Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nano Lett ; 24(11): 3525-3531, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38466128

ABSTRACT

Variegation and complexity of polarization relaxation loss in many heterostructured materials provide available mechanisms to seek a strong electromagnetic wave (EMW) absorption performance. Here we construct a unique heterostructured compound that bonds α-Fe2O3 nanosheets of the (110) plane on carbon microtubes (CMTs). Through effective alignment between the Fermi energy level of CMTs and the conduction band position of α-Fe2O3 nanosheets at the interface, we attain substantial polarization relaxation loss via novel atomic valence reversal between Fe(III) ↔ Fe(III-) induced with periodic electron injection from conductive CMTs under EMW irradiation to give α-Fe2O3 nanosheets. Such heterostructured materials possess currently reported minimum reflection loss of -84.01 dB centered at 10.99 GHz at a thickness of 3.19 mm and an effective absorption bandwidth (reflection loss ≤ -10 dB) of 7.17 GHz (10.83-18 GHz) at 2.65 mm. This work provides an effective strategy for designing strong EMW absorbers by combining highly efficient electron injection and atomic valence reversal.

2.
Small ; 18(42): e2204456, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36116118

ABSTRACT

An RhFe bimetallene with Fe atoms doped into Rh host for efficient hydrogen evolution reaction (HER), is constructed. When two doped Fe atoms occupy neighboring asymmetric spatial positions, their asymmetric exchange interaction drives electron hopping between the dxy orbital of a Fe atom and the dz 2 orbital of its neighboring Fe atom to push the d band center closer to the Fermi level as a result of electronic state reconstruction. The designed bimetallene with thickness of 0.77 nm (5 atomic layers), possesses excellent HER performance. The low overpotentials of 24.4 and 34.6 mV are achieved at the 10 and 100 mA cm-2 current densities in 1 m KOH solution, respectively. An ultra-low Tafel slope of 8.9 mV dec-1 shows that this kind of RhFe bimetallene is of an ultrafast kinetic process. This work provides a strategy for designing HER catalysts with double metal composites.

3.
Nanotechnology ; 32(38)2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34116524

ABSTRACT

In this work, we prepared NiCo alloy/C with rhombic dodecahedron structure and superior microwave absorption performance by using ZIF-67 as the raw material. The rhombic dodecahedron NiCo alloy/C was with rough particles on the surface was photographed by field emission scanning electron microscopy. By adjusting the doping amount of Ni and the temperature of pyrolysis, improved the impedance matching of NiCo alloy/C. Specifically, NiCo alloy/C exhibits a minimum reflection loss of -65.48 dB at 13.48 GHz, while the thickness is 1.63 mm. Defects introduced in the Ni doping process and the special rhombic dodecahedral structure can cause multiple loss mechanisms. Therefore, this NiCo alloy/C composite has the potential to be a potential microwave absorber material with lightweight and high microwave absorption properties.

4.
J Colloid Interface Sci ; 663: 825-833, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38447397

ABSTRACT

Graphitic carbon nitride (g-C3N4, CN) has garnered considerable attention in the field of photocatalysis due to its favorable band gap and high specific surface area. However, its primary practical limitation lies in the strong radiative recombination of lone pair (LP) electronic states, leading to limited efficiency in separating photogenerated carriers and subsequently diminishing photocatalytic performance. In this study, we devised and synthesized a heterojunction photocatalytic system comprising TiO2 nanosheets supported on modified g-C3N4 (MCN), designated as MCN/TiO2. The presence of CN functional groups on the tri-s-triazine nitrogen captures photogenerated electrons by modifying LP electronic states, resulting in a reduction in the fluorescence emission intensity of g-C3N4. Simultaneously, it forms chemical bonds with the supported TiO2 nanosheets, creating an efficient electron transfer pathway for the accumulation of photogenerated electrons at the active Ti sites. Experimentally, the MCN/TiO2 photocatalytic system exhibited optimal performance in CO2 reduction. The CH4 production rate reached 26.59 µmol g-1 h-1, surpassing that of TiO2 and CN/TiO2 by approximately 8 and 3 times, respectively. Furthermore, this photocatalytic system demonstrated exceptional photostability over five cycles, each lasting 4 h. This research offers a valuable approach for the efficient separation and transfer of photogenerated carriers in composite materials based on g-C3N4.

SELECTION OF CITATIONS
SEARCH DETAIL