract. The animals were treated for 150 days. Concerning chemical profiling, LC/PDA/MS/MS analysis revealed cyanidin-3-O-glucoside as the only anthocyanin in the PcRT extract. Our results showed that the animals exposed to HPD presented glucose intolerance, increased weight gain and visceral fat, as well as higher serum levels of glucose, triacylglycerol, total cholesterol, LDL-cholesterol and interleukin-6. These alterations were prevented by PcRT. In addition, HPD caused an increase in immobility time in a forced swimming test and the fruit extract prevented this alteration, indicating an antidepressant-like effect. PcRT treatment also prevented increased acetylcholinesterase activity in the prefrontal cortex caused by HPD consumption. Moreover, PcRT extract was able to restore Ca2+-ATPase activity in the prefrontal cortex, hippocampus, and striatum, as well as Na+,K+-ATPase activity in the prefrontal cortex and hippocampus. PcRT treatment decreased thiobarbituric acid-reactive substances, nitrite, and reactive oxygen species levels and prevented the reduction of superoxide dismutase activity in all cerebral structures of the HPD group. Additionally, HPD decreased catalase in the hippocampus and striatum. However, the extract prevented this change in the hippocampus. Our results showed that this berry extract has antihyperglycemic and antihyperlipidemic effects, and neuroprotective properties, proving to be a potential therapeutic agent for individuals with metabolic syndrome.


Subject(s)
Anthocyanins/pharmacology , Antioxidants/pharmacology , Glucosides/pharmacology , Hypoglycemic Agents/pharmacology , Hypolipidemic Agents/pharmacology , Metabolic Syndrome/drug therapy , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Psidium/chemistry , Animals , Anthocyanins/chemistry , Antidepressive Agents/chemistry , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Antioxidants/chemistry , Behavior, Animal/drug effects , Brazil , Catalase/metabolism , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Diet, Carbohydrate Loading/adverse effects , Disease Models, Animal , Glucose Intolerance/chemically induced , Glucose Intolerance/drug therapy , Glucose Intolerance/metabolism , Glucosides/chemistry , Hippocampus/drug effects , Hippocampus/metabolism , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/therapeutic use , Hypolipidemic Agents/chemistry , Hypolipidemic Agents/therapeutic use , Metabolic Syndrome/chemically induced , Metabolic Syndrome/metabolism , Neuroprotective Agents/chemistry , Neuroprotective Agents/therapeutic use , Oxidative Stress/drug effects , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Rats , Rats, Wistar , Tandem Mass Spectrometry , Weight Gain/drug effects
9.
Pharm Dev Technol ; 23(10): 998-1006, 2018 Dec.
Article in English | MEDLINE | ID: mdl-27707078

ABSTRACT

Studies employing Cecropia glaziovii Snethl leaves have shown great potential in regard to their antiviral activity, mainly related to the phenolic compounds present in this species. The main goal of this work is to combine the therapeutic potential of this species with new technological strategies targeted at the development of an herbal nanoparticulate system for the preparation of a phytotherapeutic formulation. Poly (lactic-co-glycolic acid) nanoparticles containing the enriched flavonoid fraction of Cecropia glaziovii Snethl were developed through a study for the choice of preparation technique, amount of drug and surfactants used. These nanostructured systems were characterized by particle size, polydispersity, zeta potential, encapsulation efficiency and drug-loading capacity. A stability study of the formulations was conducted at room temperature over a period of 60 days. The optimal formulation that best fit the characteristics of the encapsulated material was determined. Sorbitan monooleate and the poloxamer 188 resulted in better colloidal stability, added to the organic and aqueous phases, respectively. These findings suggest that in the field of nanoparticles stability, it is important to evaluate the composition of the nanoparticulate system. This work highlights the importance of the optimization process, searching for a good formulation with suitable structural stabilization.


Subject(s)
Cecropia Plant/chemistry , Drug Carriers/chemistry , Flavonoids/administration & dosage , Nanoparticles/chemistry , Plant Extracts/administration & dosage , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Drug Liberation , Drug Stability , Flavonoids/chemistry , Flavonoids/isolation & purification , Hexoses/chemistry , Particle Size , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Poloxamer/chemistry , Solubility , Surface-Active Agents/chemistry
10.
Biomed Chromatogr ; 31(11)2017 Nov.
Article in English | MEDLINE | ID: mdl-28370241

ABSTRACT

There is increasing interest in natural antioxidants that are candidates for the prevention of brain damage occurring in major depressive disorders. Cecropia pachystachya is a tropical tree species of Central and South America and a rich source of polyphenols, particularly flavonoids. The aim of this study was to characterize the flavonoid profile of an enriched flavonoid fraction of C. pachystachya (EFF-Cp) and evaluate the antidepressant-like effects of its acute administration in behavior, cytokine levels, oxidative stress and energy metabolism parameters. The EFF-Cp chemical characterization was performed by HPLC/DAD and LC/QTOF. The antidepressant-like effects were performed by the forced swimming test, splash test and open field test. EFF-Cp revealed 15 flavonoids, including seven new glycosyl flavonoids for C. pachystachya. Quantitatively, EFF-Cp showed isoorientin (43.46 mg/g), orientin (23.42 mg/g) and isovitexin (17.45 mg/g) as major C-glycosyl flavonoids. In addition, EFF-Cp at doses 50 and 100 mg/kg reduced the immobility time in the forced swimming test, without changing the locomotor activity and grooming time. In addition, EFF-Cp was able to prevent the oxidative damage in some brain areas. In conclusion, the results of this study suggest that EFF-Cp exerts antidepressant-like effects with its antioxidant properties.


Subject(s)
Antidepressive Agents/analysis , Cecropia Plant/chemistry , Chromatography, Liquid/methods , Flavonoids/analysis , Oxidative Stress/drug effects , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Antidepressive Agents/chemistry , Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Brain Chemistry/drug effects , Cytokines/analysis , Drug Stability , Flavonoids/chemistry , Flavonoids/pharmacology , Male , Plant Extracts/chemistry , Plant Extracts/pharmacology , Rats , Rats, Wistar
11.
Ecotoxicol Environ Saf ; 129: 16-24, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26970882

ABSTRACT

Tropospheric ozone (O3) background concentrations have increased since pre-industrial times, reaching phytotoxic concentrations in many regions globally. However, the effect of high O3 concentrations on quality of fruit and vegetables remains unknown. Here, we evaluated whether O3 pollution alters the quality of Capsicum baccatum peppers by changing the secondary compound profiles and biological activity of the fruit. C. baccatum pepper plants were exposed to ozone for 62 days in an open-top chamber at a mean O3 concentration of 171.6µg/m(3). Capsaicin levels decreased by 50% in the pericarp, but remained unchanged in the seeds. In contrast, the total carotenoid content increased by 52.8% in the pericarp. The content of total phenolic compounds increased by 17% in the pericarp. The total antioxidant potential decreased by 87% in seeds of O3-treated plants. The seeds contributed more than the pericarp to the total radical-trapping antioxidant potential and total antioxidant reactivity. O3 treatment impaired the ferric-reducing antioxidant power of the seeds and reduced NO(•)-scavenging activity in the pericarp. However, O3 treatment increased ferrous ion-chelating activity and hydroxyl radical-scavenging activity in the pericarp. Our results confirm that O3 alters the secondary metabolite profile of C. baccatum pepper fruits and, consequently, their biological activity profile.


Subject(s)
Air Pollutants/toxicity , Capsicum/drug effects , Oxidants/toxicity , Ozone/toxicity , Anti-Inflammatory Agents/metabolism , Antioxidants/metabolism , Capsaicin/metabolism , Capsicum/metabolism , Carotenoids/metabolism , Fruit/drug effects , Fruit/metabolism , Phenols/metabolism , Seeds/drug effects , Seeds/metabolism
12.
Neurochem Res ; 40(7): 1421-30, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25998886

ABSTRACT

Cecropia species are widely used in traditional medicine by its anti-diabetic, anti-hypertensive and anti-inflammatory properties. In the present study, we investigated the neuroprotective and antioxidant effects of the crude aqueous extract from Cecropia pachystachya leaves in a rat model of mania induced by ketamine. The results indicated that ketamine treatment (25 mg/kg i.p., for 8 days) induced hyperlocomotion in the open-field test and oxidative damage in prefrontal cortex and hippocampus, evaluated by increased lipid peroxidation, carbonyl protein formation and decreased total thiol content. Moreover, ketamine treatment reduced the activity of the antioxidant enzymes superoxide dismutase and catalase in hippocampus. Pretreatment of rats with C. pachystachya aqueous extract (200 and 400 mg/kg p.o., for 14 days) or with lithium chloride (45 mg/kg p.o., for 14 days, used as a positive control) prevented both behavioral and pro-oxidant effects of ketamine. These findings suggest that C. pachystachya might be a useful tool for preventive intervention in bipolar disorder, reducing the episode relapse and the oxidative damage associated with the manic phase of this disorder .


Subject(s)
Bipolar Disorder/prevention & control , Ketamine/toxicity , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Urticaceae/chemistry , Animals , Behavior, Animal , Chromatography, High Pressure Liquid , Female , Hippocampus/drug effects , Hippocampus/metabolism , Locomotion/drug effects , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Rats , Rats, Wistar
13.
Ecotoxicol Environ Saf ; 100: 114-21, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24238720

ABSTRACT

Ozone (O3) is one of the most harmful air pollutants to crops, contributing to high losses on crop yield. Tropospheric O3 background concentrations have increased since pre-industrial times reaching phytotoxic concentrations in many world regions. Capsicum peppers are the second most traded spice in the world, but few studies concerning the O3 effects in this genus are known. Thereby, the aim of this work was to evaluate the effects of chronic exposure to elevated O3 concentrations in red pepper plant Capsicum baccatum L. var. pendulum with especial considerations on the leaf redox state and fruit yield. Fifteen C. baccatum plants were exposed to O3 in open-top chambers during fruit ripening (62 days) at a mean concentration of 171.6 µg/m(3) from 10:00 am to 4:00 pm. We found that O3 treated plants significantly decreased the amount and the total weight of fruits, which were probably a consequence of the changes on leaf oxidative status induced by ozone exposure. Ozone exposed plants increased the reactive oxygen species (ROS) levels on the leaves, which may be associated with the observed decrease on the activity of enzymatic antioxidant defense system, as well with lower levels of polyphenol and reduced thiol groups. Enhanced ROS production and the direct O3 reaction lead to biomacromolecules damages as seen in the diminished chlorophyll content and in the elevated lipid peroxidation and protein carbonylation levels. Through a correlation analysis it was possible to observe that polyphenols content was more important to protect pepper plants against oxidative damages to lipids than to proteins.


Subject(s)
Air Pollutants/toxicity , Capsicum/drug effects , Ozone/toxicity , Antioxidants/metabolism , Capsicum/metabolism , Chlorophyll/metabolism , Fruit/physiology , Oxidation-Reduction , Plant Leaves/drug effects
14.
Drug Deliv Transl Res ; 14(5): 1239-1252, 2024 May.
Article in English | MEDLINE | ID: mdl-38227165

ABSTRACT

Sepsis represents a complex clinical syndrome that results from a harmful host response to infection. The infections most associated with sepsis are pneumonia, intra-abdominal infection, and urinary tract infection. Tea tree oil (TTO) has shown high antibacterial activity; however, it exhibits low aqueous solubility and high volatility, which have motivated its nanoencapsulation. In this study, the performance of nanoemulsions (NE) and nanocapsules (NC) loaded with TTO was compared. These systems were prepared by spontaneous emulsification and nanoprecipitation methods, respectively. Poly-ε-caprolactone or Eudragit® RS100 were tested as polymers for NCs whereas Tween® 80 or Pluronic® F68 as surfactants in NE preparation. Pluronic® F68 and Eudragit® RS100 resulted in more homogeneous and stable nanoparticles. In accelerated stability studies at 4 and 25 °C, both colloidal suspensions (NC and NE) were kinetically stable. NCs showed to be more stable to photodegradation and less cytotoxic than NEs. After sepsis induction by the cecal ligation and puncture (CLP) model, both NE and NC reduced neutrophil infiltration into peritoneal lavage (PL) and kidneys. Moreover, the systems increased group thiols in the kidney and lung tissue and reduced bacterial growth in PL. Taken together, both systems showed to be effective against injury induced by sepsis; however, NCs should be prioritized due to advantages in terms of cytotoxicity and physicochemical stability.


Subject(s)
Melaleuca , Nanocapsules , Polymethacrylic Acids , Sepsis , Tea Tree Oil , Tea Tree Oil/pharmacology , Poloxamer , Sepsis/drug therapy
15.
Mar Drugs ; 11(11): 4176-92, 2013 Oct 29.
Article in English | MEDLINE | ID: mdl-24172213

ABSTRACT

The n-butanol fraction (BF) obtained from the crude extract of the marine sponge Petromica citrina, the halistanol-enriched fraction (TSH fraction), and the isolated compounds halistanol sulfate (1) and halistanol sulfate C (2), were evaluated for their inhibitory effects on the replication of the Herpes Simplex Virus type 1 (HSV-1, KOS strain) by the viral plaque number reduction assay. The TSH fraction was the most effective against HSV-1 replication (SI = 15.33), whereas compounds 1 (SI = 2.46) and 2 (SI = 1.95) were less active. The most active fraction and these compounds were also assayed to determine the viral multiplication step(s) upon which they act as well as their potential synergistic effects. The anti-HSV-1 activity detected was mediated by the inhibition of virus attachment and by the penetration into Vero cells, the virucidal effect on virus particles, and by the impairment in levels of ICP27 and gD proteins of HSV-1. In summary, these results suggest that the anti-HSV-1 activity of TSH fraction detected is possibly related to the synergic effects of compounds 1 and 2.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Herpesvirus 1, Human/drug effects , Porifera/chemistry , Sterols/chemistry , Sterols/pharmacology , 1-Butanol/chemistry , Animals , Brazil , Cell Line , Chlorocebus aethiops , Vero Cells , Viral Plaque Assay/methods
16.
Molecules ; 18(5): 5761-78, 2013 May 16.
Article in English | MEDLINE | ID: mdl-23681060

ABSTRACT

This manuscript describes the evaluation of anti-infective potential in vitro of organic extracts from nine sponges, one ascidian, two octocorals, one bryozoan, and 27 seaweed species collected along the Brazilian coast. Antimicrobial activity was tested against Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 29212), Pseudomonas aeruginosa (ATCC 27853), Escherichia coli (ATCC 25922) and Candida albicans (ATCC 10231) by the disk diffusion method. Antiprotozoal activity was evaluated against Leishmania braziliensis (MHOM/BR/96/LSC96-H3) promastigotes and Trypanosoma cruzi (MHOM/BR/00/Y) epimastigotes by MTT assay. Activity against intracellular amastigotes of T. cruzi and L. brasiliensis in murine macrophages was also evaluated. Antiviral activity was tested against Herpes Simplex Virus type 1 (HSV-1, KOS strain) by the plaque number reduction assay (IC50). Cytotoxicity on VERO cells was evaluated by the MTT assay (CC50). The results were expressed as SI = CC50/IC50. The most promising antimicrobial results were obtained against S. aureus and C. albicans with Dragmacidon reticulatum. Among the seaweeds, only Osmundaria obtusiloba showed moderate activity against P. aeruginosa. Concerning antiprotozoal activity, Bugula neritina, Carijoa riseii, Dragmaxia anomala and Haliclona (Halichoclona) sp. showed the most interesting results, mainly against extracellular promastigote forms of L. braziliensis (66, 35.9, 97.2, and 43.6% inhibition, respectively). Moreover, six species of seaweeds Anadyomene saldanhae, Caulerpa cupressoides, Canistrocarpus cervicornis, Dictyota sp., Ochtodes secundiramea, and Padina sp. showed promising results against L. braziliensis (87.9, 51.7, 85.9, 93.3, 99.7, and 80.9% inhibition, respectively), and only Dictyota sp. was effective against T. cruzi (60.4% inhibition). Finally, the antiherpes activity was also evaluated, with Haliclona (Halichoclona) sp. and Petromica citrina showing the best results (SI = 11.9 and SI > 5, respectively). All the active extracts deserve special attention in further studies to chemically characterize the bioactive compounds, and to perform more refined biological assays.


Subject(s)
Anthozoa/chemistry , Anti-Bacterial Agents , Antiprotozoal Agents , Cytotoxins , Porifera/chemistry , Seaweed/chemistry , Urochordata/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/isolation & purification , Antiprotozoal Agents/pharmacology , Bacteria/growth & development , Brazil , Chlorocebus aethiops , Cytotoxins/chemistry , Cytotoxins/isolation & purification , Cytotoxins/pharmacology , Leishmania braziliensis/growth & development , Trypanosoma cruzi/growth & development , Vero Cells
17.
Phytochem Anal ; 23(3): 232-9, 2012.
Article in English | MEDLINE | ID: mdl-21858882

ABSTRACT

INTRODUCTION: Leaves and fruits of Passiflora species are widely used around the world in popular medicine, mainly as sedatives and tranquilisers. C-glycosyl flavonoids are the main components of these species. OBJECTIVE: To investigate the constituent patterns and to develop a chromatographic method for the characterisation of the C-glycosyl flavonoids profile of the extracts of the leaves and the pericarp of South American Passiflora species. METHODOLOGY: The chemical composition of extracts from the leaves and the fruits' pericarp of Passiflora edulis var. flavicarpa, P. edulis var. edulis, Passiflora alata, Passiflora tripartita var. mollissima, Passiflora quadrangularis, Passiflora manicata and Passiflora ligularis was evaluated for the presence of C-glycosyl flavonoids. Two separate HPLC methods were developed suitable for a diode array detector (DAD) and a MS detector. Separation by HPLC-DAD was achieved on a Luna C-18 column, using solvent A (tetrahydrofuran-isopropanol-acetonitrile) and solvent B (H3PO4 0.5%) in an isocratic elution mode. In the HPLC-MS, the components were separated on a Luna RP-18A column by a gradient elution (water-acetonitrile-formic acid). RESULTS: The presence of C-glycosyl flavonoids was identified in leaves and pericarp of P. edulis var. flavicarpa, P. alata, P. edulis var. edulis and P. tripartita var. molissima, but only in leaf extracts of P. quadrangularis and P. manicata and not at all in P. ligularis. The different species and varieties showed different major constituents. The C-glycosyl flavonoids identified more frequently were orientin, isoorientin, vitexin and isovitexin. CONCLUSION: The methods established are simple and can be used as a tool for the characterisation and quality control of pharmaceutical preparations containing these Passiflora extracts.


Subject(s)
Chromatography, High Pressure Liquid/methods , Flavonoids/analysis , Glycosides/analysis , Passiflora/chemistry , Plant Leaves/chemistry , Flavonoids/chemistry , Fruit/chemistry , Geography , Glycosides/chemistry , Mass Spectrometry/methods , Molecular Structure , Passiflora/classification , Reproducibility of Results , Solvents/chemistry , South America , Species Specificity
18.
Pharm Biol ; 50(7): 911-8, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22480215

ABSTRACT

CONTEXT: Cecropia glaziovii Snethl. (Cecropiaceae), commonly known as "embaúba-vermelha", is widely distributed throughout Latin America and has been reported in Brazilian folk medicine to treat cough, asthma, high blood pressure and inflammation. OBJECTIVE: Investigate the hepatoprotective properties of crude hydroethanolic extract of C. glaziovii as well as its in vitro antioxidant and antiviral (HSV-1 acyclovir resistant strain) activities. MATERIALS AND METHODS: The hepatoprotective effect, the antioxidant properties and antiviral activity of crude hydroethanol extract (RCE40) from C. glaziovii leaves were evaluated by carbon-tetrachloride (CCl(4))-induced hepatotoxicity, by TBARS (thiobarbituric acid reactive species) and MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assays, respectively. RESULTS: The RCE40 extract (20 mg/kg) inhibited lipid peroxidation on liver in post injury treatment and decreased serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). In addition, in this protocol the RCE40 (20 mg/kg) enhanced the activity of hepatic enzymes (SOD/CAT) which are involved in combating reactive oxygen species (ROS), suggesting that it possesses the capacity to attenuate the CCl(4)-induced liver damage. Moreover the RCE40 (20 mg/kg) inhibited TBARS formation induced by several different inductors of oxidative stress showing significant antioxidant activity, including physiologically relevant concentration, as low as 2 µg/mL. Concerning antiviral activity, the RCE40 was effective against herpes simplex virus type 1 replication (29R acyclovir resistant strain) with EC(50) = 40 µg/mL and selective index (SI) = 50. DISCUSSION AND CONCLUSION: These results indicate that C. glaziovii could be a good source of antioxidant and anti-HSV-1 lead compounds.


Subject(s)
Acyclovir , Cecropia Plant , Chemical and Drug Induced Liver Injury/drug therapy , Drug Resistance, Viral/drug effects , Herpesvirus 1, Human/drug effects , Plant Extracts/therapeutic use , Acyclovir/pharmacology , Animals , Chemical and Drug Induced Liver Injury/metabolism , Chlorocebus aethiops , Drug Resistance, Viral/physiology , Herpesvirus 1, Human/physiology , Male , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Plant Leaves , Rats , Rats, Wistar , Vero Cells
19.
Basic Clin Pharmacol Toxicol ; 130(1): 20-27, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34605186

ABSTRACT

Plants of the Calea genus have been reported to contain lipophilic compounds, such as sesquiterpene lactones, with cytotoxic effect against different cancer cell lines. The aim of this manuscript was to investigate the chemical profile and cytotoxic activity of different fractions from Calea phylolepis leaves on different human cancer cell lines. The fractions were prepared using solvent extraction of increasing polarity, yielding hexane, ethyl acetate and methanolic fractions. All fractions were chemically analysed by thin layer chromatography (TLC), and their cytotoxic activity against HT-29 (colon adenocarcinoma), MCF-7 (breast cancer), U-251MG (malignant glioblastoma) and L929 (mouse fibroblast) cell lines was investigated. Among these, the hexane and ethyl acetate fractions showed higher cytotoxic effects, while the methanolic fraction did not show any cytotoxic effects. The major bioactive compound from the hexane fraction (12.15%) was isolated using chromatographic methods and was identified by nuclear magnetic resonance spectroscopy (NMR) and gas chromatography-mass spectrometry (GC-MS) analysis as 6-epi-ß-verbesinol coumarate. This compound showed activity against breast cancer cells (IC50 = 5.8 ± 1.0 µg/ml), similar to etoposide. Furthermore, 6-epi-ß-verbesinol coumarate showed low cytotoxicity to normal fibroblast cells, suggesting a high selectivity index (SI = 7.39) against breast cancer cells.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Asteraceae/chemistry , Breast Neoplasms/drug therapy , Plant Extracts/pharmacology , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/toxicity , Cell Line , Cell Line, Tumor , Female , Fibroblasts/drug effects , Gas Chromatography-Mass Spectrometry , HT29 Cells , Humans , Inhibitory Concentration 50 , MCF-7 Cells , Magnetic Resonance Spectroscopy , Mice , Neoplasms/drug therapy , Neoplasms/pathology , Plant Extracts/administration & dosage , Plant Extracts/toxicity , Plant Leaves
20.
J Ethnopharmacol ; 282: 114616, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34506937

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Bauhinia forficata Link, is a Brazilian native plant and popularly known as pata-de-vaca ("paw-of-cow"). The tea prepared with their leaves has been extensively used in the Brazilian traditional practices for the diabetes treatment. The aim of the present study was to investigate the effect of capsules containing granules of a standardized extract of B. forficata leaves as adjuvant treatment on the glycemic control of patients with type-2 diabetes melitus. MATERIALS AND METHODS: A double-blind, randomized clinical trial using capsules containing granules prepared by wet granulation of a standardized extract from B. forficata leaves as adjuvant treatment, was conducted. 92 patients aged 18-75 years from an outpatient clinic with type-2 diabetes were randomly assigned by a simple randomization scheme, in a 1:1 ratio to receive capsules of B. forficata or placebo for four months. The capsules used contain 300 mg of standardized extract from B. forficata leaves, yielding 2% of total flavonoid content per capsule. Primary outcome was glycated hemoglobin levels and fasting plasma glucose at 4 months. Possible harms were also determined. RESULTS: The findings showed that at 4 months, the mean fasting plasma glucose levels and glycated hemoglobin were both significantly lower in the B. forficata group than in the placebo group. CONCLUSION: The present study suggests that the adjunctive use of capsules containing standardized extract of B. forficata can add to regular oral anti-diabetics in the metabolic and inflammatory control of type-2 diabetes patients.


Subject(s)
Bauhinia/chemistry , Diabetes Mellitus, Type 2/drug therapy , Phytotherapy , Plant Extracts/therapeutic use , Plant Leaves/chemistry , Administration, Oral , Adolescent , Adult , Aged , Blood Glucose/drug effects , Brazil , Double-Blind Method , Female , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/therapeutic use , Male , Middle Aged , Plant Extracts/chemistry , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL