Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
BMC Genomics ; 25(1): 861, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39277723

ABSTRACT

BACKGROUND: Black spot disease in tree peony caused by the fungal necrotroph A. alternata, is a primary limiting factor in the production of the tree peony. The intricate molecular mechanisms underlying the tree peony resistance to A. alternata have not been thoroughly investigated. RESULTS: The present study utilized high-throughput RNA sequencing (RNA-seq) technology to conduct global expression profiling, revealing an intricate network of genes implicated in the interaction between tree peony and A. alternata. RNA-Seq libraries were constructed from leaf samples and high-throughput sequenced using the BGISEQ-500 sequencing platform. Six distinct libraries were characterized. M1, M2 and M3 were derived from leaves that had undergone mock inoculation, while I1, I2 and I3 originated from leaves that had been inoculated with the pathogen. A range of 10.22-11.80 gigabases (Gb) of clean bases were generated, comprising 68,131,232 - 78,633,602 clean bases and 56,677 - 68,996 Unigenes. A grand total of 99,721 Unigenes were acquired, boasting a mean length of 1,266 base pairs. All these 99,721 Unigenes were annotated in various databases, including NR (Non-Redundant, 61.99%), NT (Nucleotide, 45.50%), SwissProt (46.32%), KEGG (Kyoto Encyclopedia of Genes and Genomes, 49.33%), KOG (clusters of euKaryotic Orthologous Groups, 50.18%), Pfam (Protein family, 47.16%), and GO (Gene Ontology, 34.86%). In total, 66,641 (66.83%) Unigenes had matches in at least one database. By conducting a comparative transcriptome analysis of the mock- and A. alternata-infected sample libraries, we found differentially expressed genes (DEGs) that are related to phytohormone signalling, pathogen recognition, active oxygen generation, and circadian rhythm regulation. Furthermore, multiple different kinds of transcription factors were identified. The expression levels of 10 selected genes were validated employing qRT-PCR (quantitative real-time PCR) to confirm RNA-Seq data. CONCLUSIONS: A multitude of transcriptome sequences have been generated, thus offering a valuable genetic repository for further scholarly exploration on the immune mechanisms underlying the tree peony infected by A. alternata. While the expression of most DEGs increased, a few DEGs showed decreased expression.


Subject(s)
Alternaria , Gene Expression Profiling , Paeonia , Plant Diseases , Paeonia/genetics , Paeonia/microbiology , Plant Diseases/microbiology , Plant Diseases/genetics , Alternaria/genetics , Transcriptome , High-Throughput Nucleotide Sequencing , Gene Expression Regulation, Plant , Molecular Sequence Annotation , Gene Ontology
2.
Small ; 20(33): e2400369, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38558327

ABSTRACT

Hydrogel electrolyte can endow supercapacitors with excellent flexibility, which has developed rapidly in recent years. However, the water-rich structures of hydrogel electrolyte are easy to freeze at subfreezing and dry at high temperatures, which will affect its energy storage characteristics. The low energy density of micro supercapacitors also hinders their development. Herein, a strategy is proposed to reduce the free water activity in the hydrogel to improve the operating voltage and the energy density of the device, which is achieved through the synergistic effect of the hydrogel skeleton, N, N'-dimethylformamide (DMF), NaClO4 and water. High concentrations of DMF and NaClO4 are introduced into sodium alginate/polyacrylamide (SA/PAAM) hydrogel through solvent exchange to obtain SA/PAAM/DMF/NaClO4 hydrogel electrolyte, which exhibited a high ionic conductivity of 82.1 mS cm-1, a high breaking strength of 563.2 kPa, and a wide voltage stability window of 3.5 V. The supercapacitor devices are assembled by the process of direct adhesion of the hydrogel electrolyte and  laser induced graphene (LIG). The micro-supercapacitor exhibited an operating voltage of 2.0 V, with a specific capacitance of 2.41 mF cm-2 and a high energy density of 1.34 µWh cm-2, and it also exhibit a high cycle stability, good flexibility, and integration performance.

3.
Mol Carcinog ; 63(5): 897-911, 2024 May.
Article in English | MEDLINE | ID: mdl-38353358

ABSTRACT

Increasing evidence has demonstrated that glutaminase (GLS) as a key mitochondrial enzyme plays a pivotal role in glutaminolysis, which widely participates in glutamine metabolism serving as main energy sources and building blocks for tumor growth. However, the roles and molecular mechanisms of GLS in esophageal squamous cell carcinoma (ESCC) remains unknown. Here, we found that GLS was highly expressed in ESCC tissues and cells. GLS inhibitor CB-839 significantly suppressed cell proliferation, colony formation, migration and invasion of ESCC cells, whereas GLS overexpression displayed the opposite effects. In addition, CB-839 markedly suppressed glucose consumption and lactate production, coupled with the downregulation of glycolysis-related proteins HK2, PFKM, PKM2 and LDHA, whereas GLS overexpression exhibited the adverse results. In vivo animal experiment revealed that CB-839 dramatically suppressed tumor growth, whereas GLS overexpression promoted tumor growth in ESCC cells xenografted nude mice. Mechanistically, GLS was localized in mitochondria of ESCC cells, which interacted with PDK1 protein. CB-839 attenuated the interaction of GLS and PDK1 in ESCC cells by suppressing PDK1 expression, which further evoked the downregulation of p-PDHA1 (s293), however, GLS overexpression markedly enhanced the level of p-PDHA1 (s293). These findings suggest that interaction of GLS with PDK1 accelerates the glycolysis of ESCC cells by inactivating PDH enzyme, and thus targeting GLS may be a novel therapeutic approach for ESCC patients.


Subject(s)
Benzeneacetamides , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Glutaminase , Glycolysis , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Thiadiazoles , Animals , Humans , Mice , Cell Line, Tumor , Cell Movement , Cell Proliferation , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Gene Expression Regulation, Neoplastic , Glutaminase/genetics , Glutaminase/metabolism , Glycolysis/genetics , Mice, Nude , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism
4.
J Hazard Mater ; 404(Pt B): 124197, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33091695

ABSTRACT

The efficient treatment of high stability emulsion with small diameter and the prevention of oil contamination of materials are serious issues in the process of emulsion separation. In order to address those issues, we reported a fast and versatile hydrophilic surface coating technology that uses oxidants and diamines to synergistically promote the polymerization of caffeic acid (CA). It was found that amino groups can not only accelerate the polymerization of CA, but also promote the deposition of polymers on the sponge surface. Using silica nanoparticles to improve the roughness, superhydrophilic melamine sponge could be prepared, which exhibited excellent superhydrophlic-underwater superolephobic and anti-oil-adhesion properties. DFT simulation was employed to explore the potential mechanism of the anti-oil adhesion ability. In addition, combined with the mechanical compression strategy, the sponge exhibited a high efficiency of 99.10% with a permeation flux of 19080 ±â€¯700 Lm-2 h-1 in emulsion separation just under the action of gravity. Moreover, based on the interaction between the surfactant and the surface of the material, the separation mechanism was discussed. Overall, this work provided an advanced method for the preparation of superhydrophilic sponge with anti-oil-fouling performance, which showed great potential in dealing with practically challenging emulsified wastewater.

5.
J Hazard Mater ; 384: 121288, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31581011

ABSTRACT

In order to achieve the purpose of simultaneous removal of coexisting heavy metal ions, in this work, functionalized magnetic mesoprous nanomaterials (Fe3O4-HBPA-ASA) with high density and multiple adsorption sites were designed and prepared. The obtained Fe3O4-HBPA-ASA was characterized by SEM, FTIR, VSM, TGA and zeta potential. Cu(II), Pb(II) and Cd(II) were chosen as the model heavy metal ions, the adsorption experiments showed that Fe3O4-HBPA-ASA showed hightheoretical adsorption capacitiesin individual system, and the maximum adsorption capacity was 136.66 mg/g, 88.36 mg/g and 165.46 mg/g, respectively. In the binary and ternary systems, the competitive adsorption leads to a decrease in the adsorption capacity of Cu(II), Pb(II) and Cd(II). However, in the ternary system with a concentration lower than 15 mg/L, the simultaneous removal rate was still higher than 90%. The adsorption isotherms and kineticswere well fitted by Langmuir and pseudo-second-order models, respectively. The XPS and density functional theory (DFT) analysis have confirmed that the adsorption of metal ions was related to various types of functional groups on the surface of Fe3O4-HBPA-ASA, while the adsorption mechanisms of Cu(II), Cd(II) and Pb(II) were different.

SELECTION OF CITATIONS
SEARCH DETAIL