Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Alzheimers Dis ; 100(4): 1099-1119, 2024.
Article in English | MEDLINE | ID: mdl-38995785

ABSTRACT

Alzheimer's disease (AD) accounts for most dementia cases, but we lack a complete understanding of the mechanisms responsible for the core pathology associated with the disease (e.g., amyloid plaque and neurofibrillary tangles). Inflammation has been identified as a key contributor of AD pathology, with recent evidence pointing towards Reelin dysregulation as being associated with inflammation. Here we describe Reelin signaling and outline existing research involving Reelin signaling in AD and inflammation. Research is described pertaining to the inflammatory and immunological functions of Reelin before we propose a mechanism through which inflammation renders Reelin susceptible to dysregulation resulting in the induction and exacerbation of AD pathology. Based on this hypothesis, it is predicted that disorders of both inflammation (including peripheral inflammation and neuroinflammation) and Reelin dysregulation (including disorders associated with upregulated Reelin expression and disorders of Reelin downregulation) have elevated risk of developing AD. We conclude with a description of AD risk in various disorders involving Reelin dysregulation and inflammation.


Subject(s)
Alzheimer Disease , Extracellular Matrix Proteins , Homeostasis , Inflammation , Reelin Protein , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Inflammation/metabolism , Homeostasis/physiology , Extracellular Matrix Proteins/metabolism , Animals , Nerve Tissue Proteins/metabolism , Serine Endopeptidases/metabolism , Cell Adhesion Molecules, Neuronal/metabolism , Signal Transduction/physiology
2.
Front Mol Neurosci ; 17: 1442332, 2024.
Article in English | MEDLINE | ID: mdl-39228796

ABSTRACT

Introduction: Treatment with the synaptic plasticity protein reelin has rapid antidepressant-like effects in adult corticosterone (CORT)-induced depressed rats, whether administered repeatedly or acutely. However, these effects remain unexplored in the context of post-partum depression (PPD). Methods: This study investigated the antidepressant-like effect of a single injection of reelin in a CORT-induced model of PPD. Long-Evans female dams received either daily subcutaneous CORT (40 mg/kg) or saline injections (controls) from the post-partum day (PD) 2 to 22, and on PD22 were treated with a single intravenous reelin (3 µg) or vehicle injection. Results: Reelin treatment fully normalized to control levels the CORT-induced increase in Forced Swim Test (FST) immobility and the decrease in reelin-positive cells in the subgranular zone of the intermediate hippocampus. It also increased the number of oxytocin-positive cells in the paraventricular nucleus (PVN), the number of reelin-positive cells in the dorsal and ventral hippocampus, and the dendritic complexity of newborn neurons in the intermediate hippocampus, causing a partial recovery compared to controls. None of these changes were associated with fluctuations in estrogen levels measured peripherally. Discussion: This study brings new insights into the putative antidepressant-like effect of peripherally administered reelin in an animal model of PPD. Future studies should be conducted to investigate these effects on a dose-response paradigm and to further elucidate the mechanisms underlying the antidepressant-like effects of reelin.

3.
Article in English | MEDLINE | ID: mdl-38552775

ABSTRACT

There is an urgent need for novel antidepressants, given that approximately 30% of those diagnosed with depression do not respond adequately to first-line treatment. Additionally, monoaminergic-based antidepressants have a substantial therapeutic time-lag, often taking months to reach full therapeutic effect. Ketamine, an N-methyl-d-aspartate receptor (NMDAR) antagonist is the only current effective rapid-acting antidepressant, demonstrating efficacy within hours and lasting up to two weeks with an acute dose. Reelin, an extracellular matrix glycoprotein, has demonstrated rapid-acting antidepressant-like effects at 24 h, however the exact timescale of these effects has not been investigated. To determine the short and long-term effects of reelin, female Long Evans rats (n = 120) underwent a chronic corticosterone (CORT; or vehicle) paradigm (40 mg/kg, 21 days). On day 21, rats were treated with reelin (3µg; i.v.), ketamine (10 mg/kg; i.p.), both reelin and ketamine (same doses), or vehicle (saline). Behavioural and biological effects were then evaluated at 1 h, 6 h, 12 h, and 1 week after treatment. The 1-week cohort continued CORT injections to ensure the effect of chronic stress was not lost. Individually, both reelin and ketamine significantly rescued CORT-induced behaviour and hippocampal reelin expression at all timepoints. Ketamine rescued a decrease in dendritic maturity as induced by CORT. Synergistic effects of reelin and ketamine appeared at 1-week, suggesting a potential additive effect of the antidepressant-like actions. Taken together, this study provides further support for reelin-based therapeutics to develop rapid-acting antidepressant.


Subject(s)
Corticosterone , Ketamine , Animals , Female , Rats , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Corticosterone/metabolism , Depression/drug therapy , Depression/chemically induced , Hippocampus/metabolism , Ketamine/pharmacology , Ketamine/therapeutic use , Rats, Long-Evans , Reelin Protein/pharmacology , Reelin Protein/therapeutic use
4.
eNeuro ; 10(8)2023 08.
Article in English | MEDLINE | ID: mdl-37550058

ABSTRACT

Over the past decade, ketamine, an NMDA receptor antagonist, has demonstrated fast-acting antidepressant effects previously unseen with monoaminergic-based therapeutics. Concerns regarding psychotomimetic effects limit the use of ketamine for certain patient populations. Reelin, an extracellular matrix glycoprotein, has shown promise as a putative fast-acting antidepressant in a model of chronic stress. However, research has not yet demonstrated the changes that occur rapidly after peripheral reelin administration. To address this key gap in knowledge, male Long-Evans rats underwent a chronic corticosterone (CORT; or vehicle) paradigm (40 mg/kg, 21 d). On day 21, rats were then administered an acute dose of ketamine (10 mg/kg, i.p.), reelin (3 µg, i.v.), or vehicle. Twenty-four hours after administration, rats underwent behavioral or in vivo electrophysiological testing before killing. Immunohistochemistry was used to confirm changes in hippocampal reelin immunoreactivity. Lastly, the hippocampus was microdissected from fresh tissue to ascertain whole cell and synaptic-specific changes in protein expression through Western blotting. Chronic corticosterone induced a chronic stress phenotype in the forced swim test and sucrose preference test (SPT). Both reelin and ketamine rescued immobility and swimming, however reelin alone rescued latency to immobility. In vivo electrophysiology revealed decreases in hippocampal long-term potentiation (LTP) after chronic stress which was increased significantly by both ketamine and reelin. Reelin immunoreactivity in the dentate gyrus paralleled the behavioral and electrophysiological findings, but no significant changes were observed in synaptic-level protein expression. This exploratory research supports the putative rapid-acting antidepressant effects of an acute dose of reelin across behavioral, electrophysiological, and molecular measures.


Subject(s)
Ketamine , Rats , Male , Animals , Ketamine/pharmacology , Corticosterone/pharmacology , Corticosterone/metabolism , Rats, Long-Evans , Benchmarking , Hippocampus/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/metabolism , Depression
5.
Biomedicines ; 10(12)2022 Dec 11.
Article in English | MEDLINE | ID: mdl-36551970

ABSTRACT

A healthy diet has been highly associated with a decreased risk for mental health problems such as major depression. Evidence from human studies shows that diet can influence mood but there is a poor understanding of the molecular mechanisms behind these effects, especially the role of epigenetic alterations in the brain. Our objective was to use the Preferred Reporting Items for Systematic Reviews and Meta-Analysis extension for Scoping Reviews (PRISMA-ScR) format to gather all recent studies using animal models that investigate direct or indirect (on the offspring) effects of diet on depressive symptoms, including studies that assess epigenetic mechanisms in the brain. In this format, two authors conducted independent database searches of PubMed, Web of Science, and Academic search premier using one search block "diet epigenetics depression" to find papers published between 2000 and 2022. Relevant studies were selected using pre-defined inclusion/exclusion criteria that were performed independently by the two authors before a subset of studies were selected for qualitative analysis. A total of 11 studies met the inclusion criteria for this systematic scoping review. We found that the literature focuses primarily on the effects of individual nutrients, instead of a specific diet, on despair-like behaviour and anxiety. Studies are heterogenous with the techniques used to asses epigenetic changes in the brain and therefore making it hard to reach common mechanistic explanations. However, all studies report diet-induced changes in the epigenome mainly by the action of DNA methylation, histone acetylation and microRNAs that are parallelel with changes in behaviour. Moreover studies show that inadequate maternal diets can make the offspring more susceptible to develop anxiety and depressive-like behaviour later in life, which is paralleled with changes in the epigenome. Overall, this systematic review shows that there is some literature suggesting a role of brain epigenetics on the diet-induced protective or detrimental effects, specifically on anxiety and depressive-like behaviour. However, studies are limited, lacking the study of some types of diets, behavioural tasks or epigenetic mechanisms. Nevertherless, it shows the importance of genome-environment interactions, bringing new insights towards mechanisms that could be involved in the pathophysiology of mood disorders as well as putative therapeutic targets.

6.
Heliyon ; 2(10): e00181, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27812552

ABSTRACT

Structural imaging tools can be used to identify neuropathology in post-mortem tissue whereas functional imaging tools including quantitative electroencephalography (QEEG) are thought to be restricted for use in living subjects. We are not aware of any study which has used electrophysiological methods decades after death to infer pathology. We therefore attempted to discriminate between chemically preserved brains which had incurred electrical seizures and those that did not using functional imaging. Our data indicate that modified QEEG technology involving needle electrodes embedded within chemically fixed neural tissue can be used to discriminate pathology. Forty (n = 40) rat brains preserved in ethanol-formalin-acetic acid (EFA) were probed by needle electrodes inserted into the dorsal and ventral components of the left and right cerebral hemispheres. Raw microvolt potentials were converted to spectral power densities within classical electroencephalographic frequency bands (1.5 Hz to 40 Hz). Brain mass differences were shown to scale with left hemispheric ventral theta-band spectral power densities in lithium-pilocarpine seized rats. This relationship was not observed in non-seized rats. A conspicuous absence of pathological indicators within dorsal regions as inferred by microvolt fluctuations was expected given the known localization of post-ictal damage in lithium-pilocarpine seized rats. Together, the data demonstrate that post-mortem neuroimaging is both possible and potentially useful as a means to identify neuropathology without structural imaging techniques or dissection.

SELECTION OF CITATIONS
SEARCH DETAIL