Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Phys Chem Chem Phys ; 17(38): 24513-40, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26355535

ABSTRACT

Rare earth praseodymium and cerium oxides have attracted intense research interest in the last few decades, due to their intriguing chemical and physical characteristics. An understanding of the correlation between structure and properties, in particular the surface chemistry, is urgently required for their application in microelectronics, catalysis, optics and other fields. Such an understanding is, however, hampered by the complexity of rare earth oxide materials and experimental methods for their characterisation. Here, we report recent progress in studying high-quality, single crystalline, praseodymium and cerium oxide films as well as ternary alloys grown on Si(111) substrates. Using these well-defined systems and based on a systematic multi-technique surface science approach, the corresponding physical and chemical properties, such as the surface structure, the surface morphology, the bulk-surface interaction and the oxygen storage/release capability, are explored in detail. We show that specifically the crystalline structure and the oxygen stoichiometry of the oxide thin films can be well controlled by the film preparation method. This work leads to a comprehensive understanding of the properties of rare earth oxides and highlights the applications of these versatile materials. Furthermore, methanol adsorption studies are performed on binary and ternary rare earth oxide thin films, demonstrating the feasibility of employing such systems for model catalytic studies. Specifically for ceria systems, we find considerable stability against normal environmental conditions so that they can be considered as a "materials bridge" between surface science models and real catalysts.

2.
Rev Sci Instrum ; 95(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38345450

ABSTRACT

We describe an approach to determine the in-plane crystallographic surface directions in scanning probe microscopy (SPM) images. This method is based on a one-time characterization of the SPM instrument with an appropriate test sample and is exemplified by the analysis of non-contact atomic force microscopy (NC-AFM) images on surfaces whose natural cleavage occurs along {111} planes. We introduce a two-dimensional rotation matrix relating the crystallographic surface directions known from an analysis of the macroscopic crystal to the directions in the NC-AFM images. The procedure takes into account rotations and mirror axes resulting from sample mounting, the SPM scanner rotation, the choice of scan direction, as well as data processing, storage, and display. We demonstrate the practicability of the approach by determining the [112̄] direction in topographic images of a CeO2(111) film grown on a Si(111) wafer and atomic resolution images of CaF2(111) with an instrument based on the beetle-type scanner.

3.
Phys Chem Chem Phys ; 14(6): 2092-8, 2012 Feb 14.
Article in English | MEDLINE | ID: mdl-22231389

ABSTRACT

The morphology and thermal stability of Ni and Co nanoclusters grown by physical vapour deposition on a reconstructed (1120) surface of α-Al(2)O(3) is investigated using non-contact atomic force microscopy (NC-AFM). NC-AFM images reveal that the clean α-Al(2)O(3)(1120) substrate adopts a characteristic (12 × 4) reconstruction when prepared in vacuum at high temperature. Subsequent deposition of Ni and Co onto this substrate at room temperature facilitates the growth of well-ordered metal nanocluster arrays with a preferred inter-cluster distance determined by the (12 × 4) periodicity of the substrate surface. The order in the cluster arrangement remains intact even upon annealing the system to temperatures up to 500 °C indicating a high resistance against sintering. The reconstructed α-Al(2)O(3)(1120) surface can, therefore, serve as an appropriate insulating template for studies of size-dependent magnetic or catalytic effects in a well-defined ensemble of metallic nanoclusters.

4.
Beilstein J Nanotechnol ; 13: 610-619, 2022.
Article in English | MEDLINE | ID: mdl-35874436

ABSTRACT

In the mathematical description of dynamic atomic force microscopy (AFM), the relation between the tip-surface normal interaction force, the measurement observables, and the probe excitation parameters is defined by an average of the normal force along the sampling path over the oscillation cycle. Usually, it is tacitly assumed that tip oscillation and force data recording follows the same path perpendicular to the surface. Experimentally, however, the sampling path representing the tip oscillating trajectory is often inclined with respect to the surface normal and the data recording path. Here, we extend the mathematical description of dynamic AFM to include the case of an inclined sampling path. We find that the inclination of the tip movement can have critical consequences for data interpretation, especially for measurements on nanostructured surfaces exhibiting significant lateral force components. Inclination effects are illustrated by simulation results that resemble the representative experimental conditions of measuring a heterogeneous atomic surface. We propose to measure the AFM observables along a path parallel to the oscillation direction in order to reliably recover the force along this direction.

5.
Phys Rev Lett ; 107(1): 016101, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21797552

ABSTRACT

Deposition of fullerenes on the CaF(2)(111) surface yields peculiar island morphologies with close similarities to previous findings for (100) surfaces of other ionic crystals. By means of noncontact atomic force microscopy we find a smooth transition from compact, triangular islands to branched hexagonal islands upon lowering the temperature. While triangular islands are two monolayers high, hexagonal islands have a base of one monolayer and exhibit a complicated structure with a second-layer outer rim and trenches oriented towards the interior. By developing a kinetic growth model we unravel the microscopic mechanisms of the structure formation.

6.
Phys Chem Chem Phys ; 13(34): 15442-7, 2011 Sep 14.
Article in English | MEDLINE | ID: mdl-21779605

ABSTRACT

The unreconstructed TiO(2)(110) surface is prepared in well-defined states having different characteristic stoichiometries, namely reduced (r-TiO(2), 6 to 9% surface vacancies), hydroxylated (h-TiO(2), vacancies filled with OH), oxygen covered (ox-TiO(2), oxygen adatoms on a stoichiometric surface) and quasi-stoichiometric (qs-TiO(2), a stoichiometric surface with very few defects). The electronic structure and work function of these surfaces and transition states between them are investigated by ultraviolet photoelectron spectroscopy (UPS) and metastable impact electron spectroscopy (MIES). The character of the surface is associated with a specific value of the work function that varies from 4.9 eV for h-TiO(2), 5.2 eV for r-TiO(2), 5.35 eV for ox-TiO(2) to 5.5 eV for qs-TiO(2). We establish the method for an unambiguous characterization of TiO(2)(110) surface states solely based on the secondary electron emission characteristics. This is facilitated by analysing a weak electron emission below the nominal work function energy. The emission in the low energy cut-off region appears correlated with band gap emission found in UPS spectra and is attributed to localised electron emission through Ti(3+)(3d) states.

7.
Langmuir ; 26(11): 8295-300, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20345111

ABSTRACT

Calcite is a mineral of fundamental importance that plays a crucial role in many fields of research such as biomineralization, biomolecule adsorption, and reactivity as well as industrial and daily life applications. Consequently, the most stable cleavage plane of calcite has been studied extensively using both direct imaging techniques such as atomic force microscopy as well as spectroscopic and diffraction techniques. Several surface structures have been reported for the (1014) cleavage plane of calcite differing from the simple bulk-truncated structure and an ongoing controversy exists in literature whether the cleavage plane exhibits a (2 x 1) reconstruction or not. We study the (1014) cleavage plane using high-resolution noncontact atomic force microscopy (NC-AFM) under ultrahigh vacuum conditions and obtain a clear signature of the (2 x 1) reconstruction. This reconstruction is observed in very narrow tip-surface distance ranges only, explaining why in some experiments the reconstruction has been observed and in others not. Moreover, as all sample preparation is performed in ultrahigh vacuum, the possibility of the (2 x 1) reconstruction being adsorbate-induced appears rather unlikely. Additionally, tip-induced surface changes are ruled out as origin for the observed reconstruction either. In conclusion, our study suggests that the (2 x 1) reconstruction is a true surface property of the (1014) cleavage plane of calcite.


Subject(s)
Calcium Carbonate/chemistry , Microscopy, Atomic Force
8.
Phys Chem Chem Phys ; 12(39): 12436-41, 2010 Oct 21.
Article in English | MEDLINE | ID: mdl-20714579

ABSTRACT

The cross-linked (1 × 2) reconstruction of TiO(2)(110) is a frequently observed phase reflecting the surface structure of titania in a significantly reduced state. Here we resolve the atomic scale structure of the cross-linked (1 × 2) phase with dynamic scanning force microscopy operated in the non-contact mode (NC-AFM). From an analysis of the atomic-scale contrast patterns of the titanium and oxygen sub-structures obtained by imaging the surface with AFM tips having different tip apex termination, we infer the hitherto most accurate model of the atomic structure of the cross-linked (1 × 2) phase. Our findings suggest that the reconstruction is based on added rows in [001] direction built up of Ti(3)O(6) units with an uninterrupted central string of oxygen atoms accompanied by a regular sequence of cross-links consisting of linear triples of additional oxygen atoms in between the rows. The new insight obtained from NC-AFM solves previous controversy about the cross-linked TiO(2)(110) surface structure, since previously proposed models based on cross-links with a lower O content do not appear to be consistent with the atom-resolved data presented here. Instead, our measurements strongly support the Ti(3)O(6) motif to be the structural base of the cross-linked (1 × 2) reconstruction of TiO(2)(110).

9.
Beilstein J Nanotechnol ; 11: 1432-1438, 2020.
Article in English | MEDLINE | ID: mdl-33029472

ABSTRACT

A distinct dumbbell shape is observed as the dominant contrast feature in the experimental data when imaging 1,1'-ferrocene dicarboxylic acid (FDCA) molecules on bulk and thin film CaF2(111) surfaces with non-contact atomic force microscopy (NC-AFM). We use NC-AFM image calculations with the probe particle model to interpret this distinct shape by repulsive interactions between the NC-AFM tip and the top hydrogen atoms of the cyclopentadienyl (Cp) rings. Simulated NC-AFM images show an excellent agreement with experimental constant-height NC-AFM data of FDCA molecules at several tip-sample distances. By measuring this distinct dumbbell shape together with the molecular orientation, a strategy is proposed to determine the conformation of the ferrocene moiety, herein on CaF2(111) surfaces, by using the protruding hydrogen atoms as markers.

10.
Nanotechnology ; 20(6): 065606, 2009 Feb 11.
Article in English | MEDLINE | ID: mdl-19417394

ABSTRACT

Non-contact atomic force microscopy is used to study C(60) molecules deposited on the rutile TiO(2)(110) surface in situ at room temperature. At submonolayer coverages, molecules adsorb preferentially at substrate step edges. Upon increasing coverage, ordered islands grow from the decorated step edges onto the lower terraces. Simultaneous imaging of bridging oxygen rows of the substrate and the C(60) island structure reveals that the C(60) molecules arrange themselves in a centered rectangular superstructure, with the molecules lying centered in the troughs formed by the bridging oxygen rows. Although the TiO(2)(110) surface exhibits a high density of surface defects, the observed C(60) islands are of high order. This indicates that the C(60) intermolecular interaction dominates over the molecule-substrate interactions that may cause structural perturbations on a defective surface. Slightly protruding C(60) strands on the islands are attributed to anti-phase boundaries due to stacking faults resulting from two islands growing together.

11.
Beilstein J Nanotechnol ; 10: 804-810, 2019.
Article in English | MEDLINE | ID: mdl-31019867

ABSTRACT

We present strong experimental evidence for the moiré origin of superlattices on graphite by imaging a live transition from one superlattice to another with concurrent and direct measurement of the orientation angle before and after rotation using scanning tunneling microscopy (STM). This has been possible due to a fortuitous observation of a superlattice on a nanometer-sized graphene flake wherein we have induced a further rotation of the flake utilizing the capillary forces at play at a solid-liquid interface using STM tip motion. We propose a more "realistic" tip-surface meniscus relevant to STM at solid-liquid interfaces and show that the capillary force is sufficient to account for the total expenditure of energy involved in the process.

12.
Phys Rev Lett ; 99(5): 056101, 2007 Aug 03.
Article in English | MEDLINE | ID: mdl-17930771

ABSTRACT

Surface and subsurface oxygen vacancies on the slightly reduced CeO(2)(111) surface have been studied by atomic resolution dynamic force microscopy at 80 K. Both types of defect are clearly identified by the comparison of the observed topographic features with the corresponding structures predicted from recent first-principles calculations. By combining two simultaneously acquired signals (the topography and the energy dissipated from the cantilever oscillation), we are able to unambiguously locate subsurface oxygen vacancies buried at the third surface atomic layer. We report evidence of local ordering of these subsurface defects that suggests the existence of a delicate balance between subtle interactions among adjacent subsurface oxygen vacancy structures.

13.
Nanotechnology ; 17(14): 3436-41, 2006 Jul 28.
Article in English | MEDLINE | ID: mdl-19661587

ABSTRACT

Atomic force microscopy in the non-contact mode (nc-AFM) can provide atom-resolved images of the surface of, in principle, any material independent of its conductivity. Due to the complex mechanisms involved in the contrast formation in nc-AFM imaging, it is, however, far from trivial to identify individual surface atoms or adsorbates from AFM images. In this work, we successfully demonstrate how to extract detailed information about defects and the chemical identity of adsorbates on a metal oxide surface from nc-AFM images. We make use of the observation that the apex of the AFM tip can be altered to expose either a positive or negative tip termination. The complementary set of images recorded with the two tip terminations unambiguously define the ionic sub-lattices and reveal the exact positions of oxygen vacancies and hydroxyl (OH) defects on a TiO(2) surface. Chemical specificity is extracted by comparing the characteristic contrast patterns of the defects with results from comprehensive AFM simulations. Our methodology of analysis is generally applicable and may be pivotal for uncovering surface defects and adsorbates on other transition metal oxides designed for heterogeneous catalysis, photo-electrolysis or biocompatibility.

14.
Beilstein J Nanotechnol ; 7: 1885-1904, 2016.
Article in English | MEDLINE | ID: mdl-28144538

ABSTRACT

The frequency shift noise in non-contact atomic force microscopy (NC-AFM) imaging and spectroscopy consists of thermal noise and detection system noise with an additional contribution from amplitude noise if there are significant tip-sample interactions. The total noise power spectral density DΔf (fm) is, however, not just the sum of these noise contributions. Instead its magnitude and spectral characteristics are determined by the strongly non-linear tip-sample interaction, by the coupling between the amplitude and tip-sample distance control loops of the NC-AFM system as well as by the characteristics of the phase locked loop (PLL) detector used for frequency demodulation. Here, we measure DΔf (fm) for various NC-AFM parameter settings representing realistic measurement conditions and compare experimental data to simulations based on a model of the NC-AFM system that includes the tip-sample interaction. The good agreement between predicted and measured noise spectra confirms that the model covers the relevant noise contributions and interactions. Results yield a general understanding of noise generation and propagation in the NC-AFM and provide a quantitative prediction of noise for given experimental parameters. We derive strategies for noise-optimised imaging and spectroscopy and outline a full optimisation procedure for the instrumentation and control loops.

15.
Beilstein J Nanotechnol ; 7: 841-51, 2016.
Article in English | MEDLINE | ID: mdl-27547601

ABSTRACT

Interferometric displacement detection in a cantilever-based non-contact atomic force microscope (NC-AFM) operated in ultra-high vacuum is demonstrated for the Michelson and Fabry-Pérot modes of operation. Each mode is addressed by appropriately adjusting the distance between the fiber end delivering and collecting light and a highly reflective micro-cantilever, both together forming the interferometric cavity. For a precise measurement of the cantilever displacement, the relative positioning of fiber and cantilever is of critical importance. We describe a systematic approach for accurate alignment as well as the implications of deficient fiber-cantilever configurations. In the Fabry-Pérot regime, the displacement noise spectral density strongly decreases with decreasing distance between the fiber-end and the cantilever, yielding a noise floor of 24 fm/Hz(0.5) under optimum conditions.

16.
Beilstein J Nanotechnol ; 4: 227-33, 2013.
Article in English | MEDLINE | ID: mdl-23616942

ABSTRACT

We critically discuss the extraction of intrinsic cantilever properties, namely eigenfrequency f n , quality factor Q n and specifically the stiffness k n of the nth cantilever oscillation mode from thermal noise by an analysis of the power spectral density of displacement fluctuations of the cantilever in contact with a thermal bath. The practical applicability of this approach is demonstrated for several cantilevers with eigenfrequencies ranging from 50 kHz to 2 MHz. As such an analysis requires a sophisticated spectral analysis, we introduce a new method to determine k n from a spectral analysis of the demodulated oscillation signal of the excited cantilever that can be performed in the frequency range of 10 Hz to 1 kHz regardless of the eigenfrequency of the cantilever. We demonstrate that the latter method is in particular useful for noncontact atomic force microscopy (NC-AFM) where the required simple instrumentation for spectral analysis is available in most experimental systems.

17.
Beilstein J Nanotechnol ; 4: 32-44, 2013.
Article in English | MEDLINE | ID: mdl-23400758

ABSTRACT

The noise of the frequency-shift signal Δf in noncontact atomic force microscopy (NC-AFM) consists of cantilever thermal noise, tip-surface-interaction noise and instrumental noise from the detection and signal processing systems. We investigate how the displacement-noise spectral density d(z) at the input of the frequency demodulator propagates to the frequency-shift-noise spectral density d(Δ) (f) at the demodulator output in dependence of cantilever properties and settings of the signal processing electronics in the limit of a negligible tip-surface interaction and a measurement under ultrahigh-vacuum conditions. For a quantification of the noise figures, we calibrate the cantilever displacement signal and determine the transfer function of the signal-processing electronics. From the transfer function and the measured d(z), we predict d(Δ) (f) for specific filter settings, a given level of detection-system noise spectral density d(z) (ds) and the cantilever-thermal-noise spectral density d(z) (th). We find an excellent agreement between the calculated and measured values for d(Δ) (f). Furthermore, we demonstrate that thermal noise in d(Δ) (f), defining the ultimate limit in NC-AFM signal detection, can be kept low by a proper choice of the cantilever whereby its Q-factor should be given most attention. A system with a low-noise signal detection and a suitable cantilever, operated with appropriate filter and feedback-loop settings allows room temperature NC-AFM measurements at a low thermal-noise limit with a significant bandwidth.

18.
Adv Mater ; 25(29): 3948-56, 2013 Aug 07.
Article in English | MEDLINE | ID: mdl-23907708

ABSTRACT

Molecular self-assembly constitutes a versatile strategy for creating functional structures on surfaces. Tuning the subtle balance between intermolecular and molecule-surface interactions allows structure formation to be tailored at the single-molecule level. While metal surfaces usually exhibit interaction strengths in an energy range that favors molecular self-assembly, dielectric surfaces having low surface energies often lack sufficient interactions with adsorbed molecules. As a consequence, application-relevant, bulk insulating materials pose significant challenges when considering them as supporting substrates for molecular self-assembly. Here, the current status of molecular self-assembly on surfaces of wide-bandgap dielectric crystals, investigated under ultrahigh vacuum conditions at room temperature, is reviewed. To address the major issues currently limiting the applicability of molecular self-assembly principles in the case of dielectric surfaces, a systematic discussion of general strategies is provided for anchoring organic molecules to bulk insulating materials.


Subject(s)
Electric Conductivity , Metals/chemistry , Models, Chemical , Models, Molecular , Organic Chemicals/chemistry , Computer Simulation
19.
Beilstein J Nanotechnol ; 3: 658-66, 2012.
Article in English | MEDLINE | ID: mdl-23019562

ABSTRACT

Fibril structures are produced at a solvent-graphite interface by self-assembly of custom-designed symmetric and asymmetric amphiphilic benzamide derivatives bearing C(10) aliphatic chains. Scanning tunnelling microscopy (STM) studies reveal geometry-dependent internal structures for the elementary fibrils of the two molecules that are distinctly different from known mesophase bulk structures. The structures are described by building-block models based on hydrogen-bonded dimer and tetramer precursors of hydrazines. The closure and growth in length of building units into fibrils takes place through van der Waals forces acting between the dangling alkyl chains. The nanoscale morphology is a consequence of the basic molecular geometry, where it follows that a closure to form a fibril is not always likely for the doubly substituted hydrazine. Therefore, we also observe crystallite formation.

20.
Chem Commun (Camb) ; 47(37): 10386-8, 2011 Oct 07.
Article in English | MEDLINE | ID: mdl-21842079

ABSTRACT

Depending on the deposition order in coadsorption of C(60) and SubPc molecules on CaF(2) (111), distinctly different island morphologies can be obtained. We demonstrate that non-equilibrium processes can play a significant role in molecular structure formation and constitute a new route for complex molecular patterning of an insulating surface.

SELECTION OF CITATIONS
SEARCH DETAIL