Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35115400

ABSTRACT

Stem cells constantly divide and differentiate to maintain adult tissue homeostasis, and uncontrolled stem cell proliferation leads to severe diseases such as cancer. How stem cell proliferation is precisely controlled remains poorly understood. Here, from an RNA interference (RNAi) screen in adult Drosophila intestinal stem cells (ISCs), we identify a factor, Yun, required for proliferation of normal and transformed ISCs. Yun is mainly expressed in progenitors; our genetic and biochemical evidence suggest that it acts as a scaffold to stabilize the Prohibitin (PHB) complex previously implicated in various cellular and developmental processes and diseases. We demonstrate that the Yun/PHB complex is regulated by and acts downstream of EGFR/MAPK signaling. Importantly, the Yun/PHB complex interacts with and positively affects the levels of the transcription factor E2F1 to regulate ISC proliferation. In addition, we find that the role of the PHB complex in cell proliferation is evolutionarily conserved. Thus, our study uncovers a Yun/PHB-E2F1 regulatory axis in stem cell proliferation.


Subject(s)
Adult Stem Cells/metabolism , Cell Proliferation/physiology , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , E2F1 Transcription Factor/metabolism , Intestines/metabolism , Prohibitins/metabolism , Animals , Animals, Genetically Modified , Cell Differentiation/physiology , Homeostasis/physiology , RNA Interference/physiology , Signal Transduction/physiology
2.
Mol Ther ; 31(10): 3067-3083, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37533253

ABSTRACT

Mesenchymal stem cells (MSCs) exert beneficial therapeutic effects in acute kidney injury (AKI), while the detailed repair mechanism remains unclear. Herein, we probed the underlying mechanisms of MSC therapy in AKI by performing unbiased single-cell RNA sequencing in IRI model with/without MSC treatment. Our analyses uncovered the tubular epithelial cells (TECs) and immune cells transcriptomic diversity and highlighted a repair trajectory involving renal stem/progenitor cell differentiation. Our findings also suggested that profibrotic TECs expressing pro-fibrotic factors such as Zeb2 and Pdgfb promoted the recruitment of inflammatory monocytes and Th17 cells to injured kidney tissue, inducing TGF-ß1 secretion and renal fibrosis. Finally, in addition to activating the repair properties of renal progenitor/stem cells, we uncovered a role for MSC-derived miR-26a-5p in mediating the therapeutic effects of MSCs by inhibiting Zeb2 expression and suppressing pro-fibrotic TECs and its subsequent recruitment of immune cell subpopulations. These findings may help to optimize future AKI treatment strategies.

3.
Bioorg Chem ; 108: 104561, 2021 03.
Article in English | MEDLINE | ID: mdl-33349457

ABSTRACT

Although targeted therapy for renal cell carcinoma (RCC) has achieved good therapeutic effects in clinic, a considerable number of patients develop drug resistance over time. So, there is still an urgent need to develop new drugs for RCC treatment. As LSD1 is considered as a promising drug target in diverse cancers, including RCC, we tried to find new LSD1 inhibitor using drug repurposing strategy from a compound library, and fenoldopam, an FDA-approved drug, was identified as a potent LSD1 inhibitor with IC50 = 0.8974 µM in a reversible manner. Molecular docking predicted that fenoldopam occupied the FAD cavity of LSD1, forming hydrogen bonds with surrounding residues. Moreover, fenoldopam inactivated LSD1 and performed antiproliferative activity against ACHN cells and promoted cells apoptosis in vitro. Taken together, fenoldopam was identified as a novel LSD1 inhibitor firstly, and may serve as a new skeleton for RCC therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Renal Cell/drug therapy , Enzyme Inhibitors/pharmacology , Histone Demethylases/antagonists & inhibitors , Kidney Neoplasms/drug therapy , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Repositioning , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Histone Demethylases/metabolism , Humans , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Molecular Structure , Structure-Activity Relationship
4.
JCI Insight ; 9(2)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38258908

ABSTRACT

Ischemia-reperfusion injury-induced (IRI-induced) acute kidney injury is accompanied by mononuclear phagocyte (MP) invasion and inflammation. However, systematic analysis of extracellular vesicle-carried (EV-carried) proteins mediating intercellular crosstalk in the IRI microenvironment is still lacking. Multiomics analysis combining single-cell RNA-Seq data of kidney and protein profiling of kidney-EV was used to elucidate the intercellular communication between proximal tubular cells (PTs) and MP. Targeted adhesion and migration of various MPs were caused by the secretion of multiple chemokines as well as integrin ß1-rich EV by ischemic-damaged PTs after IRI. These recruited MPs, especially Fn1+ macrophagocyte, amplified the surviving PT's inflammatory response by secreting the inflammatory factors TNF-α, MCP-1, and thrombospondin 1 (THBS-1), which could interact with integrin ß1 to promote more MP adhesion and interact with surviving PT to further promote the secretion of IL-1ß. However, GW4869 reduced MP infiltration and maintained a moderate inflammatory level likely by blocking EV secretion. Our findings establish the molecular bases by which chemokines and kidney-EV mediate PT-MP crosstalk in early IRI and provide insights into systematic intercellular communication.


Subject(s)
Integrin beta1 , Kidney , Inflammation , Ischemia , Reperfusion , Animals
5.
Front Endocrinol (Lausanne) ; 14: 1180338, 2023.
Article in English | MEDLINE | ID: mdl-37305031

ABSTRACT

Background: Identification of risk factors that have causal effects on the occurrence of diabetic kidney disease (DKD), is of great significance in early screening and intervening for DKD, and in delaying the progression of DKD to end-stage renal disease. Cathepsin S (Cat-S), a novel non-invasive diagnostic marker, mediates vascular endothelial dysfunction. The diagnostic value of Cat-S for DKD has rarely been reported in clinical studies. Objective: To analyze whether Cat-S is a risk factor for DKD and evaluate the diagnostic value of serum Cat-S for DKD. Methods: Forty-three healthy subjects and 200 type 2 diabetes mellitus (T2DM) patients were enrolled. T2DM patients were divided into subgroups according to various criteria. Enzyme-linked immunosorbent assay was used to detect serum Cat-S levels among different subgroups. Spearman correlation analysis was used to analyze correlations between serum Cat-S and clinical indicators. Multivariate logistic regression analysis was performed to analyze risk factors for the occurrence of DKD and decreased renal function in T2DM patients. Results: Spearman analysis showed that serum Cat-S level was positively correlated with urine albumin creatinine ratio (r=0.76, P<0.05) and negatively correlated with estimated glomerular filtration rate (r=-0.54, P<0.01). Logistic regression analysis showed that increased serum Cat-S and cystatin C(CysC) were independent risk factors for DKD and decreased renal function in T2DM patients (P<0.05). The area under the receiver operating characteristic (ROC) curve was 0.900 of serum Cat-S for diagnosing DKD, and when the best cut-off value was 827.42 pg/mL the sensitivity and specificity were 71.6% and 98.8%, respectively. Thus, serum Cat-S was better than CysC for diagnosing DKD (for CysC, the area under the ROC curve was 0.791, and when the cut-off value was 1.16 mg/L the sensitivity and specificity of CysC were 47.4% and 98.8%, respectively). Conclusion: Increased serum Cat-S were associated with the progression of albuminuria and decreased renal function in T2DM patients. The diagnostic value of serum Cat-S was better than that of CysC for DKD. Monitoring of serum Cat-S levels could be helpful for early screening DKD and assessing the severity of DKD and could provide a new strategy for diagnosing DKD.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Humans , Diabetic Nephropathies/diagnosis , Diabetic Nephropathies/etiology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Cathepsins , Risk Factors
6.
Metabolism ; 145: 155592, 2023 08.
Article in English | MEDLINE | ID: mdl-37230215

ABSTRACT

BACKGROUND AND AIMS: Acute kidney injury (AKI) is associated with high morbidity and mortality and is recognized as a long-term risk factor for progression to chronic kidney disease (CKD). The AKI to CKD transition is characterized by interstitial fibrosis and the proliferation of collagen-secreting myofibroblasts. Pericytes are the major source of myofibroblasts in kidney fibrosis. However, the underlying mechanism of pericyte-myofibroblast transition (PMT) is still unclear. Here we investigated the role of metabolic reprogramming in PMT. METHODS: Unilateral ischemia/reperfusion-induced AKI to CKD mouse model and TGF-ß-treated pericyte-like cells were used to detect the levels of fatty acid oxidation (FAO) and glycolysis, and the critical signaling pathways during PMT under the treatment of drugs regulating metabolic reprogramming. RESULTS: PMT is characterized by a decrease in FAO and an increase in glycolysis. Enhancement of FAO by the peroxisome proliferator-activated receptor gamma coactivator-1α (PGC1α) activator ZLN-005 or suppression of glycolysis by the hexokinase 2 (HK2) inhibitor 2-DG can inhibit PMT, preventing the transition of AKI to CKD. Mechanistically, AMPK modulates various pathways involved in the metabolic switch from glycolysis to FAO. Specifically, the PGC1α-CPT1A pathway activates FAO, while inhibition of the HIF1α-HK2 pathway drives glycolysis inhibition. The modulations of these pathways by AMPK contribute to inhibiting PMT. CONCLUSIONS: Metabolic reprogramming controls the fate of pericyte transdifferentiation and targets the abnormal metabolism of pericytes can effectively prevent AKI to CKD transition.


Subject(s)
Acute Kidney Injury , Renal Insufficiency, Chronic , Mice , Animals , Pericytes , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , AMP-Activated Protein Kinases/metabolism , Renal Insufficiency, Chronic/etiology , Acute Kidney Injury/pathology , Fibrosis , Kidney
7.
Article in English | MEDLINE | ID: mdl-37858023

ABSTRACT

Glyphosate (GLY) exposure, both exogenous and endogenous, is a global concern. Multiple studies of model systems in vitro and in vivo have demonstrated the potential toxic effects of GLY exposure on human organs, particularly the liver and renal system. However, there is currently limited epidemiological evidence establishing a link between GLY exposure and hepatorenal function in the general population. In this study, a multivariable linear regression model and forest plots were employed to evaluate the connection between urinary GLY and biomarkers of hepatorenal function in 2241 participants from the National Health and Nutrition Examination Survey 2013-2016. Additionally, subgroup analyses were conducted based on age, gender, race, BMI, and chronic kidney disease (CKD). Alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), AST/ALT and fibrosis 4 score (FIB-4) all increased with elevated urinary GLY concentrations after adjusting for potential confounders, while albumin (ALB) exhibited the opposite trend, particularly among younger, female, non-Hispanic white, overweight, and CKD participants. Furthermore, individuals in the third tertile had a greater risk of liver dysfunction than those in the first tertile after categorizing urinary GLY concentrations. However, our study showed no proof that GLY exposure affects the ratio of urine albumin to creatinine (ACR) or serum creatinine levels. Overall, these results imply that GLY exposure may have adverse effects on human liver function.

8.
Stem Cell Reports ; 17(9): 1914-1923, 2022 09 13.
Article in English | MEDLINE | ID: mdl-35985332

ABSTRACT

Germline stem cells (GSCs) are critical for the reproduction of an organism. The self-renewal and differentiation of GSCs must be tightly controlled to avoid uncontrolled stem cell proliferation or premature stem cell differentiation. However, how the self-renewal and differentiation of GSCs are properly controlled is not fully understood. Here, we find that the novel intrinsic factor Yun is required for female GSC maintenance in Drosophila. GSCs undergo precocious differentiation due to de-repression of differentiation factor Bam by defective BMP/Dpp signaling in the absence of yun. Mechanistically, Yun associates with and stabilizes Thickveins (Tkv), the type I receptor of Dpp/BMP signaling. Finally, ectopic expression of a constitutively active Tkv (TkvQD) completely suppresses GSC loss caused by yun depletion. Collectively, these data demonstrate that Yun functions through Tkv to maintain GSC fate. Our results provide new insight into the regulatory mechanisms of how stem cell maintenance is properly controlled.


Subject(s)
Drosophila Proteins , Oogonial Stem Cells , Animals , Cell Differentiation/physiology , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Female , Germ Cells , Intrinsic Factor/metabolism , Oogonial Stem Cells/metabolism , Ovary/metabolism , Protein Serine-Threonine Kinases , Receptors, Cell Surface/metabolism
9.
Medicine (Baltimore) ; 101(7): e28854, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35363185

ABSTRACT

ABSTRACT: The aim of the study was to investigate the influence of intrarenal RAS on the decrease of renal function in patients undergoing cardiac surgery with cardiopulmonary bypass. This observational study investigated the activation of intrarenal RAS in 24 patients with AKI after cardiac surgery with cardiopulmonary bypass. The activation of intrarenal RAS was determined by urinary angiotensinogen (uAGT), which was measured at 12 hours before surgery, 0 and12 hours after surgery. The results were compared with those of 21 patients without AKI after cardiac surgery with cardiopulmonary bypass. Clinical and laboratory data were collected. Compared with baseline, all patients with cardiac surgery had activation of intrarenal RAS at 0 and 12 hours after surgery. The activation of intrarenal RAS was found significantly higher at both 0 and 12 hours after surgery in AKI group versus non AKI group (6.18 ±â€Š1.93 ng/mL vs 3.49 ±â€Š1.71 ng/mL, 16.38 ±â€Š7.50 ng/mL vs 6.04 ±â€Š2.59 ng/mL, respectively). There was a positive correlation between the activation of RAS at 0 hour after surgery and the decrease of renal function at 48 hours after surgery (r = 0.654, P = .001). These findings suggest that uAGT might be a suitable biomarker for prediction of the occurrence and severity of AKI after cardiac surgery. Inhibition of intrarenal RAS activation might be one the path of future treatment for this type of disease.


Subject(s)
Cardiac Surgical Procedures , Renin-Angiotensin System , Biomarkers/metabolism , Cardiac Surgical Procedures/adverse effects , Cardiopulmonary Bypass/adverse effects , Humans , Kidney
10.
Cell Prolif ; 55(5): e13230, 2022 May.
Article in English | MEDLINE | ID: mdl-35437864

ABSTRACT

Stem cells maintain adult tissue homeostasis under physiological conditions. Uncontrolled stem cell proliferation will lead to tumorigenesis. How stem cell proliferation is precisely controlled is still not fully understood. Phosphorylation of Yun is essential for ISC proliferation. Yun is essential for the proliferation of normal and transformed intestinal stem cells. Our mass spectrometry and biochemical data suggest that Yun can be phosphorylated at multiple residues in vivo. Interestingly, we show that the phosphorylation among these residues is likely interdependent. Furthermore, phosphorylation of each residue in Yun is important for its function in ISC proliferation regulation. Thus, our study unveils the important role of post-translational modification of Yun in stem cell proliferation.


Subject(s)
Drosophila Proteins , Adult , Cell Proliferation , Cell Transformation, Neoplastic , Drosophila Proteins/metabolism , Humans , Intestines , Phosphorylation
11.
Stem Cell Reports ; 17(5): 1120-1137, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35427486

ABSTRACT

Adult tissue homeostasis is maintained by residential stem cells. The proliferation and differentiation of adult stem cells must be tightly balanced to avoid excessive proliferation or premature differentiation. However, how stem cell proliferation is properly controlled remains elusive. Here, we find that auxilin (Aux) restricts intestinal stem cell (ISC) proliferation mainly through EGFR signaling. aux depletion leads to excessive ISC proliferation and midgut homeostasis disruption, which is unlikely caused by defective Notch signaling. Aux is expressed in multiple types of intestinal cells. Interestingly, aux depletion causes a dramatic increase in EGFR signaling, with a strong accumulation of EGFR at the plasma membrane and an increased expression of EGFR ligands in response to tissue stress. Furthermore, Aux co-localizes and associates with EGFR. Finally, blocking EGFR signaling completely suppresses the defects caused by aux depletion. Together, these data demonstrate that Aux mainly safeguards EGFR activation to keep a proper ISC proliferation rate to maintain midgut homeostasis.


Subject(s)
Drosophila Proteins , Animals , Auxilins/metabolism , Cell Proliferation , Drosophila Proteins/metabolism , Drosophila melanogaster , ErbB Receptors/metabolism , Intestines , Receptors, Invertebrate Peptide/genetics , Receptors, Invertebrate Peptide/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL