Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
J Cell Sci ; 137(5)2024 03 01.
Article in English | MEDLINE | ID: mdl-38441500

ABSTRACT

In this Perspective, Journal of Cell Science invited researchers working on cell and tissue polarity to share their thoughts on unique, emerging or open questions relating to their field. The goal of this article is to feature 'voices' from scientists around the world and at various career stages, to bring attention to innovative and thought-provoking topics of interest to the cell biology community. These voices discuss intriguing questions that consider polarity across scales, evolution, development and disease. What can yeast and protists tell us about the evolution of cell and tissue polarity in animals? How are cell fate and development influenced by emerging dynamics in cell polarity? What can we learn from atypical and extreme polarity systems? How can we arrive at a more unified biophysical understanding of polarity? Taken together, these pieces demonstrate the broad relevance of the fascinating phenomenon of cell polarization to diverse fundamental biological questions.


Subject(s)
Cell Polarity , Research Personnel , Animals , Humans , Biophysics , Cell Differentiation , Saccharomyces cerevisiae
2.
J Bacteriol ; 206(4): e0001424, 2024 04 18.
Article in English | MEDLINE | ID: mdl-38470120

ABSTRACT

In bacteria, cell poles function as subcellular compartments where proteins localize during specific lifecycle stages, orchestrated by polar "hub" proteins. Whereas most described bacteria inherit an "old" pole from the mother cell and a "new" pole from cell division, generating cell asymmetry at birth, non-binary division poses challenges for establishing cell polarity, particularly for daughter cells inheriting only new poles. We investigated polarity dynamics in the obligate predatory bacterium Bdellovibrio bacteriovorus, proliferating through filamentous growth followed by non-binary division within prey bacteria. Monitoring the subcellular localization of two proteins known as polar hubs in other species, RomR and DivIVA, revealed RomR as an early polarity marker in B. bacteriovorus. RomR already marks the future anterior poles of the progeny during the predator's growth phase, during a precise period closely following the onset of divisome assembly and the end of chromosome segregation. In contrast to RomR's stable unipolar localization in the progeny, DivIVA exhibits a dynamic pole-to-pole localization. This behavior changes shortly before the division of the elongated predator cell, where DivIVA accumulates at all septa and both poles. In vivo protein interaction networks for DivIVA and RomR, mapped through endogenous miniTurbo-based proximity labeling, further underscore their distinct roles in cell polarization and reinforce the importance of the anterior "invasive" cell pole in prey-predator interactions. Our work also emphasizes the precise spatiotemporal order of cellular processes underlying B. bacteriovorus proliferation, offering insights into the subcellular organization of bacteria with filamentous growth and non-binary division.IMPORTANCEIn bacteria, cell poles are crucial areas where "hub" proteins orchestrate lifecycle events through interactions with multiple partners at specific times. While most bacteria exhibit one "old" and one "new" pole, inherited from the previous division event, setting polar identity poses challenges in bacteria with non-binary division. This study explores polar proteins in the predatory bacterium Bdellovibrio bacteriovorus, which undergoes filamentous growth followed by non-binary division inside another bacterium. Our research reveals distinct localization dynamics of the polar proteins RomR and DivIVA, highlighting RomR as an early "hub" marking polar identity in the filamentous mother cell. Using miniTurbo-based proximity labeling, we uncovered their unique protein networks. Overall, our work provides new insights into the cell polarity in non-binary dividing bacteria.


Subject(s)
Bacterial Proteins , Bdellovibrio bacteriovorus , Infant, Newborn , Humans , Bacterial Proteins/genetics , Bacteria/metabolism , Cell Division , Cell Polarity
3.
STAR Protoc ; 3(1): 101104, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35098160

ABSTRACT

The predatory bacterium Bdellovibrio bacteriovorus invades and proliferates inside other bacteria by non-binary division. Here we describe a fluorescence-based technique for the immediate evaluation of predator density independently of plaque formation, an optimized setup to monitor predation in microplates, and the CuRveR package to quantify both prey killing and predator proliferation dynamics. This protocol allows to assess the impact of mutations or chemicals on predation. CuRveR also constitutes a user-friendly tool to analyze growth or decay data unrelated to predation. For complete details on the use and execution of this profile, please refer to Kaljevic et al., 2021.


Subject(s)
Bdellovibrio bacteriovorus/physiology , Predatory Behavior , Animals , Workflow
4.
Curr Biol ; 31(17): 3707-3720.e5, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34256020

ABSTRACT

In bacteria, the dynamics of chromosome replication and segregation are tightly coordinated with cell-cycle progression and largely rely on specific spatiotemporal arrangement of the chromosome. Whereas these key processes are mostly investigated in species that divide by binary fission, they remain mysterious in bacteria producing larger number of descendants. Here, we establish the predatory bacterium Bdellovibrio bacteriovorus as a model to investigate the non-binary processing of a circular chromosome. We found that its single chromosome is highly compacted in a polarized nucleoid that excludes freely diffusing proteins during the non-proliferative stage of the cell cycle. A binary-like cycle of DNA replication and asymmetric segregation is followed by multiple asynchronous rounds of replication and progressive ParABS-dependent partitioning, uncoupled from cell division. Finally, we provide the first evidence for an on-off behavior of the ParB protein, which localizes at the centromere in a cell-cycle-regulated manner. Altogether, our findings support a model of complex chromosome choreography leading to the generation of variable, odd, or even numbers of offspring and highlight the adaptation of conserved mechanisms to achieve non-binary reproduction.


Subject(s)
Chromosome Segregation , Chromosomes, Bacterial , Bacteria/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Cycle , Cell Division , Chromosomes, Bacterial/genetics , Chromosomes, Bacterial/metabolism , DNA Replication
SELECTION OF CITATIONS
SEARCH DETAIL