Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
J Med Primatol ; 52(5): 290-293, 2023 10.
Article in English | MEDLINE | ID: mdl-37658590

ABSTRACT

HIV-2 Group F virus with an origin in NHPs was isolated from only two individuals. Two serial passages in hu-mice showed increased viral loads, CD4+ T cell decline and nonsynonymous genetic changes showing its capacity for further evolution, and spread in the human.


Subject(s)
HIV-2 , Humans , Animals , Mice , HIV-2/genetics , Serial Passage , Viral Load
2.
J Med Primatol ; 52(5): 294-297, 2023 10.
Article in English | MEDLINE | ID: mdl-37658595

ABSTRACT

HIV-1 emerged from SIVcpz evolving in humans. Humanized mice are an effective tool for assessing viral evolution via measuring viral loads, CD4+ T cell decline, and analyzing genetic changes. Four serial passages showed many non-synonymous mutations important for the adaptation and evolution of SIVcpz to human immune cells.


Subject(s)
HIV-1 , Pan troglodytes , Humans , Animals , Mice , HIV-1/genetics , Serial Passage , Viral Load
3.
J Med Primatol ; 51(5): 288-291, 2022 10.
Article in English | MEDLINE | ID: mdl-36030391

ABSTRACT

Critical genetic adaptations needed for SIV chimpanzee to evolve into HIV-1 are not well understood. Using humanized mice, we mimicked the evolution of SIVcpzLB715 into HIV-1 Group M over the course of four generations. Higher initial viral load, increased CD4+ T-cell decline, and nonsynonymous substitutions arose suggesting viral evolution.


Subject(s)
HIV-1 , Rodent Diseases , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Disease Models, Animal , Evolution, Molecular , HIV-1/genetics , Mice , Pan troglodytes/genetics , Simian Immunodeficiency Virus/genetics , Viral Load
4.
J Med Primatol ; 51(5): 284-287, 2022 10.
Article in English | MEDLINE | ID: mdl-36030392

ABSTRACT

Serial passage of SIVmac239 allows for greater understanding of the genetic changes necessary for cross-species transmission of primate lentiviruses into humans. Using humanized mice, we show that adaptive mutations continue to accumulate in SIVmac239 during four serial passages, with persistent CD4+ T cell decline and increases in plasma viral loads.


Subject(s)
Rodent Diseases , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Humans , Macaca mulatta , Mice , Serial Passage , Simian Immunodeficiency Virus/genetics , Viral Load
5.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Article in English | MEDLINE | ID: mdl-32661005

ABSTRACT

Adequate antiretroviral (ARV) concentrations in lymphoid tissues are critical for optimal antiretroviral therapy (ART). While the spleen contains 25% of the body's lymphocytes, there are minimal data on ARV penetration in this organ. This study quantified total and protein-unbound splenic ARV concentrations and determined whether drug transporters, sex, or infection status were modifiers of these concentrations in animal models and humans. Two humanized mice models (hu-HSC-Rag [n = 36; 18 HIV-positive (HIV+) and 18 HIV-negative (HIV-)] and bone marrow-liver-thymus [n = 13; 7 HIV+ and 6 HIV-]) and one nonhuman primate (NHP) model (rhesus macaque [n = 18; 10 SHIV+ and 8 SHIV-]) were dosed to steady state with ARV combinations. HIV+ human spleens (n = 14) from the National NeuroAIDS Tissue Consortium were analyzed postmortem (up to 24 h postdose). ARV concentrations were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS), drug transporter concentrations were measured with LC-MS proteomics, and protein binding in NHP spleens was determined by rapid equilibrium dialysis. Mice generally had the lowest splenic concentrations of the three species. Protein binding in splenic tissue was 6 to 96%, compared to 76 to 99% in blood plasma. NHPs had quantifiable Mrp4, Bcrp, and Ent1 concentrations, and humans had quantifiable ENT1 concentrations. None significantly correlated with tissue ARV concentrations. There was also no observable influence of infection status or sex. With these dosing strategies, NHP splenic penetration most closely resembled that of humans. These data can inform tissue pharmacokinetic scaling to humans to target HIV reservoirs by identifying important species-related differences.


Subject(s)
Anti-HIV Agents , HIV Infections , Pharmaceutical Preparations , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Animals , Anti-HIV Agents/therapeutic use , Chromatography, Liquid , HIV Infections/drug therapy , Humans , Macaca mulatta , Mice , Models, Animal , Neoplasm Proteins , Spleen , Tandem Mass Spectrometry
6.
J Med Primatol ; 49(5): 284-287, 2020 10.
Article in English | MEDLINE | ID: mdl-33460210

ABSTRACT

HIV-1 evolved from SIV during cross-species transmission events, though viral genetic changes are not well understood. Here, we studied the evolution of SIVcpzLB715 into HIV-1 Group M using humanized mice. High viral loads, rapid CD4+ T-cell decline, and non-synonymous substitutions were identified throughout the viral genome suggesting viral adaptation.


Subject(s)
Ape Diseases/virology , HIV-1/genetics , Mutation , Pan troglodytes , Simian Immunodeficiency Virus/genetics , Animals , Disease Models, Animal , Evolution, Molecular
7.
J Med Primatol ; 49(1): 40-43, 2020 02.
Article in English | MEDLINE | ID: mdl-31576587

ABSTRACT

HIV-1 evolved from its progenitor SIV strains, but details are lacking on its adaptation to the human host. We followed the evolution of SIVcpz in humanized mice to mimic cross-species transmission. Increasing viral loads, CD4+ T-cell decline, and non-synonymous mutations were seen in the entire genome reflecting viral adaptation.


Subject(s)
CD4 Lymphocyte Count , Evolution, Molecular , Genome, Viral , HIV-1/physiology , Simian Immunodeficiency Virus/physiology , Viral Load , Animals , Biological Evolution , HIV Infections/veterinary , HIV Infections/virology , HIV-1/genetics , Mice , Mice, Transgenic , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/genetics
8.
J Med Primatol ; 49(5): 280-283, 2020 10.
Article in English | MEDLINE | ID: mdl-32777101

ABSTRACT

Through the accumulation of adaptive mutations, HIV-2 originated from SIVsm. To identify these evolutionary changes, a humanized mouse model recapitulated the process that likely enabled this cross-species transmission event. Various adaptive mutations arose, as well as increased virulence and CD4+ T-cell decline as the virus was passaged in humanized mice.


Subject(s)
CD4 Lymphocyte Count , Evolution, Molecular , HIV-2/genetics , HIV-2/pathogenicity , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/pathogenicity , Animals , Cercocebus atys , Disease Models, Animal , Mice , Mice, Transgenic , Monkey Diseases , Mutation , Virulence
9.
Article in English | MEDLINE | ID: mdl-31611355

ABSTRACT

For HIV cure strategies like "kick and kill" to succeed, antiretroviral (ARV) drugs must reach effective concentrations in putative viral reservoirs. We characterize penetration of six ARVs in three preclinical animal models and humans. We found that standard dosing strategies in preclinical species closely mimicked tissue concentrations in humans for some, but not all, ARVs. These results have implications for interpreting HIV treatment, prevention, or cure interventions between preclinical and clinical models.


Subject(s)
Anti-Retroviral Agents/therapeutic use , HIV Infections/drug therapy , Animals , Anti-HIV Agents/therapeutic use , Atazanavir Sulfate/therapeutic use , Emtricitabine/therapeutic use , Female , Humans , In Vitro Techniques , Maraviroc/therapeutic use , Mice , Raltegravir Potassium/therapeutic use , Tenofovir/therapeutic use
10.
J Pharmacol Exp Ther ; 370(3): 360-368, 2019 09.
Article in English | MEDLINE | ID: mdl-31235531

ABSTRACT

In a "kick and kill" strategy for human immunodeficiency virus (HIV) eradication, protective concentrations of antiretrovirals (ARVs) in the lymph node are important to prevent vulnerable cells from further HIV infection. However, the factors responsible for drug distribution and concentration into these tissues are largely unknown. Although humanized mice and nonhuman primates (NHPs) are crucial to HIV research, ARV tissue pharmacology has not been well characterized across species. This study investigated the influence of drug transporter expression, viral infection, and sex on ARV penetration within lymph nodes of animal models and humans. Six ARVs were dosed for 10 days in humanized mice and NHPs. Plasma and lymph nodes were collected at necropsy, 24 hours after the last dose. Human lymph node tissue and plasma from deceased patients were collected from tissue banks. ARV, active metabolite, and endogenous nucleotide concentrations were measured by liquid chromatography-tandem mass spectrometry, and drug transporter expression was measured using quantitative polymerase chain reaction and quantitative targeted absolute proteomics. In NHPs and humans, lymph node ARV concentrations were greater than or equal to plasma, and tenofovir diphosphate/deoxyadenosine triphosphate concentration ratios achieved efficacy targets in lymph nodes from all three species. There was no effect of infection or sex on ARV concentrations. Low drug transporter expression existed in lymph nodes from all species, and no predictive relationships were found between transporter gene/protein expression and ARV penetration. Overall, common preclinical models of HIV infection were well suited to predict human ARV exposure in lymph nodes, and low transporter expression suggests primarily passive drug distribution in these tissues. SIGNIFICANCE STATEMENT: During human immunodeficiency virus (HIV) eradication strategies, protective concentrations of antiretrovirals (ARVs) in the lymph node prevent vulnerable cells from further HIV infection. However, ARV tissue pharmacology has not been well characterized across preclinical species used for HIV eradication research, and the influence of drug transporters, HIV infection, and sex on ARV distribution and concentration into the lymph node is largely unknown. Here we show that two animal models of HIV infection (humanized mice and nonhuman primates) were well suited to predict human ARV exposure in lymph nodes. Additionally, we found that drug transporter expression was minimal and-along with viral infection and sex-did not affect ARV penetration into lymph nodes from any species.


Subject(s)
Anti-HIV Agents/metabolism , Anti-HIV Agents/pharmacology , Gene Expression Regulation/drug effects , HIV/physiology , Lymph Nodes/metabolism , Membrane Transport Proteins/metabolism , Sex Characteristics , Animals , Anti-HIV Agents/blood , Female , HIV/drug effects , Humans , Lymph Nodes/drug effects , Macaca mulatta , Male , Mice , Species Specificity
11.
Xenobiotica ; 49(10): 1192-1201, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30346892

ABSTRACT

1. Antiretroviral concentrations in cerebrospinal fluid (CSF) are used as surrogate for brain tissue, although sparse data support this. We quantified antiretrovirals in brain tissue across preclinical models, compared them to CSF, and calculated 90% inhibitory quotients (IQ90) for nonhuman primate (NHP) brain tissue. Spatial distribution of efavirenz was performed by mass-spectrometry imaging (MSI). 2. HIV or RT-SHIV-infected and uninfected animals from two humanized mouse models (hemopoietic-stem cell/RAG2-, n = 36; bone marrow-liver-thymus/BLT, n =13) and an NHP model (rhesus macaque, n =18) were dosed with six antiretrovirals. Brain tissue, CSF (NHPs), and plasma were collected at necropsy. Drug concentrations were measured by LC-MS/MS. Rapid equilibrium dialysis determined protein binding in NHP brain. 3. Brain tissue penetration of most antiretrovirals were >10-fold lower (p < 0.02) in humanized mice than NHPs. NHP CSF concentrations were >13-fold lower (p <0.02) than brain tissue with poor agreement except for efavirenz (r = 0.91, p = 0.001). Despite 97% brain tissue protein binding, efavirenz achieved IQ90>1 in all animals and 2-fold greater white versus gray matter concentration. 4. Brain tissue penetration varied across animal models for all antiretrovirals except raltegravir, and extrapolating brain tissue concentrations between models should be avoided. With the exception of efavirenz, CSF is not a surrogate for brain tissue concentrations.


Subject(s)
Anti-HIV Agents , Benzoxazines , Brain , HIV Infections , HIV-1 , Alkynes , Animals , Anti-HIV Agents/pharmacokinetics , Anti-HIV Agents/pharmacology , Benzoxazines/pharmacokinetics , Benzoxazines/pharmacology , Brain/metabolism , Brain/pathology , Brain/virology , Cyclopropanes , Drug Evaluation, Preclinical , Female , HIV Infections/cerebrospinal fluid , HIV Infections/drug therapy , HIV Infections/pathology , Humans , Macaca mulatta , Male , Mice
12.
J Med Primatol ; 47(5): 298-301, 2018 10.
Article in English | MEDLINE | ID: mdl-30255956

ABSTRACT

How SIV progenitors evolved into deadly HIV-1 and HIV-2 following initial cross-species transmission still remains a mystery. Here, we used humanized mice as a human surrogate system to evaluate SIVsm evolution into HIV-2. Increased viral virulence to human CD4+ T cells and adaptive genetic changes were observed during serial passages.


Subject(s)
Cercocebus atys/virology , Disease Models, Animal , HIV-2/growth & development , HIV-2/genetics , Animals , Humans , Mice , Serial Passage , Simian Immunodeficiency Virus , Viral Load
13.
J Immunol ; 190(1): 211-9, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23209326

ABSTRACT

The programmed death-1 (PD-1) pathway limits the function of virus-specific T cells during chronic infection. We previously showed that blockade of the PD-1 pathway increases HIV-1-associated T cell function in vitro. However, the effect of PD-1 blockade on HIV-1 disease progression in vivo has not been examined. As in humans, HIV-1-infected humanized BALB/c-Rag2(-/-)γc(-/-) (Rag-hu) mice express elevated levels of PD-1 on T cells during chronic infection. To examine the effect of PD-1 blockade on disease progression, Rag-hu mice with chronic HIV-1 infection were treated with a blocking mAb directed against programmed cell death-1 ligand-1, the ligand for PD-1. Programmed cell death-1 ligand-1-treated Rag-hu mice exhibited a progressive decrease in the HIV-1 plasma viral load, with a 7-fold decrease by day 7, a 20-fold decrease by day 14, a 178-fold decrease by day 21, and a 269-fold decrease by day 28 postinitiation of treatment. By day 7, the percentage of CD4(+) T cells was statistically higher in the treated compared with the untreated group, and this trend was sustained throughout the 28-d treatment period. Moreover, there was a strong inverse correlation between plasma viral load and the percentage of both CD4(+) (r = -0.66; p < 0.0001) and CD8(+) (r = -0.64; p < 0.0001) T cells in the treated mice but not the untreated mice. This study provides "proof of concept" that humanized mice can be used to examine the effects of immunotherapeutic interventions on HIV-1 infection. Furthermore, to our knowledge, these data demonstrate for the first time that blockade of the PD-1 pathway reduces HIV-1 viral loads.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Down-Regulation/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/physiology , Viral Load/immunology , Animals , B7-H1 Antigen/immunology , CD4 Lymphocyte Count , CD4-Positive T-Lymphocytes/cytology , HIV Infections/immunology , HIV Infections/pathology , HIV-1/growth & development , HIV-1/immunology , Humans , Mice , Mice, Inbred BALB C , Mice, Knockout , Programmed Cell Death 1 Receptor/biosynthesis , Up-Regulation/immunology
14.
Mol Ther ; 21(1): 192-200, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23164935

ABSTRACT

One of the most formidable impediments to clinical translation of RNA interference (RNAi) is safe and effective delivery of the siRNAs to the desired target tissue at therapeutic doses. We previously described in vivo cell type-specific delivery of anti-HIV small-interfering RNAs (siRNAs) through covalent conjugation to an anti-gp120 aptamer. In order to improve the utility of aptamers as siRNA delivery vehicles, we chemically synthesized the gp120 aptamer with a 3' 7-carbon linker (7C3), which in turn is attached to a 16-nucleotide 2' OMe/2' Fl GC-rich bridge sequence. This bridge facilitates the noncovalent binding and interchange of various siRNAs with the same aptamer. We show here that this aptamer-bridge-construct complexed with three different Dicer substrate siRNAs (DsiRNAs) results in effective delivery of the cocktail of DsiRNAs in vivo, resulting in knockdown of target mRNAs and potent inhibition of HIV-1 replication. Following cessation of the aptamer-siRNA cocktail treatment, HIV levels rebounded facilitating a follow-up treatment with the aptamer cocktail of DsiRNAs. This follow-up injection resulted in complete suppression of HIV-1 viral loads that extended several weeks beyond the final injection. Collectively, these data demonstrate a facile, targeted approach for combinatorial delivery of antiviral and host DsiRNAs for HIV-1 therapy in vivo.


Subject(s)
Aptamers, Nucleotide/genetics , HIV-1/genetics , RNA, Small Interfering/genetics , Animals , Base Sequence , CD4-Positive T-Lymphocytes/immunology , HIV Envelope Protein gp120/genetics , Lymphocyte Depletion , Mice , Mice, Knockout
15.
Front Immunol ; 14: 1060959, 2023.
Article in English | MEDLINE | ID: mdl-36825016

ABSTRACT

Introduction: Immunocompetent and immunocompromised murine models have been instrumental in answering important questions regarding ZIKV pathogenesis and vertical transmission. However, mimicking human congenital zika syndrome (CZS) characteristics in these murine models has been less than optimal and does not address the potential viral effects on the human immune system. Methods: Here, we utilized neonatal humanized Rag2-/-γc-/- mice to model CZS and evaluate the potential viral effects on the differentiation of human hematopoietic stem cells in vivo. Newborn Rag2-/-γc-/- mice were engrafted with ZIKV-infected hematopoietic stem cells (HSC) and monitored for symptoms and lesions. Results: Within 13 days, mice displayed outward clinical symptoms that encompassed stunted growth, hunched posture, ruffled fur, and ocular defects. Striking gross pathologies in the brain and visceral organs were noted. Our results also confirmed that ZIKV actively infected human CD34+ hematopoietic stem cells and restricted the development of terminally differentiated B cells. Histologically, there was multifocal mineralization in several different regions of the brain together with ZIKV antigen co-localization. Diffuse necrosis of pyramidal neurons was seen with collapse of the hippocampal formation. Discussion: Overall, this model recapitulated ZIKV microcephaly and CZS together with viral adverse effects on the human immune cell ontogeny thus providing a unique in vivo model to assess the efficacy of novel therapeutics and immune interventions.


Subject(s)
Microcephaly , Nervous System Malformations , Zika Virus Infection , Animals , Humans , Mice , Cell Differentiation , Microcephaly/virology , Nervous System Malformations/virology , Zika Virus , Zika Virus Infection/complications
16.
Front Virol ; 12021.
Article in English | MEDLINE | ID: mdl-37168442

ABSTRACT

Simian immunodeficiency virus native to sooty mangabeys (SIVsm) is believed to have given rise to HIV-2 through cross-species transmission and evolution in the human. SIVmac239 and SIVB670, pathogenic to macaques, and SIVhu, isolated from an accidental human infection, also have origins in SIVsm. With their common ancestral lineage as that of HIV-2 from the progenitor SIVsm, but with different passage history in different hosts, they provide a unique opportunity to evaluate cross-species transmission to a new host and their adaptation/evolution both in terms of potential genetic and phenotypic changes. Using humanized mice with a transplanted human system, we evaluated in vivo replication kinetics, CD4+ T cell dynamics and genetic adaptive changes during serial passage with a goal to understand their evolution under human selective immune pressure. All the three viruses readily infected hu-mice causing chronic viremia. While SIVmac and SIVB670 caused CD4+ T cell depletion during sequential passaging, SIVhu with a deletion in nef gene was found to be less pathogenic. Deep sequencing of the genomes of these viruses isolated at different times revealed numerous adaptive mutations of significance that increased in frequency during sequential passages. The ability of these viruses to infect and replicate in humanized mice provides a new small animal model to study SIVs in vivo in addition to more expensive macaques. Since SIVmac and related viruses have been indispensable in many areas of HIV pathogenesis, therapeutics and cure research, availability of this small animal hu-mouse model that is susceptible to both SIV and HIV viruses is likely to open novel avenues of investigation for comparative studies using the same host.

17.
Front Microbiol ; 11: 1889, 2020.
Article in English | MEDLINE | ID: mdl-32849468

ABSTRACT

The genetic evolution of HIV-1 from its progenitor virus SIV following cross-species transmission is not well understood. Here we simulated the SIVcpz initial transmission to humans using humanized mice and followed the viral evolution during serial passages lasting more than a year. All three SIVcpz progenitor viruses used, namely LB715 and MB897 (group M) as well as EK505 (group N) readily infected hu-mice resulting in chronic viremia. Viral loads increased progressively to higher set-points and the CD4+ T cell decline became more pronounced by the end of the second serial passage indicating viral adaptation and increased pathogenicity. Viral genomes sequenced at different time points revealed many non-synonymous variants not previously reported that occurred throughout the viral genome, including the gag, pol, env, and nef genes. These results shed light on the potential changes that the SIVcpz genome had undergone during the initial stages of human infection and subsequent spread.

18.
Virology ; 515: 235-242, 2018 02.
Article in English | MEDLINE | ID: mdl-29310105

ABSTRACT

Many murine and non-human primate animal models have been recently developed to understand Zika viral pathogenesis. However, a major limitation with these models is the inability to directly examine the human-specific immune response. Here, we utilized a BLT humanized mouse model endowed with a transplanted human immune system. Plasma viremia could be detected within 48h after viral challenge and viremia persisted for as long as 220 days in some mice. Neutralizing human antibody was detected in infected mice and mouse sera showed reactivity with the viral envelope and capsid proteins in a radio-immunoprecipitation assay. Human monocytes/macrophages, B cells and hematopoietic stem cells in the bone marrow were found to be virus infected. These data establish that BLT mice are permissive for Zika viral infection and are capable of generating viral-specific human immune responses thus providing a human surrogate model for future testing of vaccine and antiviral therapeutic candidates.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Zika Virus Infection/immunology , Zika Virus/immunology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/virology , Disease Models, Animal , Female , Hematopoietic Stem Cells/virology , Humans , Male , Mice , Mice, Inbred BALB C , Viremia/immunology , Viremia/virology , Zika Virus/genetics , Zika Virus/physiology , Zika Virus Infection/virology
19.
Virology ; 510: 175-184, 2017 10.
Article in English | MEDLINE | ID: mdl-28750321

ABSTRACT

HIV-2 is thought to have originated from an SIV progenitor native to sooty mangabeys. To model the initial human transmission and understand the sequential viral evolution, humanized mice were infected with SIVsm and serially passaged for five generations. Productive infection was seen by week 3 during the initial challenge followed by chronic viremia and gradual CD4+ T cell decline. Viral loads increased by the 5th generation resulting in more rapid CD4+ T cell decline. Genetic analysis revealed several amino acid substitutions that were nonsynonymous and fixed in multiple hu-mice across each of the 5 generations in the nef, env and rev regions. The highest rate of substitution occurred in the nef and env regions and most were observed within the first two generations. These data demonstrated the utility of hu-mice in modeling the SIVsm transmission to the human and to evaluate its potential sequential evolution into a human pathogen of HIV-2 lineage.


Subject(s)
Cercocebus atys/virology , Evolution, Molecular , HIV-2/growth & development , HIV-2/genetics , Simian Immunodeficiency Virus/growth & development , Simian Immunodeficiency Virus/genetics , Amino Acid Substitution , Animals , CD4 Lymphocyte Count , Humans , Mice , Mice, SCID , Models, Biological , Serial Passage , Viral Load , Viral Proteins/genetics
20.
Virology ; 507: 135-139, 2017 07.
Article in English | MEDLINE | ID: mdl-28432928

ABSTRACT

Assays that can verify full viral eradication are essential in the context of achieving a cure for HIV/AIDS. In vitro quantitative viral out growth assays (qVOA) are currently the gold standard for measuring latent HIV-1 but these assays often fail to detect very low levels of replication-competent virus. Here we investigated an alternative in vivo approach for sensitive viral detection using humanized mice (hmVOA). Peripheral blood CD4+ T cell samples from HIV subjects on stable ART with undetectable viral loads by RT-PCR were first assayed by in vitro qVOA. Corresponding patient samples in which no virus was detected by qVOA were injected into humanized mice to allow viral outgrowth. Of the five qVOA virus negative samples, four gave positive viral outgrowth in the hmVOA assay suggesting that it is more sensitive in detecting latent HIV-1.


Subject(s)
HIV Infections/virology , HIV-1/growth & development , Viral Load , Virus Latency , Animals , Anti-HIV Agents/administration & dosage , CD4-Positive T-Lymphocytes/virology , Disease Models, Animal , Female , HIV Infections/drug therapy , HIV-1/drug effects , HIV-1/genetics , HIV-1/physiology , Humans , Male , Mice , Mice, Inbred BALB C , Viral Load/drug effects , Virus Latency/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL