Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Genet Sel Evol ; 56(1): 64, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39285356

ABSTRACT

BACKGROUND: The integration of nuclear mitochondrial DNA (mtDNA) into the mammalian genomes is an ongoing, yet rare evolutionary process that produces nuclear sequences of mitochondrial origin (NUMT). In this study, we identified and analysed NUMT inserted into the pig (Sus scrofa) genome and in the genomes of a few other Suinae species. First, we constructed a comparative distribution map of NUMT in the Sscrofa11.1 reference genome and in 22 other assembled S. scrofa genomes (from Asian and European pig breeds and populations), as well as the assembled genomes of the Visayan warty pig (Sus cebifrons) and warthog (Phacochoerus africanus). We then analysed a total of 485 whole genome sequencing datasets, from different breeds, populations, or Sus species, to discover polymorphic NUMT (inserted/deleted in the pig genome). The insertion age was inferred based on the presence or absence of orthologous NUMT in the genomes of different species, taking into account their evolutionary divergence. Additionally, the age of the NUMT was calculated based on sequence degradation compared to the authentic mtDNA sequence. We also validated a selected set of representative NUMT via PCR amplification. RESULTS: We have constructed an atlas of 418 NUMT regions, 70 of which were not present in any assembled genomes. We identified ancient NUMT regions (older than 55 million years ago, Mya) and NUMT that appeared at different time points along the Suinae evolutionary lineage. We identified very recent polymorphic NUMT (private to S. scrofa, with < 1 Mya), and more ancient polymorphic NUMT (3.5-10 Mya) present in various Sus species. These latest polymorphic NUMT regions, which segregate in European and Asian pig breeds and populations, are likely the results of interspecies admixture within the Sus genus. CONCLUSIONS: This study provided a first comprehensive analysis of NUMT present in the Sus scrofa genome, comparing them to NUMT found in other species within the order Cetartiodactyla. The NUMT-based evolutionary window that we reconstructed from NUMT integration ages could be useful to better understand the micro-evolutionary events that shaped the modern pig genome and enriched the genetic diversity of this species.


Subject(s)
DNA, Mitochondrial , Animals , DNA, Mitochondrial/genetics , Sus scrofa/genetics , Genome , Cell Nucleus/genetics , Evolution, Molecular , Phylogeny , Swine/genetics
2.
J Anim Breed Genet ; 141(3): 328-342, 2024 May.
Article in English | MEDLINE | ID: mdl-38152994

ABSTRACT

Selection and breeding strategies to improve resistance to enteropathies are essential to reaching the sustainability of the rabbit production systems. However, disease heterogeneity (having only as major visible symptom diarrhoea) and low disease heritability are two barriers for the implementation of these strategies. Diarrhoea condition can affect rabbits at different life stages, starting from the suckling period, with large negative economic impacts. In this study, from a commercial population of suckling rabbits (derived from 133 litters) that experienced an outbreak of enteropathy, we first selected a few animals that died with severe symptoms of diarrhoea and characterized their microbiota, using 16S rRNA gene sequencing data. Clostridium genus was consistently present in all affected specimens. In addition, with the aim to identify genetic markers in the rabbit genome that could be used as selection tools, we performed genome-wide association studies for symptoms of diarrhoea in the same commercial rabbit population. These studies were also complemented with FST analyses between the same groups of rabbits. A total of 332 suckling rabbits (151 with severe symptoms of diarrhoea, 42 with mild symptoms and 129 without any symptoms till the weaning period), derived from 45 different litters (a subset of the 133 litters) were genotyped with the Affymetrix Axiom OrcunSNP Array. In both genomic approaches, rabbits within litters were paired to constitute two groups (susceptible and resistant, including the mildly affected in one or the other group) and run case and control genome-wide association analyses. Genomic heritability estimated in the designed experimental structure integrated in a commercial breeding scheme was 0.19-0.21 (s.e. 0.09-0.10). A total of eight genomic regions on rabbit chromosome 2 (OCU2), OCU3, OCU7, OCU12, OCU13, OCU16 and in an unassembled scaffold had significant single nucleotide polymorphisms (SNPs) and/or markers that trespassed the FST percentile distribution. Among these regions, three main peaks of SNPs were identified on OCU12, OCU13 and OCU16. The QTL region on OCU13 encompasses several genes that encode members of a family of immunoglobulin Fc receptors (FCER1G, FCRLA, FCRLB and FCGR2A) involved in the immune innate system, which might be important candidate genes for this pathogenic condition. The results obtained in this study demonstrated that resistance to an enteropathy occurring in suckling rabbits is in part genetically determined and can be dissected at the genomic level, providing DNA markers that could be used in breeding programmes to increase resistance to enteropathies in meat rabbits.


Subject(s)
Genome-Wide Association Study , Genome , Rabbits , Animals , Genome-Wide Association Study/veterinary , RNA, Ribosomal, 16S , Genomics , Genetic Markers , Polymorphism, Single Nucleotide , Diarrhea/genetics , Diarrhea/veterinary
3.
Genet Sel Evol ; 55(1): 88, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38062367

ABSTRACT

BACKGROUND: Intense selection of modern pig breeds has resulted in genetic improvement of production traits while the performance of local pig breeds has remained lower. As local pig breeds have been bred in extensive systems, they have adapted to specific environmental conditions, resulting in a rich genotypic and phenotypic diversity. This study is based on European local pig breeds that have been genetically characterized using DNA-pool sequencing data and phenotypically characterized using breed level phenotypes related to stature, fatness, growth, and reproductive performance traits. These data were analyzed using a dedicated approach to detect signatures of selection linked to phenotypic traits in order to uncover potential candidate genes that may underlie adaptation to specific environments. RESULTS: Analysis of the genetic data of European pig breeds revealed four main axes of genetic variation represented by the Iberian and three modern breeds (i.e. Large White, Landrace, and Duroc). In addition, breeds clustered according to their geographical origin, for example French Gascon and Basque breeds, Italian Apulo Calabrese and Casertana breeds, Spanish Iberian, and Portuguese Alentejano breeds. Principal component analysis of the phenotypic data distinguished the larger and leaner breeds with better growth potential and reproductive performance from the smaller and fatter breeds with low growth and reproductive efficiency. Linking the signatures of selection with phenotype identified 16 significant genomic regions associated with stature, 24 with fatness, 2 with growth, and 192 with reproduction. Among them, several regions contained candidate genes with possible biological effects on stature, fatness, growth, and reproductive performance traits. For example, strong associations were found for stature in two regions containing, respectively, the ANXA4 and ANTXR1 genes, for fatness in a region containing the DNMT3A and POMC genes and for reproductive performance in a region containing the HSD17B7 gene. CONCLUSIONS: In this study on European local pig breeds, we used a dedicated approach for detecting signatures of selection that were supported by phenotypic data at the breed level to identify potential candidate genes that may have adapted to different living environments and production systems.


Subject(s)
Genome , Genomics , Swine/genetics , Animals , Phenotype , Genotype , Genomics/methods , Sequence Analysis, DNA
4.
Anim Genet ; 54(4): 510-525, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37194440

ABSTRACT

The domestic canary (Serinus canaria) is one of the most common pet birds and has been extensively selected and bred over the last few centuries to constitute many different varieties. Plumage pigmentation is one of the main phenotypic traits that distinguish canary breeds and lines. Feather colours in these birds, similarly to other avian species, are mainly depended on the presence of two major types of pigments: carotenoids and melanins. In this study, we exploited whole genome sequencing (WGS) datasets produced from five canary lines or populations (Black Frosted Yellow, Opal, Onyx, Opal × Onyx and Mogno, some of which carrying different putative dilute alleles), complemented with other WGS datasets retrieved from previous studies, to identify candidate genes that might explain pigmentation variability across canary breeds and varieties. Sequencing data were obtained using a DNA pool-seq approach and genomic data were compared using window-based FST analyses. We identified signatures of selection in genomic regions harbouring genes involved in carotenoid-derived pigmentation variants (CYP2J19, EDC, BCO2 and SCARB1), confirming the results reported by previous works, and identified several other signatures of selection in the correspondence of melanogenesis-related genes (AGRP, ASIP, DCT, EDNRB, KITLG, MITF, MLPH, SLC45A2, TYRP1 and ZEB2). Two putative causative mutations were identified in the MLPH gene that may explain the Opal and Onyx dilute mutant alleles. Other signatures of selection were also identified that might explain additional phenotypic differences between the investigated canary populations.


Subject(s)
Canaries , Pigmentation , Animals , Canaries/genetics , Color , Mutation , Pigmentation/genetics , Carotenoids , Alleles , Whole Genome Sequencing/veterinary
5.
J Dairy Sci ; 105(3): 2408-2425, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34955250

ABSTRACT

Reggiana and Modenese are autochthonous cattle breeds, reared in the North of Italy, that can be mainly distinguished for their standard coat color (Reggiana is red, whereas Modenese is white with some pale gray shades). Almost all milk produced by these breeds is transformed into 2 mono-breed branded Parmigiano-Reggiano cheeses, from which farmers receive the economic incomes needed for the sustainable conservation of these animal genetic resources. After the setting up of their herd books in 1960s, these breeds experienced a strong reduction in the population size that was subsequently reverted starting in the 1990s (Reggiana) or more recently (Modenese) reaching at present a total of about 2,800 and 500 registered cows, respectively. Due to the small population size of these breeds, inbreeding is a very important cause of concern for their conservation programs. Inbreeding is traditionally estimated using pedigree data, which are summarized in an inbreeding coefficient calculated at the individual level (FPED). However, incompleteness of pedigree information and registration errors can affect the effectiveness of conservation strategies. High-throughput SNP genotyping platforms allow investigation of inbreeding using genome information that can overcome the limits of pedigree data. Several approaches have been proposed to estimate genomic inbreeding, with the use of runs of homozygosity (ROH) considered to be the more appropriate. In this study, several pedigree and genomic inbreeding parameters, calculated using the whole herd book populations or considering genotyping information (GeneSeek GGP Bovine 150K) from 1,684 Reggiana cattle and 323 Modenese cattle, were compared. Average inbreeding values per year were used to calculate effective population size. Reggiana breed had generally lower genomic inbreeding values than Modenese breed. The low correlation between pedigree-based and genomic-based parameters (ranging from 0.187 to 0.195 and 0.319 to 0.323 in the Reggiana and Modenese breeds, respectively) reflected the common problems of local populations in which pedigree records are not complete. The high proportion of short ROH over the total number of ROH indicates no major recent inbreeding events in both breeds. ROH islands spread over the genome of the 2 breeds (15 in Reggiana and 14 in Modenese) identified several signatures of selection. Some of these included genes affecting milk production traits, stature, body conformation traits (with a main ROH island in both breeds on BTA6 containing the ABCG2, NCAPG, and LCORL genes) and coat color (on BTA13 in Modenese containing the ASIP gene). In conclusion, this work provides an extensive comparative analysis of pedigree and genomic inbreeding parameters and relevant genomic information that will be useful in the conservation strategies of these 2 iconic local cattle breeds.


Subject(s)
Inbreeding , Polymorphism, Single Nucleotide , Animals , Cattle/genetics , Female , Genotype , Homozygote , Islands , Italy
6.
J Anim Breed Genet ; 139(3): 307-319, 2022 May.
Article in English | MEDLINE | ID: mdl-34841617

ABSTRACT

Autochthonous cattle breeds are genetic resources that, in many cases, have been fixed for inheritable exterior phenotypes useful to understand the genetic mechanisms affecting these breed-specific traits. Reggiana and Modenese are two closely related autochthonous cattle breeds mainly raised in the production area of the well-known Protected Designation of Origin Parmigiano-Reggiano cheese, in the North of Italy. These breeds can be mainly distinguished for their standard coat colour: solid red in Reggiana and solid white with pale shades of grey in Modenese. In this study we genotyped with the GeneSeek GGP Bovine 150k single nucleotide polymorphism (SNP) chip almost half of the extant cattle populations of Reggiana (n = 1109 and Modenese (n = 326) and used genome-wide information in comparative FST analyses to detect signatures of selection that diverge between these two autochthonous breeds. The two breeds could be clearly distinguished using multidimensional scaling plots and admixture analysis. Considering the top 0.0005% FST values, a total of 64 markers were detected in the single-marker analysis. The top FST value was detected for the melanocortin 1 receptor (MC1R) gene mutation, which determines the red coat colour of the Reggiana breed. Another coat colour gene, agouti signalling protein (ASIP), emerged amongst this list of top SNPs. These results were also confirmed with the window-based analyses, which included 0.5-Mb or 1-Mb genome regions. As variability affecting ASIP has been associated with white coat colour in sheep and goats, these results highlighted this gene as a strong candidate affecting coat colour in Modenese breed. This study demonstrates how population genomic approaches designed to take advantage from the diversity between local genetic resources could provide interesting hints to explain exterior traits not yet completely investigated in cattle.


Subject(s)
Genome , Polymorphism, Single Nucleotide , Animals , Cattle/genetics , Color , Genotype , Italy , Phenotype , Sheep/genetics
7.
J Invertebr Pathol ; 184: 107628, 2021 09.
Article in English | MEDLINE | ID: mdl-34090931

ABSTRACT

Lotmaria passim is a trypanosomatid that infects honey bees. In this study, we established an axenic culture of L. passim from Italian isolates and then used its DNA as a control in subsequent analyses that investigated environmental DNA (eDNA) to detect this trypasonosomatid. The source of eDNA was honey, which has been already demonstrated to be useful to detect honey bee parasites. DNA from a total of 164 honey samples collected in the North of Italy was amplified with three L. passim specific PCR primers and 78% of the analysed samples gave positive results. These results indicated a high prevalence rate of this trypanosomatid in the North of Italy, where it might be considered another threat to honey bee health.


Subject(s)
Bees/parasitology , DNA, Environmental/analysis , Honey/analysis , Trypanosomatina/isolation & purification , Animals , Beekeeping , Italy
8.
Genet Sel Evol ; 52(1): 33, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32591011

ABSTRACT

BACKGROUND: Natural and artificial directional selection in cosmopolitan and autochthonous pig breeds and wild boars have shaped their genomes and resulted in a reservoir of animal genetic diversity. Signatures of selection are the result of these selection events that have contributed to the adaptation of breeds to different environments and production systems. In this study, we analysed the genome variability of 19 European autochthonous pig breeds (Alentejana, Bísara, Majorcan Black, Basque, Gascon, Apulo-Calabrese, Casertana, Cinta Senese, Mora Romagnola, Nero Siciliano, Sarda, Krskopolje pig, Black Slavonian, Turopolje, Moravka, Swallow-Bellied Mangalitsa, Schwäbisch-Hällisches Schwein, Lithuanian indigenous wattle and Lithuanian White old type) from nine countries, three European commercial breeds (Italian Large White, Italian Landrace and Italian Duroc), and European wild boars, by mining whole-genome sequencing data obtained by using a DNA-pool sequencing approach. Signatures of selection were identified by using a single-breed approach with two statistics [within-breed pooled heterozygosity (HP) and fixation index (FST)] and group-based FST approaches, which compare groups of breeds defined according to external traits and use/specialization/type. RESULTS: We detected more than 22 million single nucleotide polymorphisms (SNPs) across the 23 compared populations and identified 359 chromosome regions showing signatures of selection. These regions harbour genes that are already known or new genes that are under selection and relevant for the domestication process in this species, and that affect several morphological and physiological traits (e.g. coat colours and patterns, body size, number of vertebrae and teats, ear size and conformation, reproductive traits, growth and fat deposition traits). Wild boar related signatures of selection were detected across all the genome of several autochthonous breeds, which suggests that crossbreeding (accidental or deliberate) occurred with wild boars. CONCLUSIONS: Our findings provide a catalogue of genetic variants of many European pig populations and identify genome regions that can explain, at least in part, the phenotypic diversity of these genetic resources.


Subject(s)
Genotyping Techniques/methods , Selection, Genetic/genetics , Swine/genetics , Acclimatization/genetics , Adaptation, Physiological/genetics , Algorithms , Animals , Breeding , Domestication , Europe , Female , Genome/genetics , Genomics/methods , Genotype , Male , Models, Genetic , Phenotype , Polymorphism, Single Nucleotide/genetics , Whole Genome Sequencing/methods
9.
J Invertebr Pathol ; 161: 47-53, 2019 02.
Article in English | MEDLINE | ID: mdl-30707918

ABSTRACT

Honey contains DNA from many different organisms that are part of hive micro-environmental niches and honey bee pathospheres. In this study, we recovered and sequenced mite mitochondrial DNA (mtDNA) from honey from different locations around the world (Europe, Asia, Africa, North and South America). DNA extracted from 17 honey samples was amplified with eight primer pairs targeting three mite mtDNA genes, obtaining 88 amplicons that were sequenced with an Ion Torrent sequencing platform. A bioinformatic pipeline compared produced reads with Varroa spp. mtDNA sequence entries available in GenBank and assigned them to different mitotypes. In all honey samples, the highest percentage of reads was attributed to the K1 lineage, including a few variants derived from it, in addition to J1 reads observed in the two South American samples and C1-1 reads obtained from the Chinese honey. This study opens new possibilities to analyse mite lineages and variants and monitor their geographical and temporal distribution, simplifying surveillance against this damaging honey bee parasite.


Subject(s)
Bees/parasitology , DNA, Environmental/analysis , High-Throughput Nucleotide Sequencing , Honey/analysis , Varroidae , Animals , DNA, Mitochondrial , Genetic Variation , High-Throughput Nucleotide Sequencing/methods , Honey/parasitology , Varroidae/genetics
11.
Anim Biotechnol ; 26(2): 92-7, 2015.
Article in English | MEDLINE | ID: mdl-25380460

ABSTRACT

The GPR120 gene (also known as FFAR4 or O3FAR1) encodes for a functional omega-3 fatty acid receptor/sensor that mediates potent insulin sensitizing effects by repressing macrophage-induced tissue inflammation. For its functional role, GPR120 could be considered a potential target gene in animal nutrigenetics. In this work we resequenced the porcine GPR120 gene by high throughput Ion Torrent semiconductor sequencing of amplified fragments obtained from 8 DNA pools derived, on the whole, from 153 pigs of different breeds/populations (two Italian Large White pools, Italian Duroc, Italian Landrace, Casertana, Pietrain, Meishan, and wild boars). Three single nucleotide polymorphisms (SNPs), two synonymous substitutions and one in the putative 3'-untranslated region (g.114765469C > T), were identified and their allele frequencies were estimated by sequencing reads count. The g.114765469C > T SNP was also genotyped by PCR-RFLP confirming estimated frequency in Italian Large White pools. Then, this SNP was analyzed in two Italian Large White cohorts using a selective genotyping approach based on extreme and divergent pigs for back fat thickness (BFT) estimated breeding value (EBV) and average daily gain (ADG) EBV. Significant differences of allele and genotype frequencies distribution was observed between the extreme ADG-EBV groups (P < 0.001) whereas this marker was not associated with BFT-EBV.


Subject(s)
Nutrigenomics/methods , Receptors, G-Protein-Coupled/genetics , Sequence Analysis, DNA/methods , Sus scrofa/growth & development , Sus scrofa/genetics , Animals , Gene Frequency , Genetic Association Studies , Italy , Polymorphism, Single Nucleotide/genetics , Semiconductors , Sequence Analysis, DNA/instrumentation
12.
Sci Rep ; 14(1): 20583, 2024 09 04.
Article in English | MEDLINE | ID: mdl-39232026

ABSTRACT

The conservation of the genetic integrity of Apis mellifera subspecies has emerged as an important objective. In 2019, the Emilia-Romagna region became the first Italian regional authority to issue a law specifically addressing the protection of the native Apis mellifera ligustica subspecies. In this study we analysed a highly informative portion of the mitochondrial DNA (mtDNA), widely used for assessing genetic diversity of honey bee populations. By analysing 1143 honey bees sampled after the introduction of this law, we provided a snapshot of the distribution of mtDNA haplotypes in this region. The two most frequent mtDNA haplotypes were C1 (characteristic of A. m. ligustica) and C2 (characteristic of A. m. carnica), reported in 86.5% and 11.0% of the analysed bees, respectively. About 1.3% and 1.1% of the analysed bees carried mtDNA haplotypes of the A and M lineages (haplotypes A1a, A1e, A4, A26, A65 and two novel ones, A2w and A6a; M3, M3a, M4 and M79). Continued genetic monitoring will be important to assess the impact of this regional law over the coming years. Based on the obtained results, we recommend a more stringent policy to prevent the erosion of the genetic integrity of the native subspecies A. m. ligustica.


Subject(s)
DNA, Mitochondrial , Haplotypes , Animals , Bees/genetics , DNA, Mitochondrial/genetics , Italy , Genetic Variation , Conservation of Natural Resources/legislation & jurisprudence
13.
BMC Genomics ; 14: 409, 2013 Jun 18.
Article in English | MEDLINE | ID: mdl-23777315

ABSTRACT

BACKGROUND: Bivalve mitochondrial genomes exhibit a wide array of uncommon features, like extensive gene rearrangements, large sizes, and unusual ways of inheritance. Species pertaining to the order Solemyida (subclass Opponobranchia) show many peculiar evolutionary adaptations, f.i. extensive symbiosis with chemoautotrophic bacteria. Despite Opponobranchia are central in bivalve phylogeny, being considered the sister group of all Autobranchia, a complete mitochondrial genome has not been sequenced yet. RESULTS: In this paper, we characterized the complete mitochondrial genome of the Atlantic awning clam Solemya velum: A-T content, gene arrangement and other features are more similar to putative ancestral mollusks than to other bivalves. Two supranumerary open reading frames are present in a large, otherwise unassigned, region, while the origin of replication could be located in a region upstream to the cox3 gene. CONCLUSIONS: We show that S. velum mitogenome retains most of the ancestral conchiferan features, which is unusual among bivalve mollusks, and we discuss main peculiarities of this first example of an organellar genome coming from the subclass Opponobranchia. Mitochondrial genomes of Solemya (for bivalves) and Haliotis (for gastropods) seem to retain the original condition of mollusks, as most probably exemplified by Katharina.


Subject(s)
Genome, Mitochondrial/genetics , Mollusca/genetics , Phylogeny , Animals , DNA, Mitochondrial/genetics , Gene Order/genetics , Genomics
14.
Animals (Basel) ; 13(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37889646

ABSTRACT

The Greek Black Pig (or Greek Pig) is the only recognized autochthonous pig breed raised in Greece, usually in extensive or semi-extensive production systems. According to its name, the characteristic breed coat color is solid black. In this study, with the aim to start a systematic genetic characterization of the Greek Black Pig breed, we investigated polymorphisms in major genes well known to affect exterior and production traits (MC1R, KIT, NR6A1, VRTN and IGF2) and compared these data with population genetic information available in other Mediterranean and Western Balkan pig breeds and wild boars. None of the investigated gene markers were fixed for one allele, suggesting that, in the past, this breed experienced introgression from wild boars and admixture from cosmopolitan pig breeds, enriching the breed genetic pool that should be further investigated to design appropriate conservation genetic strategies. We identified a new MC1R allele, containing two missense mutations already reported in two other independent alleles, but here present in the same haplotype. This allele might be useful to disclose biological information that can lead to better understanding the cascade transmission of signals to produce melanin pigments. This study demonstrated that autochthonous genetic resources can be an interesting reservoir of unexpected genetic variants.

15.
Genes (Basel) ; 14(4)2023 03 30.
Article in English | MEDLINE | ID: mdl-37107597

ABSTRACT

The gilthead seabream (Sparus aurata) is a species of relevance for the Mediterranean aquaculture industry. Despite the advancement of genetic tools for the species, breeding programs still do not often include genomics. In this study, we designed a genomic strategy to identify signatures of selection and genomic regions of high differentiation among populations of farmed fish stocks. A comparative DNA pooling sequencing approach was applied to identify signatures of selection in gilthead seabream from the same hatchery and from different nuclei that had not been subjected to genetic selection. Identified genomic regions were further investigated to detect SNPs with predicted high impact. The analyses underlined major genomic differences in the proportion of fixed alleles among the investigated nuclei. Some of these differences highlighted genomic regions, including genes involved in general metabolism and development already detected in QTL for growth, size, skeletal deformity, and adaptation to variation of oxygen levels in other teleosts. The obtained results pointed out the need to control the genetic effect of breeding programs in this species to avoid the reduction of genetic variability within populations and the increase in inbreeding level that, in turn, might lead to an increased frequency of alleles with deleterious effects.


Subject(s)
Sea Bream , Animals , Sea Bream/genetics , Aquaculture , Genomics , Whole Genome Sequencing
16.
Sci Rep ; 13(1): 13635, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37604894

ABSTRACT

Palaeogenomics is contributing to refine our understanding of many major evolutionary events at an unprecedented resolution, with relevant impacts in several fields, including phylogenetics of extinct species. Few extant and extinct animal species from Mediterranean regions have been characterised at the DNA level thus far. The Sardinian pika, Prolagus sardus (Wagner, 1829), was an iconic lagomorph species that populated Sardinia and Corsica and became extinct during the Holocene. There is a certain scientific debate on the phylogenetic assignment of the extinct genus Prolagus to the family Ochotonidae (one of the only two extant families of the order Lagomorpha) or to a separated family Prolagidae, or to the subfamily Prolaginae within the family Ochotonidae. In this study, we successfully reconstructed a portion of the mitogenome of a Sardinian pika dated to the Neolithic period and recovered from the Cabaddaris cave, an archaeological site in Sardinia. Our calibrated phylogeny may support the hypothesis that the genus Prolagus is an independent sister group to the family Ochotonidae that diverged from the Ochotona genus lineage about 30 million years ago. These results may contribute to refine the phylogenetic interpretation of the morphological peculiarities of the Prolagus genus already described by palaeontological studies.


Subject(s)
DNA, Ancient , Lagomorpha , Animals , Phylogeny , Biological Evolution , Archaeology
17.
Vet Sci ; 9(5)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35622741

ABSTRACT

Environmental DNA (eDNA) contained in honey derives from the organisms that directly and indirectly have been involved in the production process of this matrix and that have played a role in the hive ecosystems where the honey has been produced. In this study we set up PCR-based assays to detect the presence of DNA traces left in the honey by two damaging honey bee pests: the small hive beetle (Aethina tumida) and the greater wax moth (Galleria mellonella). DNA was extracted from 82 honey samples produced in Italy and amplified using two specific primer pairs that target the mitochondrial gene cytochrome oxidase I (COI) of A. tumida and two specific primer pairs that target the same gene in G. mellonella. The limit of detection was tested using sequential dilutions of the pest DNA. Only one honey sample produced in Calabria was positive for A. tumida whereas about 66% of all samples were positively amplified for G. mellonella. The use of honey eDNA could be important to establish early and effective measures to contain at the local (e.g., apiary) or regional scales these two damaging pests and, particularly for the small hive beetle, to prevent its widespread diffusion.

18.
Sci Rep ; 12(1): 19541, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36379985

ABSTRACT

Awareness has been raised over the last years on the genetic integrity of autochthonous honey bee subspecies. Genomic tools available in Apis mellifera can make it possible to measure this information by targeting individual honey bee DNA. Honey contains DNA traces from all organisms that contributed or were involved in its production steps, including the honey bees of the colony. In this study, we designed and tested a genotyping by sequencing (GBS) assay to analyse single nucleotide polymorphisms (SNPs) of A. mellifera nuclear genome using environmental DNA extracted from honey. A total of 121 SNPs (97 SNPs informative for honey bee subspecies identification and 24 SNPs associated with relevant traits of the colonies) were used in the assay to genotype honey DNA, which derives from thousands of honey bees. Results were integrated with information derived from previous studies and whole genome resequencing datasets. This GBS method is highly reliable in estimating honey bee SNP allele frequencies of the whole colony from which the honey derived. This assay can be used to identify the honey bee subspecies of the colony that produced the honey and, in turn, to authenticate the entomological origin of the honey.


Subject(s)
DNA, Environmental , Honey , Bees/genetics , Animals , Genotype , Metagenomics , DNA
19.
Sci Rep ; 12(1): 7346, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35513520

ABSTRACT

Preserving diversity of indigenous pig (Sus scrofa) breeds is a key factor to (i) sustain the pork chain (both at local and global scales) including the production of high-quality branded products, (ii) enrich the animal biobanking and (iii) progress conservation policies. Single nucleotide polymorphism (SNP) chips offer the opportunity for whole-genome comparisons among individuals and breeds. Animals from twenty European local pigs breeds, reared in nine countries (Croatia: Black Slavonian, Turopolje; France: Basque, Gascon; Germany: Schwabisch-Hällisches Schwein; Italy: Apulo Calabrese, Casertana, Cinta Senese, Mora Romagnola, Nero Siciliano, Sarda; Lithuania: Indigenous Wattle, White Old Type; Portugal: Alentejana, Bísara; Serbia: Moravka, Swallow-Bellied Mangalitsa; Slovenia: Krskopolje pig; Spain: Iberian, Majorcan Black), and three commercial breeds (Duroc, Landrace and Large White) were sampled and genotyped with the GeneSeek Genomic Profiler (GGP) 70 K HD porcine genotyping chip. A dataset of 51 Wild Boars from nine countries was also added, summing up to 1186 pigs (~ 49 pigs/breed). The aim was to: (i) investigate individual admixture ancestries and (ii) assess breed traceability via discriminant analysis on principal components (DAPC). Albeit the mosaic of shared ancestries found for Nero Siciliano, Sarda and Moravka, admixture analysis indicated independent evolvement for the rest of the breeds. High prediction accuracy of DAPC mark SNP data as a reliable solution for the traceability of breed-specific pig products.


Subject(s)
Biological Specimen Banks , Polymorphism, Single Nucleotide , Animals , Genome , Plant Breeding , Sus scrofa/genetics , Swine/genetics
20.
Insects ; 12(10)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34680637

ABSTRACT

The complementary sex determiner (csd) gene plays an essential role in the sex determination of Apis mellifera L. Females develop only if fertilized eggs have functional heterozygous genotypes at this gene whereas males, being haploids, are hemizygous. Two identical csd alleles produce non vital males. In light of the recent decline in honey bee populations, it is therefore important to monitor the allele variability at this gene. In this study, we tested the application of next generation semiconductor-based sequencing technology (Ion Torrent) coupled with environmental honey DNA as a source of honey bee genome information to retrieve massive sequencing data for the analysis of variability at the hypervariable region (HVR) of the csd gene. DNA was extracted from 12 honey samples collected from honeycombs directly retrieved from 12 different colonies. A specifically designed bioinformatic pipeline, applied to analyze a total of about 1.5 million reads, identified a total of 160 different csd alleles, 55% of which were novel. The average number of alleles per sample was compatible with the number of expected patrilines per colony, according to the mating behavior of the queens. Allele diversity at the csd could also provide information useful to reconstruct the history of the honey.

SELECTION OF CITATIONS
SEARCH DETAIL