Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 180
Filter
Add more filters

Publication year range
1.
Cell ; 164(5): 1060-1072, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26919435

ABSTRACT

Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors. From the remaining fraction of CNS-PNETs, we identify four new CNS tumor entities, each associated with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1)," and "CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)," will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by poorly differentiated CNS tumors.


Subject(s)
Central Nervous System Neoplasms/genetics , Central Nervous System Neoplasms/pathology , DNA Methylation , Neuroectodermal Tumors/genetics , Neuroectodermal Tumors/pathology , Amino Acid Sequence , Central Nervous System Neoplasms/classification , Central Nervous System Neoplasms/diagnosis , Child , Forkhead Transcription Factors/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Molecular Sequence Data , Neuroectodermal Tumors/classification , Neuroectodermal Tumors/diagnosis , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/genetics , Repressor Proteins/chemistry , Repressor Proteins/genetics , Signal Transduction , Trans-Activators , Tumor Suppressor Proteins/genetics
2.
Cell ; 153(5): 1064-79, 2013 May 23.
Article in English | MEDLINE | ID: mdl-23706743

ABSTRACT

Metabolic adaptation is essential for cell survival during nutrient deprivation. We report that eukaryotic elongation factor 2 kinase (eEF2K), which is activated by AMP-kinase (AMPK), confers cell survival under acute nutrient depletion by blocking translation elongation. Tumor cells exploit this pathway to adapt to nutrient deprivation by reactivating the AMPK-eEF2K axis. Adaptation of transformed cells to nutrient withdrawal is severely compromised in cells lacking eEF2K. Moreover, eEF2K knockdown restored sensitivity to acute nutrient deprivation in highly resistant human tumor cell lines. In vivo, overexpression of eEF2K rendered murine tumors remarkably resistant to caloric restriction. Expression of eEF2K strongly correlated with overall survival in human medulloblastoma and glioblastoma multiforme. Finally, C. elegans strains deficient in efk-1, the eEF2K ortholog, were severely compromised in their response to nutrient depletion. Our data highlight a conserved role for eEF2K in protecting cells from nutrient deprivation and in conferring tumor cell adaptation to metabolic stress. PAPERCLIP:


Subject(s)
Caenorhabditis elegans/metabolism , Elongation Factor 2 Kinase/metabolism , Neoplasms/physiopathology , Peptide Chain Elongation, Translational , Signal Transduction , AMP-Activated Protein Kinases/metabolism , Animals , Brain Neoplasms/physiopathology , Caenorhabditis elegans/genetics , Cell Survival , Cell Transformation, Neoplastic , Elongation Factor 2 Kinase/genetics , Food Deprivation , Glioblastoma/physiopathology , HeLa Cells , Humans , Mice , Mice, Nude , NIH 3T3 Cells , Neoplasm Transplantation , Peptide Elongation Factor 2/metabolism , Transplantation, Heterologous
3.
Cell ; 148(1-2): 59-71, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22265402

ABSTRACT

Genomic rearrangements are thought to occur progressively during tumor development. Recent findings, however, suggest an alternative mechanism, involving massive chromosome rearrangements in a one-step catastrophic event termed chromothripsis. We report the whole-genome sequencing-based analysis of a Sonic-Hedgehog medulloblastoma (SHH-MB) brain tumor from a patient with a germline TP53 mutation (Li-Fraumeni syndrome), uncovering massive, complex chromosome rearrangements. Integrating TP53 status with microarray and deep sequencing-based DNA rearrangement data in additional patients reveals a striking association between TP53 mutation and chromothripsis in SHH-MBs. Analysis of additional tumor entities substantiates a link between TP53 mutation and chromothripsis, and indicates a context-specific role for p53 in catastrophic DNA rearrangements. Among these, we observed a strong association between somatic TP53 mutations and chromothripsis in acute myeloid leukemia. These findings connect p53 status and chromothripsis in specific tumor types, providing a genetic basis for understanding particularly aggressive subtypes of cancer.


Subject(s)
Brain Neoplasms/genetics , Gene Rearrangement , Medulloblastoma/genetics , Tumor Suppressor Protein p53/genetics , Animals , Child , Chromosome Aberrations , DNA Copy Number Variations , DNA Mutational Analysis , Disease Models, Animal , Humans , Leukemia, Myeloid, Acute/genetics , Li-Fraumeni Syndrome/physiopathology , Mice , Middle Aged
4.
Nature ; 580(7803): 396-401, 2020 04.
Article in English | MEDLINE | ID: mdl-32296180

ABSTRACT

Cancer genomics has revealed many genes and core molecular processes that contribute to human malignancies, but the genetic and molecular bases of many rare cancers remains unclear. Genetic predisposition accounts for 5 to 10% of cancer diagnoses in children1,2, and genetic events that cooperate with known somatic driver events are poorly understood. Pathogenic germline variants in established cancer predisposition genes have been recently identified in 5% of patients with the malignant brain tumour medulloblastoma3. Here, by analysing all protein-coding genes, we identify and replicate rare germline loss-of-function variants across ELP1 in 14% of paediatric patients with the medulloblastoma subgroup Sonic Hedgehog (MBSHH). ELP1 was the most common medulloblastoma predisposition gene and increased the prevalence of genetic predisposition to 40% among paediatric patients with MBSHH. Parent-offspring and pedigree analyses identified two families with a history of paediatric medulloblastoma. ELP1-associated medulloblastomas were restricted to the molecular SHHα subtype4 and characterized by universal biallelic inactivation of ELP1 owing to somatic loss of chromosome arm 9q. Most ELP1-associated medulloblastomas also exhibited somatic alterations in PTCH1, which suggests that germline ELP1 loss-of-function variants predispose individuals to tumour development in combination with constitutive activation of SHH signalling. ELP1 is the largest subunit of the evolutionarily conserved Elongator complex, which catalyses translational elongation through tRNA modifications at the wobble (U34) position5,6. Tumours from patients with ELP1-associated MBSHH were characterized by a destabilized Elongator complex, loss of Elongator-dependent tRNA modifications, codon-dependent translational reprogramming, and induction of the unfolded protein response, consistent with loss of protein homeostasis due to Elongator deficiency in model systems7-9. Thus, genetic predisposition to proteome instability may be a determinant in the pathogenesis of paediatric brain cancers. These results support investigation of the role of protein homeostasis in other cancer types and potential for therapeutic interference.


Subject(s)
Cerebellar Neoplasms/metabolism , Germ-Line Mutation , Medulloblastoma/metabolism , Transcriptional Elongation Factors/metabolism , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Child , Female , Humans , Male , Medulloblastoma/genetics , Pedigree , RNA, Transfer/metabolism , Transcriptional Elongation Factors/genetics
5.
Nature ; 576(7786): 274-280, 2019 12.
Article in English | MEDLINE | ID: mdl-31802000

ABSTRACT

Embryonal tumours with multilayered rosettes (ETMRs) are aggressive paediatric embryonal brain tumours with a universally poor prognosis1. Here we collected 193 primary ETMRs and 23 matched relapse samples to investigate the genomic landscape of this distinct tumour type. We found that patients with tumours in which the proposed driver C19MC2-4 was not amplified frequently had germline mutations in DICER1 or other microRNA-related aberrations such as somatic amplification of miR-17-92 (also known as MIR17HG). Whole-genome sequencing revealed that tumours had an overall low recurrence of single-nucleotide variants (SNVs), but showed prevalent genomic instability caused by widespread occurrence of R-loop structures. We show that R-loop-associated chromosomal instability can be induced by the loss of DICER1 function. Comparison of primary tumours and matched relapse samples showed a strong conservation of structural variants, but low conservation of SNVs. Moreover, many newly acquired SNVs are associated with a mutational signature related to cisplatin treatment. Finally, we show that targeting R-loops with topoisomerase and PARP inhibitors might be an effective treatment strategy for this deadly disease.


Subject(s)
MicroRNAs/genetics , Neoplasms, Germ Cell and Embryonal/genetics , DEAD-box RNA Helicases/genetics , DNA Topoisomerases, Type I/genetics , Humans , Mutation , Neoplasms, Germ Cell and Embryonal/diagnosis , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerases/genetics , Polymorphism, Single Nucleotide , RNA, Long Noncoding , Recurrence , Ribonuclease III/genetics
6.
Genes Dev ; 31(17): 1738-1753, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28971956

ABSTRACT

Medulloblastoma is the most common solid primary brain tumor in children. Remarkable advancements in the understanding of the genetic and epigenetic basis of these tumors have informed their recent molecular classification. However, the genotype/phenotype correlation of the subgroups remains largely uncharacterized. In particular, the metabolic phenotype is of great interest because of its druggability, which could lead to the development of novel and more tailored therapies for a subset of medulloblastoma. p73 plays a critical role in a range of cellular metabolic processes. We show overexpression of p73 in a proportion of non-WNT medulloblastoma. In these tumors, p73 sustains cell growth and proliferation via regulation of glutamine metabolism. We validated our results in a xenograft model in which we observed an increase in survival time in mice on a glutamine restriction diet. Notably, glutamine starvation has a synergistic effect with cisplatin, a component of the current medulloblastoma chemotherapy. These findings raise the possibility that glutamine depletion can be used as an adjuvant treatment for p73-expressing medulloblastoma.


Subject(s)
Cerebellar Neoplasms/diet therapy , Cerebellar Neoplasms/physiopathology , Glutamine/metabolism , Medulloblastoma/diet therapy , Medulloblastoma/physiopathology , Tumor Protein p73/genetics , Tumor Protein p73/metabolism , AMP-Activated Protein Kinases/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Disease Models, Animal , Gene Expression Regulation, Neoplastic/genetics , Glutaminase/genetics , Glutaminase/metabolism , Heterografts , Humans , Mice , Mitochondria/genetics , Mitochondria/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Survival Analysis , TOR Serine-Threonine Kinases/metabolism , Treatment Outcome , Tumor Cells, Cultured
7.
J Neurooncol ; 168(2): 317-332, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38630384

ABSTRACT

INTRODUCTION: Patients with pediatric low-grade gliomas (pLGGs), the most common primary brain tumors in children, can often benefit from MAPK inhibitor (MAPKi) treatment. However, rapid tumor regrowth, also referred to as rebound growth, may occur once treatment is stopped, constituting a significant clinical challenge. METHODS: Four patient-derived pediatric glioma models were investigated to model rebound growth in vitro based on viable cell counts in response to MAPKi treatment and withdrawal. A multi-omics dataset (RNA sequencing and LC-MS/MS based phospho-/proteomics) was generated to investigate possible rebound-driving mechanisms. Following in vitro validation, putative rebound-driving mechanisms were validated in vivo using the BT-40 orthotopic xenograft model. RESULTS: Of the tested models, only a BRAFV600E-driven model (BT-40, with additional CDKN2A/Bdel) showed rebound growth upon MAPKi withdrawal. Using this model, we identified a rapid reactivation of the MAPK pathway upon MAPKi withdrawal in vitro, also confirmed in vivo. Furthermore, transient overactivation of key MAPK molecules at transcriptional (e.g. FOS) and phosphorylation (e.g. pMEK) levels, was observed in vitro. Additionally, we detected increased expression and secretion of cytokines (CCL2, CX3CL1, CXCL10 and CCL7) upon MAPKi treatment, maintained during early withdrawal. While increased cytokine expression did not have tumor cell intrinsic effects, presence of these cytokines in conditioned media led to increased attraction of microglia cells in vitro. CONCLUSION: Taken together, these data indicate rapid MAPK reactivation upon MAPKi withdrawal as a tumor cell intrinsic rebound-driving mechanism. Furthermore, increased secretion of microglia-recruiting cytokines may play a role in treatment response and rebound growth upon withdrawal, warranting further evaluation.


Subject(s)
Brain Neoplasms , Cytokines , Glioma , Microglia , Mutation , Protein Kinase Inhibitors , Proto-Oncogene Proteins B-raf , Humans , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Microglia/metabolism , Microglia/drug effects , Glioma/metabolism , Glioma/drug therapy , Glioma/pathology , Glioma/genetics , Cytokines/metabolism , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Xenograft Model Antitumor Assays , Child , Mice , Cell Proliferation/drug effects , Cell Line, Tumor , MAP Kinase Signaling System/drug effects
8.
Mol Cancer ; 22(1): 136, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37582744

ABSTRACT

BACKGROUND: New therapies are urgently needed in melanoma, particularly in late-stage patients not responsive to immunotherapies and kinase inhibitors. To uncover novel potentiators of T cell anti-tumor immunity, we carried out an ex vivo pharmacological screen and identified 5-Nonyloxytryptamine (5-NL), a serotonin agonist, as increasing the ability of T cells to target tumor cells. METHODS: The pharmacological screen utilized lymphocytic choriomeningitis virus (LCMV)-primed splenic T cells and melanoma B16.F10 cells expressing the LCMV gp33 CTL epitope. In vivo tumor growth in C57BL/6 J and NSG mice, in vivo antibody depletion, flow cytometry, immunoblot, CRISPR/Cas9 knockout, histological and RNA-Seq analyses were used to decipher 5-NL's immunomodulatory effects in vitro and in vivo. RESULTS: 5-NL delayed tumor growth in vivo and the phenotype was dependent on the hosts' immune system, specifically CD8+ T cells. 5-NL's pro-immune effects were not directly consequential to T cells. Rather, 5-NL upregulated antigen presenting machinery in melanoma and other tumor cells in vitro and in vivo without increasing PD-L1 expression. Mechanistic studies indicated that 5-NL's induced MHC-I expression was inhibited by pharmacologically preventing cAMP Response Element-Binding Protein (CREB) phosphorylation. Importantly, 5-NL combined with anti-PD1 therapy showed significant improvement when compared to single anti-PD-1 treatment. CONCLUSIONS: This study demonstrates novel therapeutic opportunities for augmenting immune responses in poorly immunogenic tumors.


Subject(s)
CD8-Positive T-Lymphocytes , Melanoma , Mice , Animals , Up-Regulation , Mice, Inbred C57BL , Lymphocytic choriomeningitis virus/genetics , Melanoma/drug therapy
9.
Am J Hum Genet ; 106(2): 246-255, 2020 02 06.
Article in English | MEDLINE | ID: mdl-32004447

ABSTRACT

Ral (Ras-like) GTPases play an important role in the control of cell migration and have been implicated in Ras-mediated tumorigenicity. Recently, variants in RALA were also described as a cause of intellectual disability and developmental delay, indicating the relevance of this pathway to neuropediatric diseases. Here, we report the identification of bi-allelic variants in RALGAPA1 (encoding Ral GTPase activating protein catalytic alpha subunit 1) in four unrelated individuals with profound neurodevelopmental disability, muscular hypotonia, feeding abnormalities, recurrent fever episodes, and infantile spasms . Dysplasia of corpus callosum with focal thinning of the posterior part and characteristic facial features appeared to be unifying findings. RalGAPA1 was absent in the fibroblasts derived from two affected individuals suggesting a loss-of-function effect of the RALGAPA1 variants. Consequently, RalA activity was increased in these cell lines, which is in keeping with the idea that RalGAPA1 deficiency causes a constitutive activation of RalA. Additionally, levels of RalGAPB, a scaffolding subunit of the RalGAP complex, were dramatically reduced, indicating a dysfunctional RalGAP complex. Moreover, RalGAPA1 deficiency clearly increased cell-surface levels of lipid raft components in detached fibroblasts, which might indicate that anchorage-dependence of cell growth signaling is disturbed. Our findings indicate that the dysregulation of the RalA pathway has an important impact on neuronal function and brain development. In light of the partially overlapping phenotype between RALA- and RALGAPA1-associated diseases, it appears likely that dysregulation of the RalA signaling pathway leads to a distinct group of genetic syndromes that we suggest could be named RALopathies.


Subject(s)
Feeding and Eating Disorders/etiology , GTPase-Activating Proteins/genetics , Muscle Hypotonia/etiology , Mutation , Nerve Tissue Proteins/genetics , Neurodevelopmental Disorders/etiology , Spasms, Infantile/etiology , Alleles , Cell Movement , Cell Proliferation , Child, Preschool , Family , Feeding and Eating Disorders/pathology , Female , Humans , Infant , Male , Muscle Hypotonia/pathology , Neurodevelopmental Disorders/pathology , Phenotype , Spasms, Infantile/pathology
10.
Acta Neuropathol ; 146(4): 551-564, 2023 10.
Article in English | MEDLINE | ID: mdl-37656187

ABSTRACT

Pilocytic astrocytoma (PA), the most common pediatric brain tumor, is driven by aberrant mitogen-activated protein kinase signaling most commonly caused by BRAF gene fusions or activating mutations. While 5-year overall survival rates exceed 95%, tumor recurrence or progression constitutes a major clinical challenge in incompletely resected tumors. Here, we used similarity network fusion (SNF) analysis in an integrative multi-omics approach employing RNA transcriptomic and mass spectrometry-based proteomic profiling to molecularly characterize PA tissue samples from 62 patients. Thereby, we uncovered that PAs segregated into two molecularly distinct groups, namely, Group 1 and Group 2, which were validated in three non-overlapping cohorts. Patients with Group 1 tumors were significantly younger and showed worse progression-free survival compared to patients with group 2 tumors. Ingenuity pathways analysis (IPA) and gene set enrichment analysis (GSEA) revealed that Group 1 tumors were enriched for immune response pathways, such as interferon signaling, while Group 2 tumors showed enrichment for action potential and neurotransmitter signaling pathways. Analysis of immune cell-related gene signatures showed an enrichment of infiltrating T Cells in Group 1 versus Group 2 tumors. Taken together, integrative multi-omics of PA identified biologically distinct and prognostically relevant tumor groups that may improve risk stratification of this single pathway driven tumor type.


Subject(s)
Astrocytoma , Brain Neoplasms , Child , Humans , Multiomics , Proteomics , Astrocytoma/genetics , Brain Neoplasms/genetics , Action Potentials
11.
J Neurooncol ; 165(2): 329-342, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37976029

ABSTRACT

PURPOSE: Primary brain tumors are a leading cause of cancer-related death in children, and medulloblastoma is the most common malignant pediatric brain tumor. The current molecular characterization of medulloblastoma is mainly based on protein-coding genes, while little is known about the involvement of long non-coding RNAs (lncRNAs). This study aimed to elucidate the role of the lncRNA OTX2-AS1 in medulloblastoma. METHODS: Analyses of DNA copy number alterations, methylation profiles, and gene expression data were used to characterize molecular alterations of OTX2-AS1 in medulloblastoma tissue samples. In vitro analyses of medulloblastoma cell models and orthotopic in vivo experiments were carried out for functional characterization of OTX2-AS1. High-throughput drug screening was employed to identify pharmacological inhibitors, while proteomics and metabolomics analyses were performed to address potential mechanisms of drug action. RESULTS: We detected amplification and consecutive overexpression of OTX2 and OTX2-AS1 in a subset of medulloblastomas. In addition, OTX2-AS1 promoter methylation was linked to OTX2-AS1 expression. OTX2-AS1 knockout reduced medulloblastoma cell viability and cell migration in vitro and prolonged survival in the D283 orthotopic medulloblastoma mouse xenograft model. Pharmacological inhibition of BCL-2 suppressed the growth of OTX2-AS1 overexpressing medulloblastoma cells in vitro. CONCLUSIONS: Our study revealed a pro-tumorigenic role of OTX2-AS1 in medulloblastoma and identified BCL-2 inhibition as a potential therapeutic approach to target OTX2-AS1 overexpressing medulloblastoma cells.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Medulloblastoma , RNA, Long Noncoding , Animals , Child , Humans , Mice , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Medulloblastoma/pathology , Otx Transcription Factors/genetics , Otx Transcription Factors/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Long Noncoding/genetics
12.
J Neurooncol ; 163(1): 143-158, 2023 May.
Article in English | MEDLINE | ID: mdl-37183219

ABSTRACT

PURPOSE: We and others have demonstrated that MYC-amplified medulloblastoma (MB) cells are susceptible to class I histone deacetylase inhibitor (HDACi) treatment. However, single drug treatment with HDACi has shown limited clinical efficacy. We hypothesized that addition of a second compound acting synergistically with HDACi may enhance efficacy. METHODS: We used a gene expression dataset to identify PLK1 as a second target in MB cells and validated the relevance of PLK1 in MB. We measured cell metabolic activity, viability, and cycle progression in MB cells after treatment with PLK1-specific inhibitors (PLK1i). Chou-Talalay synergy calculations were used to determine the nature of class I HDACi entinostat and PLK1i interaction which was validated. Finally, the clinical potential of the combination was assessed in the in vivo experiment. RESULTS: MYC-amplified tumor cells are highly sensitive towards treatment with ATP-competitive PLK1i as a monotherapy. Entinostat and PLK1i in combination act synergistically in MYC-driven MB cells, exerting cytotoxic effects at clinically relevant concentrations. The downstream effect is exerted via MYC-related pathways, pointing out the potential of MYC amplification as a clinically feasible predictive biomarker for patient selection. While entinostat significantly extended survival of mice implanted with orthotopic MYC-amplified MB PDX, there was no evidence of the improvement of survival when treating the animals with the combination. CONCLUSION: The combination of entinostat and PLK1i showed synergistic interaction in vitro, but not in vivo. Therefore, further screening of blood-brain barrier penetrating PLK1i is warranted to determine the true potential of the combination as no on-target activity was observed after PLK1i volasertib treatment in vivo.


Subject(s)
Antineoplastic Agents , Cerebellar Neoplasms , Medulloblastoma , Mice , Animals , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Medulloblastoma/drug therapy , Medulloblastoma/metabolism , Antineoplastic Agents/therapeutic use , Cerebellar Neoplasms/drug therapy , Cell Line, Tumor
13.
Nature ; 529(7586): 351-7, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26760213

ABSTRACT

The development of targeted anti-cancer therapies through the study of cancer genomes is intended to increase survival rates and decrease treatment-related toxicity. We treated a transposon-driven, functional genomic mouse model of medulloblastoma with 'humanized' in vivo therapy (microneurosurgical tumour resection followed by multi-fractionated, image-guided radiotherapy). Genetic events in recurrent murine medulloblastoma exhibit a very poor overlap with those in matched murine diagnostic samples (<5%). Whole-genome sequencing of 33 pairs of human diagnostic and post-therapy medulloblastomas demonstrated substantial genetic divergence of the dominant clone after therapy (<12% diagnostic events were retained at recurrence). In both mice and humans, the dominant clone at recurrence arose through clonal selection of a pre-existing minor clone present at diagnosis. Targeted therapy is unlikely to be effective in the absence of the target, therefore our results offer a simple, proximal, and remediable explanation for the failure of prior clinical trials of targeted therapy.


Subject(s)
Cerebellar Neoplasms/therapy , Clone Cells/drug effects , Clone Cells/metabolism , Medulloblastoma/therapy , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Selection, Genetic/drug effects , Animals , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Cerebellar Neoplasms/radiotherapy , Cerebellar Neoplasms/surgery , Clone Cells/pathology , Craniospinal Irradiation , DNA Mutational Analysis , Disease Models, Animal , Drosophila melanogaster/cytology , Drosophila melanogaster/genetics , Female , Genome, Human/genetics , Humans , Male , Medulloblastoma/genetics , Medulloblastoma/pathology , Medulloblastoma/radiotherapy , Medulloblastoma/surgery , Mice , Molecular Targeted Therapy/methods , Neoplasm Recurrence, Local/therapy , Radiotherapy, Image-Guided , Signal Transduction , Xenograft Model Antitumor Assays
14.
Neurosurg Rev ; 45(4): 2757-2765, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35441993

ABSTRACT

Cerebellar mutism syndrome (CMS) occurs in one out of four children after posterior fossa tumor surgery, with open questions regarding risk factors, pathophysiology, and prevention strategies. Because of similarities between several cerebellar syndromes, a common pathophysiology with damage to the dentato-thalamo-cortical and dentato-rubro-olivary pathways has been proposed. Hypertrophic olivary degeneration (HOD) is an imaging correlate of cerebellar injury observed for instance in stroke patients. Aim of this study was to investigate whether the occurrence and severity of CMS correlates with the extent of damage to the relevant anatomical structures and whether HOD is a time-dependent postoperative neuroimaging correlate of CMS. We performed a retrospective single center study of CMS patients compared with matched non-CMS controls. CMS occurred in 10 children (13% of the overall cohort) with a median age of 8 years. Dentate nucleus (DN) injury significantly correlated with CMS, and superior cerebellar peduncle (SCP) injury was associated by tendency. HOD was observed as a dynamic neuroimaging phenomenon in the postoperative course and its presence significantly correlated with CMS and DN injury. Children who later developed HOD had an earlier onset and tended to have longer persistence of CMS. These findings can guide surgical measures to protect the DN and SCP during posterior fossa tumor resections and to avoid a high damage burden (i.e., bilateral damage). Development of intraoperative neuromonitoring of the cerebellar efferent pathways as well as improved preoperative risk stratification could help to establish a patient-specific strategy with optimal balance between degree of resection and functional integrity.


Subject(s)
Cerebellar Diseases , Cerebellar Neoplasms , Infratentorial Neoplasms , Mutism , Cerebellar Diseases/surgery , Cerebellar Neoplasms/complications , Cerebellar Neoplasms/surgery , Child , Humans , Hypertrophy/etiology , Hypertrophy/surgery , Infratentorial Neoplasms/surgery , Mutism/complications , Postoperative Complications/etiology , Retrospective Studies , Syndrome
15.
Proc Natl Acad Sci U S A ; 115(13): 3392-3397, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29531057

ABSTRACT

The main cell of origin of the Sonic hedgehog (SHH) subgroup of medulloblastoma (MB) is granule cell precursors (GCPs), a SHH-dependent transient amplifying population in the developing cerebellum. SHH-MBs can be further subdivided based on molecular and clinical parameters, as well as location because SHH-MBs occur preferentially in the lateral cerebellum (hemispheres). Our analysis of adult patient data suggests that tumors with Smoothened (SMO) mutations form more specifically in the hemispheres than those with Patched 1 (PTCH1) mutations. Using sporadic mouse models of SHH-MB with the two mutations commonly seen in adult MB, constitutive activation of Smo (SmoM2) or loss-of-Ptch1, we found that regardless of timing of induction or type of mutation, tumors developed primarily in the hemispheres, with SmoM2-mutants indeed showing a stronger specificity. We further uncovered that GCPs in the hemispheres are more susceptible to high-level SHH signaling compared with GCPs in the medial cerebellum (vermis), as more SmoM2 or Ptch1-mutant hemisphere cells remain undifferentiated and show increased tumorigenicity when transplanted. Finally, we identified location-specific GCP gene-expression profiles, and found that deletion of the genes most highly expressed in the hemispheres (Nr2f2) or vermis (Engrailed1) showed opposing effects on GCP differentiation. Our studies thus provide insights into intrinsic differences within GCPs that impact on SHH-MB progression.


Subject(s)
Cerebellar Neoplasms/pathology , Cerebellum/pathology , Hedgehog Proteins/metabolism , Medulloblastoma/pathology , Patched-1 Receptor/metabolism , Smoothened Receptor/metabolism , Adult , Animals , Cell Differentiation , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/metabolism , Cerebellum/metabolism , Hedgehog Proteins/genetics , Humans , Infant , Medulloblastoma/genetics , Medulloblastoma/metabolism , Mice , Patched-1 Receptor/genetics , Signal Transduction , Smoothened Receptor/genetics , Transcriptome
16.
Chembiochem ; 21(9): 1329-1334, 2020 05 04.
Article in English | MEDLINE | ID: mdl-31802583

ABSTRACT

Rapid detection of cysteine oxidation in living cells is critical in advancing our understanding of responses to reactive oxygen species (ROS) and oxidative stress. Accordingly, there is a need to develop chemical probes that facilitate proteome-wide detection of cysteine's many oxidation states. Herein, we report the first whole-cell proteomics analysis using a norbornene probe to detect the initial product of cysteine oxidation: cysteine sulfenic acid. The oxidised proteins identified in the HeLa cell model represent the first targets of the ROS hydrogen peroxide. The panel of protein hits provides new and important information about the targets of oxidative stress, including 148 new protein members of the sulfenome. These findings provide new leads for the study and understanding of redox signalling and diseases associated with oxidative stress.


Subject(s)
Cysteine/analogs & derivatives , Cysteine/chemistry , Norbornanes/chemistry , Oxidative Stress , Proteome/metabolism , Sulfenic Acids/chemistry , HeLa Cells , Humans , Oxidation-Reduction , Proteome/analysis , Signal Transduction
17.
Blood ; 132(3): 307-320, 2018 07 19.
Article in English | MEDLINE | ID: mdl-29724897

ABSTRACT

Heat shock protein 90 (HSP90) stabilizes many client proteins, including the BCR-ABL1 oncoprotein. BCR-ABL1 is the hallmark of chronic myeloid leukemia (CML) in which treatment-free remission (TFR) is limited, with clinical and economic consequences. Thus, there is an urgent need for novel therapeutics that synergize with current treatment approaches. Several inhibitors targeting the N-terminal domain of HSP90 are under investigation, but side effects such as induction of the heat shock response (HSR) and toxicity have so far precluded their US Food and Drug Administration approval. We have developed a novel inhibitor (aminoxyrone [AX]) of HSP90 function by targeting HSP90 dimerization via the C-terminal domain. This was achieved by structure-based molecular design, chemical synthesis, and functional preclinical in vitro and in vivo validation using CML cell lines and patient-derived CML cells. AX is a promising potential candidate that induces apoptosis in the leukemic stem cell fraction (CD34+CD38-) as well as the leukemic bulk (CD34+CD38+) of primary CML and in tyrosine kinase inhibitor (TKI)-resistant cells. Furthermore, BCR-ABL1 oncoprotein and related pro-oncogenic cellular responses are downregulated, and targeting the HSP90 C terminus by AX does not induce the HSR in vitro and in vivo. We also probed the potential of AX in other therapy-refractory leukemias. Therefore, AX is the first peptidomimetic C-terminal HSP90 inhibitor with the potential to increase TFR in TKI-sensitive and refractory CML patients and also offers a novel therapeutic option for patients with other types of therapy-refractory leukemia because of its low toxicity profile and lack of HSR.


Subject(s)
Antineoplastic Agents/pharmacology , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/chemistry , Heat-Shock Response/drug effects , Imatinib Mesylate/pharmacology , Protein Interaction Domains and Motifs , Protein Kinase Inhibitors/pharmacology , Protein Multimerization , Animals , Antineoplastic Agents/chemistry , Binding Sites , Biomarkers, Tumor , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Disease Models, Animal , Drug Resistance, Neoplasm/drug effects , Fusion Proteins, bcr-abl/antagonists & inhibitors , Fusion Proteins, bcr-abl/chemistry , HSP90 Heat-Shock Proteins/metabolism , Humans , Imatinib Mesylate/chemistry , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Mice , Models, Molecular , Molecular Conformation , Molecular Structure , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Multimerization/drug effects , Spectrum Analysis , Structure-Activity Relationship , Xenograft Model Antitumor Assays
18.
Nature ; 511(7510): 428-34, 2014 Jul 24.
Article in English | MEDLINE | ID: mdl-25043047

ABSTRACT

Medulloblastoma is a highly malignant paediatric brain tumour currently treated with a combination of surgery, radiation and chemotherapy, posing a considerable burden of toxicity to the developing child. Genomics has illuminated the extensive intertumoral heterogeneity of medulloblastoma, identifying four distinct molecular subgroups. Group 3 and group 4 subgroup medulloblastomas account for most paediatric cases; yet, oncogenic drivers for these subtypes remain largely unidentified. Here we describe a series of prevalent, highly disparate genomic structural variants, restricted to groups 3 and 4, resulting in specific and mutually exclusive activation of the growth factor independent 1 family proto-oncogenes, GFI1 and GFI1B. Somatic structural variants juxtapose GFI1 or GFI1B coding sequences proximal to active enhancer elements, including super-enhancers, instigating oncogenic activity. Our results, supported by evidence from mouse models, identify GFI1 and GFI1B as prominent medulloblastoma oncogenes and implicate 'enhancer hijacking' as an efficient mechanism driving oncogene activation in a childhood cancer.


Subject(s)
DNA-Binding Proteins/genetics , Enhancer Elements, Genetic/genetics , Genomic Structural Variation/genetics , Medulloblastoma/genetics , Oncogenes/genetics , Proto-Oncogene Proteins/genetics , Repressor Proteins/genetics , Transcription Factors/genetics , Animals , Child , Chromosomes, Human, Pair 9/genetics , DNA-Binding Proteins/metabolism , Humans , Medulloblastoma/classification , Medulloblastoma/pathology , Mice , Proto-Oncogene Proteins/metabolism , Repressor Proteins/metabolism , Transcription Factors/metabolism
19.
Int J Mol Sci ; 21(12)2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32585856

ABSTRACT

Medulloblastomas arise from undifferentiated precursor cells in the cerebellum and account for about 20% of all solid brain tumors during childhood; standard therapies include radiation and chemotherapy, which oftentimes come with severe impairment of the cognitive development of the young patients. Here, we show that the posttranscriptional regulator Y-box binding protein 1 (YBX1), a DNA- and RNA-binding protein, acts as an oncogene in medulloblastomas by regulating cellular survival and apoptosis. We observed different cellular responses upon YBX1 knockdown in several medulloblastoma cell lines, with significantly altered transcription and subsequent apoptosis rates. Mechanistically, PAR-CLIP for YBX1 and integration with RNA-Seq data uncovered direct posttranscriptional control of the heterochromatin-associated gene CBX5; upon YBX1 knockdown and subsequent CBX5 mRNA instability, heterochromatin-regulated genes involved in inflammatory response, apoptosis and death receptor signaling were de-repressed. Thus, YBX1 acts as an oncogene in medulloblastoma through indirect transcriptional regulation of inflammatory genes regulating apoptosis and represents a promising novel therapeutic target in this tumor entity.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Gene Expression Regulation, Neoplastic , Heterochromatin/genetics , Inflammation/pathology , Medulloblastoma/pathology , RNA, Messenger/metabolism , Y-Box-Binding Protein 1/metabolism , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/immunology , Cerebellar Neoplasms/metabolism , Cerebellar Neoplasms/pathology , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/genetics , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Medulloblastoma/genetics , Medulloblastoma/immunology , Medulloblastoma/metabolism , RNA, Messenger/genetics , Tumor Cells, Cultured , Y-Box-Binding Protein 1/genetics
20.
Int J Cancer ; 145(12): 3402-3413, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31081944

ABSTRACT

Medulloblastoma is the most common malignant brain cancer in children. Since previous studies have mainly focused on alterations in the coding genome, our understanding of the contribution of long noncoding RNAs (lncRNAs) to medulloblastoma biology is just emerging. Using patient-derived data, we show that the promoter of lncRNA TP73-AS1 is hypomethylated and that the transcript is highly expressed in the SHH subgroup. Furthermore, high expression of TP73-AS1 is correlated with poor outcome in patients with TP53 wild-type SHH tumors. Silencing TP73-AS1 in medulloblastoma tumor cells induced apoptosis, while proliferation and migration were inhibited in culture. In vivo, silencing TP73-AS1 in medulloblastoma tumor cells resulted in reduced tumor growth, reduced proliferation of tumor cells, increased apoptosis and led to prolonged survival of tumor-bearing mice. Together, our study suggests that the lncRNA TP73-AS1 is a prognostic marker and therapeutic target in medulloblastoma tumors and serves as a proof of concept that lncRNAs are important factors in the disease.


Subject(s)
Cerebellar Neoplasms/genetics , Medulloblastoma/genetics , RNA, Long Noncoding/genetics , Animals , Apoptosis/genetics , Biomarkers, Tumor/genetics , Cell Line, Tumor , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Signal Transduction/genetics , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL