Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters

Publication year range
1.
PLoS Comput Biol ; 19(4): e1011038, 2023 04.
Article in English | MEDLINE | ID: mdl-37018378

ABSTRACT

Bacterial microcompartments (BMC) are complex macromolecular assemblies that participate in varied chemical processes in about one fourth of bacterial species. BMC-encapsulated enzymatic activities are segregated from other cell contents by means of semipermeable shells, justifying why BMC are viewed as prototype nano-reactors for biotechnological applications. Herein, we undertook a comparative study of bending propensities of BMC hexamers (BMC-H), the most abundant shell constituents. Published data show that some BMC-H, like ß-carboxysomal CcmK, tend to assemble flat whereas other BMC-H often build curved objects. Inspection of available crystal structures presenting BMC-H in tiled arrangements permitted us to identify two major assembly modes with a striking connection with experimental trends. All-atom molecular dynamics (MD) supported that BMC-H bending is triggered robustly only from the arrangement adopted in crystals by BMC-H that experimentally form curved objects, leading to very similar arrangements to those found in structures of recomposed BMC shells. Simulations on triplets of planar-behaving hexamers, which were previously reconfigured to comply with such organization, confirmed that bending propensity is mostly defined by the precise lateral positioning of hexamers, rather than by BMC-H identity. Finally, an interfacial lysine was pinpointed as the most decisive residue in controlling PduA spontaneous curvature. Globally, results presented herein should contribute to improve our understanding of the variable mechanisms of biogenesis characterized for BMC, and of possible strategies to regulate BMC size and shape.


Subject(s)
Bacteria , Bacterial Proteins , Bacterial Proteins/chemistry , Molecular Dynamics Simulation , Software , Organelles/chemistry
2.
Faraday Discuss ; 249(0): 424-439, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-37779462

ABSTRACT

Ion exchange is one of the most interesting processes occurring at the interface between aqueous solutions and polymers, such as the well-known Nafion. If the exchanged ions have different diffusion coefficients, this interchange generates local electric fields which can be harnessed to drive fluid motion. In this work, we show how it is possible to design and fabricate self-propelling microswimmers based on Nafion, driven by ion-exchange, and fueled by innocuous salts. These Nafion micromotors are made using colloidal lithography by micro/nanostructuring Nafion in the form of asymmetric rods. These microswimmers exhibit fascinating collective motion in water driven by the interplay of their self-generated chemical/electric fields and their capability to pump matter nearby towards the collective motile structure. The pumping activity of the microswimmers induces the formation of growing mobile clusters, whose velocity increases with size. Such dynamic structures are able to trap nearby micro/nano-objects while purifying the liquid, which acts both as the transport media and as fuel. Such phenomenology opens the door to potential applications in water remediation that are currently under development.

3.
Mamm Genome ; 34(2): 107-122, 2023 06.
Article in English | MEDLINE | ID: mdl-37326672

ABSTRACT

Cardiovascular diseases cause a high mortality rate worldwide and represent a major burden for health care systems. Experimental rodent models play a central role in cardiovascular disease research by effectively simulating human cardiovascular diseases. Using mice, the International Mouse Phenotyping Consortium (IMPC) aims to target each protein-coding gene and phenotype multiple organ systems in single-gene knockout models by a global network of mouse clinics. In this review, we summarize the current advances of the IMPC in cardiac research and describe in detail the diagnostic requirements of high-throughput electrocardiography and transthoracic echocardiography capable of detecting cardiac arrhythmias and cardiomyopathies in mice. Beyond that, we are linking metabolism to the heart and describing phenotypes that emerge in a set of known genes, when knocked out in mice, such as the leptin receptor (Lepr), leptin (Lep), and Bardet-Biedl syndrome 5 (Bbs5). Furthermore, we are presenting not yet associated loss-of-function genes affecting both, metabolism and the cardiovascular system, such as the RING finger protein 10 (Rfn10), F-box protein 38 (Fbxo38), and Dipeptidyl peptidase 8 (Dpp8). These extensive high-throughput data from IMPC mice provide a promising opportunity to explore genetics causing metabolic heart disease with an important translational approach.


Subject(s)
Cardiovascular Diseases , Cardiovascular System , Mice , Animals , Humans , Mice, Knockout , Cardiovascular Diseases/genetics , Gene Knockout Techniques , Phenotype
4.
J Chem Phys ; 158(11): 114108, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36948791

ABSTRACT

Arguably, the main challenge of nucleation theory is to accurately evaluate the work of formation of a critical embryo in the new phase, which governs the nucleation rate. In Classical Nucleation Theory (CNT), this work of formation is estimated using the capillarity approximation, which relies on the value of the planar surface tension. This approximation has been blamed for the large discrepancies between predictions from CNT and experiments. In this work, we present a study of the free energy of formation of critical clusters of the Lennard-Jones fluid truncated and shifted at 2.5σ using Monte Carlo simulations, density gradient theory, and density functional theory. We find that density gradient theory and density functional theory accurately reproduce molecular simulation results for critical droplet sizes and their free energies. The capillarity approximation grossly overestimates the free energy of small droplets. The incorporation of curvature corrections up to the second order with the Helfrich expansion greatly remedies this and performs very well for most of the experimentally accessible regions. However, it is imprecise for the smallest droplets and largest metastabilities since it does not account for a vanishing nucleation barrier at the spinodal. To remedy this, we propose a scaling function that uses all relevant ingredients without adding fitting parameters. The scaling function reproduces accurately the free energy of the formation of critical droplets for the entire metastability range and all temperatures examined and deviates from density gradient theory by less than one kBT.

5.
Nucleic Acids Res ; 47(17): 9231-9242, 2019 09 26.
Article in English | MEDLINE | ID: mdl-31396624

ABSTRACT

Some viruses package dsDNA together with large amounts of positively charged proteins, thought to help condense the genome inside the capsid with no evidence. Further, this role is not clear because these viruses have typically lower packing fractions than viruses encapsidating naked dsDNA. In addition, it has recently been shown that the major adenovirus condensing protein (polypeptide VII) is dispensable for genome encapsidation. Here, we study the morphology and mechanics of adenovirus particles with (Ad5-wt) and without (Ad5-VII-) protein VII. Ad5-VII- particles are stiffer than Ad5-wt, but DNA-counterions revert this difference, indicating that VII screens repulsive DNA-DNA interactions. Consequently, its absence results in increased internal pressure. The core is slightly more ordered in the absence of VII and diffuses faster out of Ad5-VII- than Ad5-wt fractured particles. In Ad5-wt unpacked cores, dsDNA associates in bundles interspersed with VII-DNA clusters. These results indicate that protein VII condenses the adenovirus genome by combining direct clustering and promotion of bridging by other core proteins. This condensation modulates the virion internal pressure and DNA release from disrupted particles, which could be crucial to keep the genome protected inside the semi-disrupted capsid while traveling to the nuclear pore.


Subject(s)
Adenoviridae/genetics , Capsid Proteins/genetics , DNA, Viral/genetics , Viral Core Proteins/genetics , Genome, Viral/genetics , Humans , Viral Proteins/genetics , Virion/genetics , Virus Assembly
6.
Phys Rev Lett ; 124(4): 045701, 2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32058783

ABSTRACT

The study of nucleation in fluid mixtures exposes challenges beyond those of pure systems. A striking example is homogeneous condensation in highly surface-active water-alcohol mixtures, where classical nucleation theory yields an unphysical, negative number of water molecules in the critical embryo. This flaw has rendered multicomponent nucleation theory useless for many industrial and scientific applications. Here, we show that this inconsistency is removed by properly incorporating the curvature dependence of the surface tension of the mixture into classical nucleation theory for multicomponent systems. The Gibbs adsorption equation is used to explain the origin of the inconsistency by linking the molecules adsorbed at the interface to the curvature corrections of the surface tension. The Tolman length and rigidity constant are determined for several water-alcohol mixtures and used to show that the corrected theory is free of physical inconsistencies and provides accurate predictions of the nucleation rates. In particular, for the ethanol-water and propanol-water mixtures, the average error in the predicted nucleation rates is reduced from 11-15 orders of magnitude to below 1.5. The curvature-corrected nucleation theory opens the door to reliable predictions of nucleation rates in multicomponent systems, which are crucial for applications ranging from atmospheric science to research on volcanos.

7.
BMC Cancer ; 20(1): 526, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32503472

ABSTRACT

BACKGROUND: Effectiveness of L-asparaginase administration in acute lymphoblastic leukemia treatment is mirrored in the overall outcome of patients. Generally, leukemia patients differ in their sensitivity to L-asparaginase; however, the mechanism underlying their inter-individual differences is still not fully understood. We have previously shown that L-asparaginase rewires the biosynthetic and bioenergetic pathways of leukemia cells to activate both anti-leukemic and pro-survival processes. Herein, we investigated the relationship between the metabolic profile of leukemia cells and their sensitivity to currently used cytostatic drugs. METHODS: Altogether, 19 leukemia cell lines, primary leukemia cells from 26 patients and 2 healthy controls were used. Glycolytic function and mitochondrial respiration were measured using Seahorse Bioanalyzer. Sensitivity to cytostatics was measured using MTS assay and/or absolute count and flow cytometry. Mitochondrial membrane potential was determined as TMRE fluorescence. RESULTS: Using cell lines and primary patient samples we characterized the basal metabolic state of cells derived from different leukemia subtypes and assessed their sensitivity to cytostatic drugs. We found that leukemia cells cluster into distinct groups according to their metabolic profile. Lymphoid leukemia cell lines and patients sensitive to L-asparaginase clustered into the low glycolytic cluster. While lymphoid leukemia cells with lower sensitivity to L-asparaginase together with resistant normal mononuclear blood cells gathered into the high glycolytic cluster. Furthermore, we observed a correlation of specific metabolic parameters with the sensitivity to L-asparaginase. Greater ATP-linked respiration and lower basal mitochondrial membrane potential in cells significantly correlated with higher sensitivity to L-asparaginase. No such correlation was found in the other cytostatic drugs tested by us. CONCLUSIONS: These data support that cell metabolism plays a prominent role in the treatment effect of L-asparaginase. Based on these findings, leukemia patients with lower sensitivity to L-asparaginase with no specific genetic characterization could be identified by their metabolic profile.


Subject(s)
Antineoplastic Agents/pharmacology , Asparaginase/pharmacology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Adolescent , Antineoplastic Agents/therapeutic use , Asparaginase/therapeutic use , Biosynthetic Pathways/drug effects , Bone Marrow/pathology , Cell Line, Tumor , Child , Child, Preschool , Drug Resistance, Neoplasm , Female , Glycolysis/drug effects , Humans , Infant , Male , Membrane Potential, Mitochondrial/drug effects , Metabolome/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Phosphorylation/drug effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/blood , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Treatment Outcome , Young Adult
8.
Soft Matter ; 16(15): 3717-3726, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32232286

ABSTRACT

One of the most striking properties of Nafion is the formation of a long-range solute exclusion zone (EZ) in contact with water. The mechanism of formation of this EZ has been the subject of a controversial and long-standing debate. Previous studies by Schurr et al. and Florea et al. root the explanation of this phenomenon in the ion-exchange properties of Nafion, which generates ion diffusion and ion gradients that drive the repulsion of solutes by diffusiophoresis. Here we have evaluated separately the electrophoretic and chemiphoretic contributions to multi-ionic diffusiophoresis using differently charged colloidal tracers as solutes to identify better their contribution in the EZ formation. Our experimental results, which are also supported by numerical simulations, show that the electric field, built up due to the unequal diffusion coefficients of the exchanged ions, is the dominant parameter behind such interfacial phenomenon in the presence of alkali metal chlorides. The EZ formation depends on the interplay of the electric field with the zeta potential of the solute and can be additionally modulated by changing ion diffusion coefficients or adding salts. As a consequence, we show that not all solutes can be expelled from the Nafion interface and hence the EZ is not always formed. This study thus provides a more detailed description of the origin and dynamics of this phenomenon and opens the door to the rational use of this active interface for many potential applications.

9.
J Virol ; 92(19)2018 10 01.
Article in English | MEDLINE | ID: mdl-30021893

ABSTRACT

Infectious bursal disease virus (IBDV), a nonenveloped, double-stranded RNA (dsRNA) virus with a T=13 icosahedral capsid, has a virion assembly strategy that initiates with a precursor particle based on an internal scaffold shell similar to that of tailed double-stranded DNA (dsDNA) viruses. In IBDV-infected cells, the assembly pathway results mainly in mature virions that package four dsRNA segments, although minor viral populations ranging from zero to three dsRNA segments also form. We used cryo-electron microscopy (cryo-EM), cryo-electron tomography, and atomic force microscopy to characterize these IBDV populations. The VP3 protein was found to act as a scaffold protein by building an irregular, ∼40-Å-thick internal shell without icosahedral symmetry, which facilitates formation of a precursor particle, the procapsid. Analysis of IBDV procapsid mechanical properties indicated a VP3 layer beneath the icosahedral shell, which increased the effective capsid thickness. Whereas scaffolding proteins are discharged in tailed dsDNA viruses, VP3 is a multifunctional protein. In mature virions, VP3 is bound to the dsRNA genome, which is organized as ribonucleoprotein complexes. IBDV is an amalgam of dsRNA viral ancestors and traits from dsDNA and single-stranded RNA (ssRNA) viruses.IMPORTANCE Structural analyses highlight the constraint of virus evolution to a limited number of capsid protein folds and assembly strategies that result in a functional virion. We report the cryo-EM and cryo-electron tomography structures and the results of atomic force microscopy studies of the infectious bursal disease virus (IBDV), a double-stranded RNA virus with an icosahedral capsid. We found evidence of a new inner shell that might act as an internal scaffold during IBDV assembly. The use of an internal scaffold is reminiscent of tailed dsDNA viruses, which constitute the most successful self-replicating system on Earth. The IBDV scaffold protein is multifunctional and, after capsid maturation, is genome bound to form ribonucleoprotein complexes. IBDV encompasses numerous functional and structural characteristics of RNA and DNA viruses; we suggest that IBDV is a modern descendant of ancestral viruses and comprises different features of current viral lineages.


Subject(s)
Birnaviridae Infections/virology , Genome, Viral , Infectious bursal disease virus/physiology , RNA, Double-Stranded/genetics , RNA-Binding Proteins/metabolism , Viral Structural Proteins/metabolism , Virus Assembly , Animals , Birnaviridae Infections/genetics , Birnaviridae Infections/metabolism , Capsid/physiology , Capsid/ultrastructure , Cells, Cultured , Coturnix/virology , Cryoelectron Microscopy , Infectious bursal disease virus/ultrastructure , Muscle Cells/virology , RNA-Binding Proteins/genetics , Viral Structural Proteins/genetics , Virion
10.
Acc Chem Res ; 51(9): 1921-1930, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30192137

ABSTRACT

The development of effective autonomous micro- and nanomotors relies on controlling fluid motion at interfaces. One of the main challenges in the engineering of such artificial machines is the quest for efficient mechanisms to power them without using external driving forces. In the past decade, there has been an important increase of man-made micro- and nanomotors fueled by self-generated physicochemical gradients. Impressive proofs of concept of multitasking machines have been reported demonstrating their capabilities for a plethora of applications. While the progress toward applications is promising, there are still open questions on fundamental physicochemical aspects behind the mechanical actuation, which require more experimental and theoretical efforts. These efforts are not merely academic but will open the door for an efficient and practical implementation of such promising devices. In this Account, we focus on chemically driven motors whose motion is the result of a complex interplay of chemical reactions and (electro)hydrodynamic phenomena. A reliable study of these processes is rather difficult with mobile objects like swimming motors. However, pumps, which are the immobilized motor counterparts, emerge as simple manufacturing and well-defined platforms for a better experimental probing of the mechanisms and key parameters controlling the actuation. Here we review some recent studies using a new methodology that has turned out to be very helpful to characterize micropump chemomechanics. The aim was to identify the redox role of the motor components, to map the chemical reaction, and to quantify the relevant electrokinetic parameters (e.g., electric field and fluid flow). This was achieved by monitoring the velocity of differently charged tracers and by fluorescence imaging of the chemical species involved in the chemical reaction, for example, proton gradients. We applied these techniques to different systems of interest. First, we probed bimetallic pumps as counterparts of the pioneering bimetallic swimmers. We corroborated that fluid motion was due to a self-generated electro-osmotic mechanism driven by the redox decomposition of H2O2. In addition, we analyzed by simulations the key parameters that yield an optimized operation. Moreover, we accomplished a better assessment of the importance of surface chemistry on the metal electrochemical response, highlighting its relevance in controlling the redox role of the metals and motion direction. Second, we focused on metallic and semiconductor micropumps to analyze light-controlled motion mechanisms through photoelectrochemical decomposition of fuels. These pumps were driven by visible light and could operate using just water as fuel. In these systems, we found a very interesting competition between two different mechanisms for fluid propulsion, namely, light-activated electro-osmosis and light-insensitive diffusio-osmosis, stemming from different chemical pathways in the fuel decomposition. In this case, surface roughness becomes a pivotal parameter to enhance or depress one mechanism over the other. These examples demonstrate that pumps are practical platforms to explore operating mechanisms and to quantify their performance. Additionally, they are suitable systems to test novel fuels or motor materials. This knowledge is extensible to swimmers providing not only fundamental understanding of their locomotion mechanisms but also useful clues for their design and optimization.

11.
Biochim Biophys Acta Gen Subj ; 1861(3): 664-672, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27993658

ABSTRACT

Genome packaging and delivery are fundamental steps in the replication cycle of all viruses. Icosahedral viruses with linear double-stranded DNA (dsDNA) usually package their genome into a preformed, rigid procapsid using the power generated by a virus-encoded packaging ATPase. The pressure and stored energy due to this confinement of DNA at a high density is assumed to drive the initial stages of genome ejection. Membrane-containing icosahedral viruses, such as bacteriophage PRD1, present an additional architectural complexity by enclosing their genome within an internal membrane vesicle. Upon adsorption to a host cell, the PRD1 membrane remodels into a proteo-lipidic tube that provides a conduit for passage of the ejected linear dsDNA through the cell envelope. Based on volume analyses of PRD1 membrane vesicles captured by cryo-electron tomography and modeling of the elastic properties of the vesicle, we propose that the internal membrane makes a crucial and active contribution during infection by maintaining the driving force for DNA ejection and countering the internal turgor pressure of the host. These novel functions extend the role of the PRD1 viral membrane beyond tube formation or the mere physical confinement of the genome. The presence and assistance of an internal membrane might constitute a biological advantage that extends also to other viruses that package their linear dsDNA to high density within an internal vesicle.


Subject(s)
Cell Membrane/metabolism , DNA, Viral/genetics , Adenosine Triphosphatases/metabolism , Bacteriophage PRD1/genetics , Capsid/metabolism , DNA/genetics , Genome, Viral/genetics , Viral Proteins/genetics , Virus Assembly/genetics
12.
Toxicol Appl Pharmacol ; 302: 31-40, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27102948

ABSTRACT

Mitochondrial DNA (mtDNA) is compacted in ribonucleoprotein complexes called nucleoids, which can divide or move within the mitochondrial network. Mitochondrial nucleoids are able to aggregate into clusters upon reaction with intercalators such as the mtDNA depletion agent Ethidium Bromide (EB) or anticancer drug Doxorobicin (DXR). However, the exact mechanism of nucleoid clusters formation remains unknown. Resolving these processes may help to elucidate the mechanisms of DXR-induced cardiotoxicity. Therefore, we addressed the role of two key nucleoid proteins; mitochondrial transcription factor A (TFAM) and mitochondrial single-stranded binding protein (mtSSB); in the formation of mitochondrial nucleoid clusters during the action of intercalators. We found that both intercalators cause numerous aberrations due to perturbing their native status. By blocking mtDNA replication, both agents also prevented mtDNA association with TFAM, consequently causing nucleoid aggregation into large nucleoid clusters enriched with TFAM, co-existing with the normal nucleoid population. In the later stages of intercalation (>48h), TFAM levels were reduced to 25%. In contrast, mtSSB was released from mtDNA and freely distributed within the mitochondrial network. Nucleoid clusters mostly contained nucleoids with newly replicated mtDNA, however the nucleoid population which was not in replication mode remained outside the clusters. Moreover, the nucleoid clusters were enriched with p53, an anti-oncogenic gatekeeper. We suggest that mitochondrial nucleoid clustering is a mechanism for protecting nucleoids with newly replicated DNA against intercalators mediating genotoxic stress. These results provide new insight into the common mitochondrial response to mtDNA stress and can be implied also on DXR-induced mitochondrial cytotoxicity.


Subject(s)
DNA, Mitochondrial/metabolism , DNA-Binding Proteins/metabolism , Mitochondria, Liver/metabolism , Mitochondrial Proteins/metabolism , Transcription Factors/metabolism , DNA Damage , Doxorubicin , Dynamins , Ethidium , GTP Phosphohydrolases/metabolism , Hep G2 Cells , Humans , Microtubule-Associated Proteins/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Tumor Suppressor Protein p53/metabolism
13.
J Chem Phys ; 144(12): 124702, 2016 Mar 28.
Article in English | MEDLINE | ID: mdl-27036470

ABSTRACT

The development of autonomous micro/nanomotors driven by self-generated chemical gradients is a topic of high interest given their potential impact in medicine and environmental remediation. Although impressive functionalities of these devices have been demonstrated, a detailed understanding of the propulsion mechanism is still lacking. In this work, we perform a comprehensive numerical analysis of the key parameters governing the actuation of bimetallic catalytic micropumps. We show that the fluid motion is driven by self-generated electro-osmosis where the electric field originates by a proton current rather than by a lateral charge asymmetry inside the double layer. Hence, the surface potential and the electric field are the key parameters for setting the pumping strength and directionality. The proton flux that generates the electric field stems from the proton gradient induced by the electrochemical reactions taken place at the pump. Surprisingly the electric field and consequently the fluid flow are mainly controlled by the ionic strength and not by the conductivity of the solution, as one could have expected. We have also analyzed the influence of the chemical fuel concentration, electrochemical reaction rates, and size of the metallic structures for an optimized pump performance. Our findings cast light on the complex chemomechanical actuation of catalytic motors and provide important clues for the search, design, and optimization of novel catalytic actuators.

14.
J Bioenerg Biomembr ; 47(3): 255-63, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25833036

ABSTRACT

Mitochondrial nucleoids are confined sites of mitochondrial DNA existing in complex clusters with the DNA-compacting mitochondrial (mt) transcription factor A (TFAM) and other accessory proteins and gene expression machinery proteins, such as a mt single-stranded-DNA-binding protein (mtSSB). To visualize nucleoid distribution within the mt reticular network, we have employed three-dimensional (3D) double-color 4Pi microscopy. The mt network was visualized in hepatocellular carcinoma HepG2 cells via mt-matrix-addressed GFP, while 3D immunocytochemistry of mtSSB was performed. Optimization of iso-surface computation threshold for nucleoid 4Pi images to 30 led to an average nucleoid diameter of 219 ± 110 and 224 ± 100 nm in glucose- and galactose-cultivated HepG2 cells (the latter with obligatory oxidative phosphorylation). We have positioned mtDNA nucleoids within the mt reticulum network and refined our model for nucleoid redistribution within the fragmented network--clustering of up to ten nucleoids in 2 µm diameter mitochondrial spheroids of a fragmented mt network, arising from an original 10 µm mt tubule of a 400 nm diameter. However, the theoretically fragmented bulk parts were observed most frequently as being reintegrated into the continuous mt network in 4Pi images. Since the predicted nucleoid counts within the bulk parts corresponded to the model, we conclude that fragmentation/reintegration cycles are not accompanied by mtDNA degradation or that mtDNA degradation is equally balanced by mtDNA replication.


Subject(s)
DNA, Mitochondrial/metabolism , DNA-Binding Proteins/metabolism , Mitochondrial Proteins/metabolism , Models, Molecular , Transcription Factors/metabolism , Cell Culture Techniques , DNA, Mitochondrial/genetics , DNA-Binding Proteins/genetics , Green Fluorescent Proteins/metabolism , Hep G2 Cells , Humans , Image Processing, Computer-Assisted , Immunohistochemistry , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Mitochondrial Proteins/genetics , Nucleic Acid Conformation , Transcription Factors/genetics
15.
J Chem Phys ; 142(6): 064703, 2015 Feb 14.
Article in English | MEDLINE | ID: mdl-25681931

ABSTRACT

Nucleation of bubbles and droplets is of fundamental interest in science and technology and has been widely investigated through experiments, theory, and simulations. Giving the rare event nature of these phenomena, nucleation simulations are computationally costly and require the use of a limited number of particles. Moreover, they are often performed in the canonical ensemble, i.e., by fixing the total volume and number of particles, to avoid the additional complexities of implementing a barostat. However, cavitation and droplet formation take place differently depending on the ensemble. Here, we analyze the importance of finite-size effects in cavitation and droplet formation. We present simple formulas which predict the finite-size corrections to the critical size, the nucleation barrier, and the nucleation rates in the canonical ensemble very accurately. These results can be used to select an appropriate system-size for simulations and to get a more precise evaluation of nucleation in complex substances, by using a small number of molecules and correcting for finite-size effects.

16.
J Chem Phys ; 142(17): 171103, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25956081

ABSTRACT

A proper understanding of nucleation is crucial in several natural and industrial processes. However, accurate quantitative predictions of this phenomenon have not been possible. The most popular tool for calculating nucleation rates, classical nucleation theory (CNT), deviates by orders of magnitude from experiments for most substances. We investigate whether part of this discrepancy can be accounted for by the curvature-dependence of the surface tension. To that end, we evaluate the leading order corrections for water, the Tolman length and the rigidity constants, using square gradient theory coupled with the accurate cubic plus association equation of state. The Helfrich expansion is then used to incorporate them into the CNT-framework. For water condensation, the modified framework successfully corrects the erroneous temperature dependence of the nucleation rates given by the classical theory and reproduces experimental nucleation rates.

17.
J Chem Phys ; 142(6): 064706, 2015 Feb 14.
Article in English | MEDLINE | ID: mdl-25681934

ABSTRACT

It is well-known that the surface tension of small droplets and bubbles deviates significantly from that at the planar interface. In this work, we analyze the leading corrections in the curvature expansion of the surface tension, i.e., the Tolman length and the rigidity constants, using a "hybrid" square gradient theory, where the local Helmholtz energy density is described by an accurate equation of state. We particularize this analysis for the case of the truncated and shifted Lennard-Jones fluid, and are then able to reproduce the surface tensions and Tolman length from recent molecular dynamics simulations within their accuracy. The obtained constants in the curvature expansion depend little on temperature, except in the vicinity of the critical point. When the bubble/droplet radius becomes comparable to the interfacial width at coexistence, the critical bubble/droplet prefers to change its density, rather than to decrease its size, and the curvature expansion is no longer sufficient to describe the change in surface tension. We find that the radius of the bubble/droplet in this region is proportional to the correlation length between fluctuations in the liquid-phase.

18.
J Chem Phys ; 141(7): 071103, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-25149768

ABSTRACT

One of the main challenges of thermodynamics is to predict and measure accurately the properties of metastable fluids. Investigation of these fluids is hindered by their spontaneous transformation by nucleation into a more stable phase. We show how small closed containers can be used to completely prevent nucleation, achieving infinitely long-lived metastable states. Using a general thermodynamic framework, we derive simple formulas to predict accurately the conditions (container sizes) at which this superstabilization takes place and it becomes impossible to form a new stable phase. This phenomenon opens the door to control nucleation of deeply metastable fluids at experimentally feasible conditions, having important implications in a wide variety of fields.

19.
J Chem Phys ; 140(2): 024704, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24437899

ABSTRACT

Formation of nanosized droplets/bubbles from a metastable bulk phase is connected to many unresolved scientific questions. We analyze the properties and stability of multicomponent droplets and bubbles in the canonical ensemble, and compare with single-component systems. The bubbles/droplets are described on the mesoscopic level by square gradient theory. Furthermore, we compare the results to a capillary model which gives a macroscopic description. Remarkably, the solutions of the square gradient model, representing bubbles and droplets, are accurately reproduced by the capillary model except in the vicinity of the spinodals. The solutions of the square gradient model form closed loops, which shows the inherent symmetry and connected nature of bubbles and droplets. A thermodynamic stability analysis is carried out, where the second variation of the square gradient description is compared to the eigenvalues of the Hessian matrix in the capillary description. The analysis shows that it is impossible to stabilize arbitrarily small bubbles or droplets in closed systems and gives insight into metastable regions close to the minimum bubble/droplet radii. Despite the large difference in complexity, the square gradient and the capillary model predict the same finite threshold sizes and very similar stability limits for bubbles and droplets, both for single-component and two-component systems.

20.
Subcell Biochem ; 68: 553-95, 2013.
Article in English | MEDLINE | ID: mdl-23737065

ABSTRACT

All matter has to obey the general laws of physics and living matter is not an exception. Viruses have not only learnt how to cope with them, but have managed to use them for their own survival. In this chapter we will review some of the exciting physics behind viruses and discuss simple physical models that can shed some light on different aspects of the viral life cycle and viral properties. In particular, we will focus on how the structure and shape of the capsid, its assembly and stability, and the entry and exit of viral particles and their genomes can be understood using fundamental physics theories.


Subject(s)
Models, Theoretical , Virus Assembly , Virus Physiological Phenomena , Viruses/chemistry , Viruses/metabolism , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL