Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Nat Immunol ; 22(9): 1118-1126, 2021 09.
Article in English | MEDLINE | ID: mdl-34326534

ABSTRACT

Transcription factors specialized to limit the destructive potential of inflammatory immune cells remain ill-defined. We discovered loss-of-function variants in the X-linked ETS transcription factor gene ELF4 in multiple unrelated male patients with early onset mucosal autoinflammation and inflammatory bowel disease (IBD) characteristics, including fevers and ulcers that responded to interleukin-1 (IL-1), tumor necrosis factor or IL-12p40 blockade. Using cells from patients and newly generated mouse models, we uncovered ELF4-mutant macrophages having hyperinflammatory responses to a range of innate stimuli. In mouse macrophages, Elf4 both sustained the expression of anti-inflammatory genes, such as Il1rn, and limited the upregulation of inflammation amplifiers, including S100A8, Lcn2, Trem1 and neutrophil chemoattractants. Blockade of Trem1 reversed inflammation and intestine pathology after in vivo lipopolysaccharide challenge in mice carrying patient-derived variants in Elf4. Thus, ELF4 restrains inflammation and protects against mucosal disease, a discovery with broad translational relevance for human inflammatory disorders such as IBD.


Subject(s)
DNA-Binding Proteins/genetics , Hereditary Autoinflammatory Diseases/genetics , Inflammatory Bowel Diseases/genetics , Macrophages/immunology , Transcription Factors/genetics , Animals , Calgranulin A/metabolism , Female , Gene Expression Regulation/genetics , Hereditary Autoinflammatory Diseases/immunology , Hereditary Autoinflammatory Diseases/pathology , Humans , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/pathology , Interleukin 1 Receptor Antagonist Protein/immunology , Lipocalin-2/metabolism , Lipopolysaccharides/toxicity , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Th17 Cells/immunology , Transcription, Genetic/genetics , Triggering Receptor Expressed on Myeloid Cells-1/antagonists & inhibitors , Triggering Receptor Expressed on Myeloid Cells-1/metabolism
2.
Immunity ; 54(5): 1083-1095.e7, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33891889

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening post-infectious complication occurring unpredictably weeks after mild or asymptomatic SARS-CoV-2 infection. We profiled MIS-C, adult COVID-19, and healthy pediatric and adult individuals using single-cell RNA sequencing, flow cytometry, antigen receptor repertoire analysis, and unbiased serum proteomics, which collectively identified a signature in MIS-C patients that correlated with disease severity. Despite having no evidence of active infection, MIS-C patients had elevated S100A-family alarmins and decreased antigen presentation signatures, indicative of myeloid dysfunction. MIS-C patients showed elevated expression of cytotoxicity genes in NK and CD8+ T cells and expansion of specific IgG-expressing plasmablasts. Clinically severe MIS-C patients displayed skewed memory T cell TCR repertoires and autoimmunity characterized by endothelium-reactive IgG. The alarmin, cytotoxicity, TCR repertoire, and plasmablast signatures we defined have potential for application in the clinic to better diagnose and potentially predict disease severity early in the course of MIS-C.


Subject(s)
COVID-19/immunology , COVID-19/pathology , SARS-CoV-2/immunology , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/pathology , Adolescent , Alarmins/immunology , Autoantibodies/immunology , CD8-Positive T-Lymphocytes/immunology , Child , Child, Preschool , Cytotoxicity, Immunologic/genetics , Endothelium/immunology , Endothelium/pathology , Humans , Killer Cells, Natural/immunology , Myeloid Cells/immunology , Plasma Cells/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Severity of Illness Index
3.
J Am Chem Soc ; 144(25): 11263-11269, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35713415

ABSTRACT

Macrocyclic peptides are sought-after molecular scaffolds for drug discovery, and new methods to access diverse libraries are of increasing interest. Here, we report the enzymatic synthesis of pyridine-based macrocyclic peptides (pyritides) from linear precursor peptides. Pyritides are a recently described class of ribosomally synthesized and post-translationally modified peptides (RiPPs) and are related to the long-known thiopeptide natural products. RiPP precursors typically contain an N-terminal leader region that is physically engaged by the biosynthetic proteins that catalyze modification of the C-terminal core region of the precursor peptide. We demonstrate that pyritide-forming enzymes recognize both the leader region and a C-terminal tripeptide motif, with each contributing to site-selective substrate modification. Substitutions in the core region were well-tolerated and facilitated the generation of a wide range of pyritide analogues, with variations in macrocycle sequence and size. A combination of the pyritide biosynthetic pathway with azole-forming enzymes was utilized to generate a thiazole-containing pyritide (historically known as a thiopeptide) with no similarity in sequence and macrocycle size to the naturally encoded pyritides. The broad substrate scope of the pyritide biosynthetic enzymes serves as a future platform for macrocyclic peptide lead discovery and optimization.


Subject(s)
Biological Products , Peptides , Biological Products/chemistry , Biosynthetic Pathways , Peptides/chemistry , Peptides, Cyclic/metabolism , Protein Biosynthesis , Protein Processing, Post-Translational , Pyridines
4.
J Am Chem Soc ; 144(46): 21116-21124, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36351243

ABSTRACT

Thiazole-containing pyritides (thiopeptides) are ribosomally synthesized and post-translationally modified peptides (RiPPs) that have attracted interest owing to their potent biological activities and structural complexity. The class-defining feature of a thiopeptide is a six-membered, nitrogenous heterocycle formed by an enzymatic [4 + 2]-cycloaddition. In rare cases, piperidine or dehydropiperidine (DHP) is present; however, the aromatized pyridine is considerably more common. Despite significant effort, the mechanism by which the central pyridine is formed remains poorly understood. Building on our recent observation of the Bycroft-Gowland intermediate (i.e., the direct product of the [4 + 2]-cycloaddition), we interrogated thiopeptide pyridine synthases using a combination of targeted mutagenesis, kinetic assays, substrate analogs, enzyme-substrate cross-linking, and chemical rescue experiments. Collectively, our data delineate roles for several conserved residues in thiopeptide pyridine synthases. A critical tyrosine facilitates the final aromatization step of pyridine formation. This work provides a foundation for further exploration of the [4 + 2]-cycloaddition reaction and future customization of pyridine-containing macrocyclic peptides.


Subject(s)
Peptides , Thiazoles , Peptides/chemistry , Thiazoles/chemistry , Cycloaddition Reaction , Pyridines
5.
Bioorg Med Chem Lett ; 29(12): 1487-1491, 2019 06 15.
Article in English | MEDLINE | ID: mdl-30987893

ABSTRACT

More effective delivery of non-steroidal anti-inflammatory drugs (NSAIDs) to the brain could treat the underlying inflammatory pathology of a range of CNS diseases and conditions. Use of a blood-brain barrier shuttle such as the N-benzylamide moiety, which has been largely unexplored for this purpose, could improve the brain bioavailabilities of NSAIDs. A series of novel N-benzylamide NSAID conjugates was synthesized via a three-step process with a microwave-assisted bimolecular nucleophilic substitution as the final step. We explored conditions to promote substitution over a competing elimination reaction, which was successfully suppressed with isopropyl alcohol solvent. All molecules exhibit physicochemical properties consistent with those of brain-penetrant molecules. Furthermore, they exhibit long (>48 h) half-lives in phosphate-buffered saline (PBS; pH 7.4) and short to moderate half-lives in human plasma. N-Benzylamide NSAID conjugates represent promising CNS drug discovery leads.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Central Nervous System/drug effects , Drug Delivery Systems/methods , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Humans
7.
Nat Commun ; 13(1): 6135, 2022 10 17.
Article in English | MEDLINE | ID: mdl-36253467

ABSTRACT

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a promising source of new antimicrobials in the face of rising antibiotic resistance. Here, we report a scalable platform that combines high-throughput bioinformatics with automated biosynthetic gene cluster refactoring for rapid evaluation of uncharacterized gene clusters. As a proof of concept, 96 RiPP gene clusters that originate from diverse bacterial phyla involving 383 biosynthetic genes are refactored in a high-throughput manner using a biological foundry with a success rate of 86%. Heterologous expression of all successfully refactored gene clusters in Escherichia coli enables the discovery of 30 compounds covering six RiPP classes: lanthipeptides, lasso peptides, graspetides, glycocins, linear azol(in)e-containing peptides, and thioamitides. A subset of the discovered lanthipeptides exhibit antibiotic activity, with one class II lanthipeptide showing low µM activity against Klebsiella pneumoniae, an ESKAPE pathogen. Overall, this work provides a robust platform for rapidly discovering RiPPs.


Subject(s)
Danazol , Ribosomes , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Danazol/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Multigene Family , Peptides/chemistry , Protein Processing, Post-Translational , Ribosomes/genetics , Ribosomes/metabolism
8.
medRxiv ; 2021 Apr 03.
Article in English | MEDLINE | ID: mdl-33300011

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening post-infectious complication occurring unpredictably weeks after mild or asymptomatic SARS-CoV2 infection in otherwise healthy children. Here, we define immune abnormalities in MIS-C compared to adult COVID-19 and pediatric/adult healthy controls using single-cell RNA sequencing, antigen receptor repertoire analysis, unbiased serum proteomics, and in vitro assays. Despite no evidence of active infection, we uncover elevated S100A-family alarmins in myeloid cells and marked enrichment of serum proteins that map to myeloid cells and pathways including cytokines, complement/coagulation, and fluid shear stress in MIS-C patients. Moreover, NK and CD8 T cell cytotoxicity genes are elevated, and plasmablasts harboring IgG1 and IgG3 are expanded. Consistently, we detect elevated binding of serum IgG from severe MIS-C patients to activated human cardiac microvascular endothelial cells in culture. Thus, we define immunopathology features of MIS-C with implications for predicting and managing this SARS-CoV2-induced critical illness in children.

9.
RNA ; 12(7): 1168-78, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16738410

ABSTRACT

The N-terminal RNA Recognition Motif (RRM1) of the spliceosomal protein U1A interacting with its target U1 hairpin II (U1hpII) has been used as a paradigm for RRM-containing proteins interacting with their RNA targets. U1A binds to U1hpII via direct interactions with a 7-nucleotide (nt) consensus binding sequence at the 5' end of a 10-nt loop, and via hydrogen bonds with the closing C-G base pair at the top of the RNA stem. Using surface plasmon resonance (Biacore), we have examined the role of structural features of U1hpII in binding to U1A RRM1. Mutational analysis of the closing base pair suggests it plays a minor role in binding and mainly prevents "breathing" of the loop. Lengthening the stem and nontarget part of the loop suggests that the increased negative charge of the RNA might slightly aid association. However, this is offset by an increase in dissociation, which may be caused by attraction of the RRM to nontarget parts of the RNA. Studies of a single stranded target and RNAs with untethered loops indicate that structure is not very relevant for association but is important for complex stability. In particular, breaking the link between the stem and the 5' side of the loop greatly increases complex dissociation, presumably by hindering simultaneous contacts between the RRM and stem and loop nucleotides. While binding of U1A to a single stranded target is much weaker than to U1hpII, it occurs with nanomolar affinity, supporting recent evidence that binding of unstructured RNA by U1A has physiological significance.


Subject(s)
RNA, Catalytic/chemistry , RNA-Binding Proteins/metabolism , Ribonucleoprotein, U1 Small Nuclear/metabolism , Base Pairing , Base Sequence , Drug Stability , Kinetics , Models, Molecular , Molecular Sequence Data , Mutagenesis , Nucleic Acid Conformation , Protein Conformation , RNA, Catalytic/metabolism , RNA-Binding Proteins/chemistry , Ribonucleoprotein, U1 Small Nuclear/chemistry , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL