Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
BMC Cancer ; 23(1): 897, 2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37741993

ABSTRACT

BACKGROUND: Lung adenocarcinoma (LUAD) is an extraordinarily malignant tumor, with rapidly increasing morbidity and poor prognosis. Immunotherapy has emerged as a hopeful therapeutic modality for lung adenocarcinoma. Furthermore, a prognostic model (based on immune genes) can fulfill the purpose of early diagnosis and accurate prognostic prediction. METHODS: Immune-related mRNAs (IRmRNAs) were utilized to construct a prognostic model that sorted patients into high- and low-risk groups. Then, the prediction efficacy of our model was evaluated using a nomogram. The differences in overall survival (OS), the tumor mutation landscape, and the tumor microenvironment were further explored between different risk groups. In addition, the immune genes comprising the prognostic model were subjected to single-cell RNA sequencing to investigate the expression of these immune genes in different cells. Finally, the functions of BIRC5 were validated through in vitro experiments. RESULTS: Patients in different risk groups exhibited sharply significant variations in OS, pathway activity, immune cell infiltration, mutation patterns, and immune response. Single-cell RNA sequencing revealed that the expression level of BIRC5 was significantly high in T cells. Cell experiments further revealed that BIRC5 knockdown markedly reduced LUAD cell proliferation. CONCLUSION: This model can function as an instrumental variable in the prognostic, molecular, and therapeutic prediction of LUAD, shedding new light on the optimal clinical practice guidelines for LUAD patients.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Prognosis , Biomarkers , Adenocarcinoma of Lung/genetics , Nomograms , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Tumor Microenvironment/genetics , Survivin/genetics
2.
Article in English | MEDLINE | ID: mdl-36446622

ABSTRACT

BACKGROUND: There is no criterion on the length of the uniportal video-assisted thoracoscopic surgery (UVATS) incision when performing lobectomy. We aimed to develop a nomogram to assist surgeons in designing incision length for different individuals. METHODS: A cohort consisting of 290 patients were enrolled for nomogram development. Univariate and multivariate logistic regression analyses were performed to identify candidate variables among perioperative characteristics. C-index and calibration curves were utilized for evaluating the performance of the nomogram. Short-term outcomes of nomogram-predicted high-risk patients were compared between long incision group and conventional incision group. RESULTS: Of 290 patients, 150 cases (51.7%) were performed incision extension during the surgery. Age, tumor size, and tumor location were identified as candidate variables related with intraoperative incision extension and were incorporated into the nomogram. C-index of the nomogram was 0.75 (95% confidence interval: 0.6961-0.8064), indicating the good predictive performance. Calibration curves presented good consistency between the nomogram prediction and actual observation. Of high-risk patients identified by the nomogram, the long incision group (n = 47) presented shorter duration of operation (p = 0.03), lower incidence of total complications (p = 0.01), and lower incidence of prolonged air leak (p = 0.03) compared with the conventional incision group (n = 55). CONCLUSION: We developed a novel nomogram for predicting the risk of intraoperative incision extension when performing uniportal video-assisted thoracoscopic lobectomy. This model has the potential to assist clinicians in designing the incision length preoperatively to ensure both safety and minimal invasiveness.

3.
Front Immunol ; 15: 1364082, 2024.
Article in English | MEDLINE | ID: mdl-38562924

ABSTRACT

Background: It has been well established that glycosylation plays a pivotal role in initiation, progression, and therapy resistance of several cancers. However, the correlations between glycosylation and head and neck squamous cell carcinoma (HNSCC) have not been elucidated in detail. Methods: The paramount genes governing glycosylation were discerned via the utilization of the Protein-Protein Interaction (PPI) network and correlation analysis, coupled with single-cell RNA sequencing (scRNA-seq) analysis. To construct risk models exhibiting heightened predictive efficacy, cox- and lasso-regression methodologies were employed, and the veracity of these models was substantiated across both internal and external datasets. Subsequently, an exploration into the distinctions within the tumor microenvironment (TME), immunotherapy responses, and enriched pathways among disparate risk cohorts ensued. Ultimately, cell experiments were conducted to validate the consequential impact of SMS in Head and Neck Squamous Cell Carcinoma (HNSCC). Results: A total of 184 genes orchestrating glycosylation were delineated for subsequent scrutiny. Employing cox- and lasso-regression methodologies, we fashioned a 3-gene signature, proficient in prognosticating the outcomes for patients afflicted with HNSCC. Noteworthy observations encompassed distinctions in the Tumor Microenvironment (TME), levels of immune cell infiltration, and the presence of immune checkpoint markers among divergent risk cohorts, holding potentially consequential implications for the clinical management of HNSCC patients. Conclusion: The prognosis of HNSCC can be proficiently anticipated through risk signatures based on Glycosylation-related genes (GRGs). A thorough delineation of the GRGs signature in HNSCC holds the potential to facilitate the interpretation of HNSCC's responsiveness to immunotherapy and provide innovative strategies for cancer treatment.


Subject(s)
Head and Neck Neoplasms , Immunotherapy , Humans , Prognosis , Glycosylation , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/therapy , Risk Assessment , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/therapy , Tumor Microenvironment/genetics
4.
Front Endocrinol (Lausanne) ; 14: 1154410, 2023.
Article in English | MEDLINE | ID: mdl-37033259

ABSTRACT

Background: It has been suggested that lactate metabolism (LM) is crucial for the development of cancer. Using integrated single-cell RNA sequencing (scRNA-seq) analysis, we built predictive models based on LM-related genes (LMRGs) to propose novel targets for the treatment of LUAD patients. Methods: The most significant genes for LM were identified through the use of the AUCell algorithm and correlation analysis in conjunction with scRNA-seq analysis. To build risk models with superior predictive performance, cox- and lasso-regression were utilized, and these models were validated on multiple external independent datasets. We then explored the differences in the tumor microenvironment (TME), immunotherapy, mutation landscape, and enriched pathways between different risk groups. Finally, cell experiments were conducted to verify the impact of AHSA1 in LUAD. Results: A total of 590 genes that regulate LM were identified for subsequent analysis. Using cox- and lasso-regression, we constructed a 5-gene signature that can predict the prognosis of patients with LUAD. Notably, we observed differences in TME, immune cell infiltration levels, immune checkpoint levels, and mutation landscapes between different risk groups, which could have important implications for the clinical treatment of LUAD patients. Conclusion: Based on LMRGs, we constructed a prognostic model that can predict the efficacy of immunotherapy and provide a new direction for treating LUAD.


Subject(s)
Adenocarcinoma of Lung , Immunotherapy , Lactates , Lung Neoplasms , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/therapy , Lactates/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Single-Cell Analysis , Tumor Microenvironment/genetics
5.
Front Immunol ; 14: 1199040, 2023.
Article in English | MEDLINE | ID: mdl-37313409

ABSTRACT

Background: Current paradigms of anti-tumor therapies are not qualified to evacuate the malignancy ascribing to cancer stroma's functions in accelerating tumor relapse and therapeutic resistance. Cancer-associated fibroblasts (CAFs) has been identified significantly correlated with tumor progression and therapy resistance. Thus, we aimed to probe into the CAFs characteristics in esophageal squamous cancer (ESCC) and construct a risk signature based on CAFs to predict the prognosis of ESCC patients. Methods: The GEO database provided the single-cell RNA sequencing (scRNA-seq) data. The GEO and TCGA databases were used to obtain bulk RNA-seq data and microarray data of ESCC, respectively. CAF clusters were identified from the scRNA-seq data using the Seurat R package. CAF-related prognostic genes were subsequently identified using univariate Cox regression analysis. A risk signature based on CAF-related prognostic genes was constructed using Lasso regression. Then, a nomogram model based on clinicopathological characteristics and the risk signature was developed. Consensus clustering was conducted to explore the heterogeneity of ESCC. Finally, PCR was utilized to validate the functions that hub genes play on ESCC. Results: Six CAF clusters were identified in ESCC based on scRNA-seq data, three of which had prognostic associations. A total of 642 genes were found to be significantly correlated with CAF clusters from a pool of 17080 DEGs, and 9 genes were selected to generate a risk signature, which were mainly involved in 10 pathways such as NRF1, MYC, and TGF-Beta. The risk signature was significantly correlated with stromal and immune scores, as well as some immune cells. Multivariate analysis demonstrated that the risk signature was an independent prognostic factor for ESCC, and its potential in predicting immunotherapeutic outcomes was confirmed. A novel nomogram integrating the CAF-based risk signature and clinical stage was developed, which exhibited favorable predictability and reliability for ESCC prognosis prediction. The consensus clustering analysis further confirmed the heterogeneity of ESCC. Conclusion: The prognosis of ESCC can be effectively predicted by CAF-based risk signatures, and a comprehensive characterization of the CAF signature of ESCC may aid in interpreting the response of ESCC to immunotherapy and offer new strategies for cancer treatment.


Subject(s)
Carcinoma, Squamous Cell , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/therapy , Reproducibility of Results , Esophageal Neoplasms/genetics , Esophageal Neoplasms/therapy , Neoplasm Recurrence, Local , Prognosis , Immunotherapy , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/therapy , Fibroblasts
6.
Front Immunol ; 14: 1201573, 2023.
Article in English | MEDLINE | ID: mdl-37325647

ABSTRACT

Background: Extensive research has established the significant correlations between cancer-associated fibroblasts (CAFs) and various stages of cancer development, including initiation, angiogenesis, progression, and resistance to therapy. In this study, we aimed to investigate the characteristics of CAFs in lung adenocarcinoma (LUAD) and develop a risk signature to predict the prognosis of patients with LUAD. Methods: We obtained single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq data from the public database. The Seurat R package was used to process the scRNA-seq data and identify CAF clusters based on several biomarkers. CAF-related prognostic genes were further identified using univariate Cox regression analysis. To reduce the number of genes, Lasso regression was performed, and a risk signature was established. A novel nomogram that incorporated the risk signature and clinicopathological features was developed to predict the clinical applicability of the model. Additionally, we conducted immune landscape and immunotherapy responsiveness analyses. Finally, we performed in vitro experiments to verify the functions of EXO1 in LUAD. Results: We identified 5 CAF clusters in LUAD using scRNA-seq data, of which 3 clusters were significantly associated with prognosis in LUAD. A total of 492 genes were found to be significantly linked to CAF clusters from 1731 DEGs and were used to construct a risk signature. Moreover, our immune landscape exploration revealed that the risk signature was significantly related to immune scores, and its ability to predict responsiveness to immunotherapy was confirmed. Furthermore, a novel nomogram incorporating the risk signature and clinicopathological features showed excellent clinical applicability. Finally, we verified the functions of EXP1 in LUAD through in vitro experiments. Conclusions: The risk signature has proven to be an excellent predictor of LUAD prognosis, stratifying patients more appropriately and precisely predicting immunotherapy responsiveness. The comprehensive characterization of LUAD based on the CAF signature can predict the response of LUAD to immunotherapy, thus offering fresh perspectives into the management of LUAD patients. Our study ultimately confirms the role of EXP1 in facilitating the invasion and growth of tumor cells in LUAD. Nevertheless, further validation can be achieved by conducting in vivo experiments.


Subject(s)
Adenocarcinoma of Lung , Cancer-Associated Fibroblasts , Lung Neoplasms , Humans , Prognosis , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/therapy , Immunotherapy , Lung Neoplasms/genetics , Lung Neoplasms/therapy
7.
Aging (Albany NY) ; 15(19): 10305-10329, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37796202

ABSTRACT

BACKGROUND: Research on immunogenic cell death (ICD) in lung adenocarcinoma (LUAD) has been relatively limited. This study aims to create ICD-related signatures for accurate survival prognosis prediction in LUAD patients, addressing the challenge of lacking reliable early prognostic indicators for this type of cancer. METHODS: Using single-cell RNA sequencing (scRNA-seq) analysis, ICD activity in cells was calculated by AUCell algorithm, divided into high- and low-ICD groups according to median values, and key ICD regulatory genes were identified through differential analysis, and these genes were integrated into TCGA data to construct prognostic signatures using LASSO and COX regression analysis, and multi-dimensional analysis of ICD-related signatures in terms of prognosis, immunotherapy, tumor microenvironment (TME), and mutational landscape. RESULTS: The constructed signature reveals a pronounced disparity in prognosis between the high- and low-risk groups of LUAD patients. The statistical discrepancies in survival times among LUAD patients from both the TCGA and GEO databases further corroborate this observation. Additionally, heightened levels of immune cell infiltration expression are evidenced in the low-risk group, suggesting a potential benefit from immunotherapeutic interventions for these patients. The expression levels of pivotal risk-associated genes in tissue samples were assessed utilizing qRT-PCR, thereby unveiling PITX3 as a plausible therapeutic target in the context of LUAD. CONCLUSIONS: Our constructed ICD-related signatures provide help in predicting the prognosis and immunotherapy of LUAD patients, and to some extent guide the clinical treatment of LUAD patients.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Immunogenic Cell Death , Immunotherapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/therapy , Prognosis , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Tumor Microenvironment/genetics
8.
Aging (Albany NY) ; 15(19): 10501-10523, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37812215

ABSTRACT

BACKGROUND: The existing therapeutic approaches for combating tumors are insufficient in completely eradicating malignancy, as cancer facilitates tumor relapse and develops resistance to treatment interventions. The potential mechanistic connection between SARS-CoV-2 and ESCC has received limited attention. Therefore, our objective was to investigate the characteristics of SARS-CoV-2-related-genes (SCRGs) in esophageal squamous cancer (ESCC). METHODS: Raw data were obtained from the TCGA and GEO databases. Clustering of SCRGs from the scRNA-seq data was conducted using the Seurat R package. A risk signature was then generated using Lasso regression, incorporating prognostic genes related to SCRGs. Subsequently, a nomogram model was developed based on the clinicopathological characteristics and the risk signature. RESULTS: Eight clusters of SCRGs were identified in ESCC utilizing scRNA-seq data, of which three exhibited prognostic implications. A risk signature was then made up with bulk RNA-seq, which displayed substantial correlations with immune infiltration. The novel signature was verified to have excellent prognostic efficacy. CONCLUSION: The utilization of risk signatures based on SCRGs can efficiently forecast the prognosis of ESCC. A thorough characterization of the SCRGs signature in ESCC could facilitate the interpretation of ESCC's response to immunotherapy and offer innovative approaches to cancer therapy.


Subject(s)
COVID-19 , Carcinoma, Squamous Cell , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , SARS-CoV-2 , Tumor Microenvironment/genetics , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/therapy , Esophageal Neoplasms/genetics , Esophageal Neoplasms/therapy , Neoplasm Recurrence, Local/genetics , Immunotherapy , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/therapy , Prognosis
9.
Front Bioeng Biotechnol ; 10: 852734, 2022.
Article in English | MEDLINE | ID: mdl-35646872

ABSTRACT

Background: Pyroptosis is a form of programmed cell death triggered by the rupture of cell membranes and the release of inflammatory substances; it is essential in the occurrence and development of cancer. A considerable number of studies have revealed that pyroptosis is closely associated to the biological process of several cancers. However, the role of pyroptosis in lung adenocarcinoma (LUAD) remains elusive. The purpose of this study was to explore the prognostic role of pyroptosis-related genes (PRGs) and their relationship with the tumor immune microenvironment (TIME) in LUAD. Methods: Gene expression profiles and clinical information were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. A prognostic PRG signature was established in the training set and verified in the validation sets. Functional enrichment and immune microenvironment analyses related to PRGs were performed and a nomogram based on the risk score and clinical characteristics was established. What is more, quantitative real-time PCR (qRT-PCR) analysis was applied in order to verify the potential biomarkers for LUAD. Results: A prognostic signature based on five PRGs was constructed to separate LUAD patients into two risk groups. Patients in the high-risk group had worse prognoses than those in the low-risk group. The signature was identified as independent via Cox regression analyses and obtained the largest area under the curve (AUC = 0.677) in the receiver operating characteristic (ROC). Functional enrichment and immune microenvironment analyses demonstrated that the immune status was significantly different in the two subgroups and that immunotherapy may be effective for the high-risk group. Furthermore, qRT-PCR analysis verified that serum PRKACA and GPX4 could serve as diagnostic biomarkers for LUAD. Conclusion: Overall, a risk signature based on five PRGs was generated, providing a novel perspective on the determinants of prognosis and survival in LUAD, as well as a basis for the development of individualized regimes.

SELECTION OF CITATIONS
SEARCH DETAIL