Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
J Bacteriol ; 206(9): e0027224, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39120147

ABSTRACT

Staphylococcus aureus is commonly isolated from astronauts returning from spaceflight. Previous analysis of omics data from S. aureus low Earth orbit cultures indicated significantly increased expression of the Agr quorum sensing system and its downstream targets in spaceflight samples compared to ground controls. In this current study, the rotary cell culture system (RCCS) was used to investigate the effect of low-shear modeled microgravity (LSMMG) on S. aureus physiology and Agr activity. When cultured in the same growth medium and temperature as the previous spaceflight experiment, S. aureus LSMMG cultures exhibited decreased agr expression and altered growth compared to normal gravity control cultures, which are typically oriented with oxygenation membrane on the bottom of the high aspect rotating vessel (HARV). When S. aureus was grown in an inverted gravity control orientation (oxygenation membrane on top of the HARV), reduced Agr activity was observed relative to both traditional control and LSMMG cultures, signifying that oxygen availability may affect the observed differences in Agr activity. Metabolite assays revealed increased lactate and decreased acetate excretion in both LSMMG and inverted control cultures. Secretomics analysis of LSMMG, control, and inverted control HARV culture supernatants corroborated these results, with inverted and LSMMG cultures exhibiting a decreased abundance of Agr-regulated virulence factors and an increased abundance of proteins expressed in low-oxygen conditions. Collectively, these studies suggest that the orientation of the HARV oxygenation membrane can affect S. aureus physiology and Agr quorum sensing in the RCCS, a variable that should be considered when interpreting data using this ground-based microgravity model.IMPORTANCES. aureus is commonly isolated from astronauts returning from spaceflight and from surfaces within human-inhabited closed environments such as spacecraft. Astronaut health and immune function are significantly altered in spaceflight. Therefore, elucidating the effects of microgravity on S. aureus physiology is critical for assessing its pathogenic potential during long-term human space habitation. These results also highlight the necessity of eliminating potential confounding factors when comparing simulated microgravity model data with actual spaceflight experiments.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Quorum Sensing , Staphylococcus aureus , Weightlessness , Staphylococcus aureus/genetics , Staphylococcus aureus/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Space Flight , Trans-Activators/genetics , Trans-Activators/metabolism , Weightlessness Simulation
2.
J Bacteriol ; 206(4): e0045223, 2024 04 18.
Article in English | MEDLINE | ID: mdl-38551342

ABSTRACT

The wobble bases of tRNAs that decode split codons are often heavily modified. In bacteria, tRNAGlu, Gln, Asp contains a variety of xnm5s2U derivatives. The synthesis pathway for these modifications is complex and fully elucidated only in a handful of organisms, including the Gram-negative Escherichia coli K12 model. Despite the ubiquitous presence of mnm5s2U modification, genomic analysis shows the absence of mnmC orthologous genes, suggesting the occurrence of alternate biosynthetic schemes for the conversion of cmnm5s2U to mnm5s2U. Using a combination of comparative genomics and genetic studies, a member of the YtqA subgroup of the radical Sam superfamily was found to be involved in the synthesis of mnm5s2U in both Bacillus subtilis and Streptococcus mutans. This protein, renamed MnmL, is encoded in an operon with the recently discovered MnmM methylase involved in the methylation of the pathway intermediate nm5s2U into mnm5s2U in B. subtilis. Analysis of tRNA modifications of both S. mutans and Streptococcus pneumoniae shows that growth conditions and genetic backgrounds influence the ratios of pathway intermediates owing to regulatory loops that are not yet understood. The MnmLM pathway is widespread along the bacterial tree, with some phyla, such as Bacilli, relying exclusively on these two enzymes. Although mechanistic details of these newly discovered components are not fully resolved, the occurrence of fusion proteins, alternate arrangements of biosynthetic components, and loss of biosynthetic branches provide examples of biosynthetic diversity to retain a conserved tRNA modification in Nature.IMPORTANCEThe xnm5s2U modifications found in several tRNAs at the wobble base position are widespread in bacteria where they have an important role in decoding efficiency and accuracy. This work identifies a novel enzyme (MnmL) that is a member of a subgroup of the very versatile radical SAM superfamily and is involved in the synthesis of mnm5s2U in several Gram-positive bacteria, including human pathogens. This is another novel example of a non-orthologous displacement in the field of tRNA modification synthesis, showing how different solutions evolve to retain U34 tRNA modifications.


Subject(s)
Escherichia coli K12 , RNA, Transfer , Humans , RNA, Transfer/genetics , Escherichia coli K12/genetics , Bacteria/genetics , Methylation , Gram-Positive Bacteria/genetics
3.
Appl Environ Microbiol ; 88(15): e0054822, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35852361

ABSTRACT

Lignin is an aromatic plant cell wall polymer that facilitates water transport through the vasculature of plants and is generated in large quantities as an inexpensive by-product of pulp and paper manufacturing and biorefineries. Although lignin's ability to reduce bacterial growth has been reported previously, its hydrophobicity complicates the ability to examine its biological effects on living cells in aqueous growth media. We recently described the ability to solvate lignin in Good's buffers with neutral pH, a breakthrough that allowed examination of lignin's antimicrobial effects against the human pathogen Staphylococcus aureus. These analyses showed that lignin damages the S. aureus cell membrane, causes increased cell clustering, and inhibits growth synergistically with tunicamycin, a teichoic acid synthesis inhibitor. In the present study, we examined the physiological and transcriptomic responses of S. aureus to lignin. Intriguingly, lignin restored the susceptibility of genetically resistant S. aureus isolates to penicillin and oxacillin, decreased intracellular pH, impaired normal cell division, and rendered cells more resistant to detergent-induced lysis. Additionally, transcriptome sequencing (RNA-Seq) differential expression (DE) analysis of lignin-treated cultures revealed significant gene expression changes (P < 0.05 with 5% false discovery rate [FDR]) related to the cell envelope, cell wall physiology, fatty acid metabolism, and stress resistance. Moreover, a pattern of concurrent up- and downregulation of genes within biochemical pathways involved in transmembrane transport and cell wall physiology was observed, which likely reflects an attempt to tolerate or compensate for lignin-induced damage. Together, these results represent the first comprehensive analysis of lignin's antibacterial activity against S. aureus. IMPORTANCE S. aureus is a leading cause of skin and soft tissue infections. The ability of S. aureus to acquire genetic resistance to antibiotics further compounds its ability to cause life-threatening infections. While the historical response to antibiotic resistance has been to develop new antibiotics, bacterial pathogens are notorious for rapidly acquiring genetic resistance mechanisms. As such, the development of adjuvants represents a viable way of extending the life span of current antibiotics to which pathogens may already be resistant. Here, we describe the phenotypic and transcriptomic response of S. aureus to treatment with lignin. Our results demonstrate that lignin extracted from sugarcane and sorghum bagasse restores S. aureus susceptibility to ß-lactams, providing a premise for repurposing these antibiotics in treatment of resistant S. aureus strains, possibly in the form of topical lignin/ß-lactam formulations.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcus aureus , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Cell Membrane/metabolism , Cell Wall/metabolism , Homeostasis , Humans , Lignin/metabolism , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests , beta-Lactams/pharmacology
4.
J Bacteriol ; 203(2)2020 12 18.
Article in English | MEDLINE | ID: mdl-33077636

ABSTRACT

Streptococcus mutans utilizes numerous metabolite transporters to obtain essential nutrients in the "feast or famine" environment of the human mouth. S. mutans and most other streptococci are considered auxotrophic for several essential vitamins including riboflavin (vitamin B2), which is used to generate key cofactors and to perform numerous cellular redox reactions. Despite the well-known contributions of this vitamin to central metabolism, little is known about how S. mutans obtains and metabolizes B2 The uncharacterized protein SMU.1703c displays high sequence homology to the riboflavin transporter RibU. Deletion of SMU.1703c hindered S. mutans growth in complex and defined medium in the absence of saturating levels of exogenous riboflavin, whereas deletion of cotranscribed SMU.1702c alone had no apparent effect on growth. Expression of SMU.1703c in a Bacillus subtilis riboflavin auxotroph functionally complemented growth in nonsaturating riboflavin conditions. S. mutans was also able to grow on flavin adenine dinucleotide (FAD) or flavin mononucleotide (FMN) in an SMU.1703c-dependent manner. Deletion of SMU.1703c and/or SMU.1702c impacted S. mutans acid stress tolerance, as all mutants showed improved growth at pH 5.5 compared to that of the wild type when medium was supplemented with saturating riboflavin. Cooccurrence of SMU.1703c and SMU.1702c, a hypothetical PAP2 family acid phosphatase gene, appears unique to the streptococci and may suggest a connection of SMU.1702c to the acquisition or metabolism of flavins within this genus. Identification of SMU.1703c as a RibU-like riboflavin transporter furthers our understanding of how S. mutans acquires essential micronutrients within the oral cavity and how this pathogen successfully competes within nutrient-starved oral biofilms.IMPORTANCE Dental caries form when acid produced by oral bacteria erodes tooth enamel. This process is driven by the fermentative metabolism of cariogenic bacteria, most notably Streptococcus mutans Nutrient acquisition is key in the competitive oral cavity, and many organisms have evolved various strategies to procure carbon sources or necessary biomolecules. B vitamins, such as riboflavin, which many oral streptococci must scavenge from the oral environment, are necessary for survival within the competitive oral cavity. However, the primary mechanism and proteins involved in this process remain uncharacterized. This study is important because it identifies a key step in S. mutans riboflavin acquisition and cofactor generation, which may enable the development of novel anticaries treatment strategies via selective targeting of metabolite transporters.


Subject(s)
Operon/physiology , Riboflavin/metabolism , Streptococcus mutans/physiology , Amino Acid Sequence , Computational Biology , Genetic Complementation Test , Humans , Hydrogen-Ion Concentration , Polymerase Chain Reaction/methods , Riboflavin/chemistry , Sequence Alignment , Streptococcus mutans/genetics , Streptococcus mutans/growth & development , Stress, Physiological/genetics
5.
Infect Immun ; 87(2)2019 02.
Article in English | MEDLINE | ID: mdl-30420450

ABSTRACT

Staphylococcus aureus nitric oxide synthase (saNOS) is a major contributor to virulence, stress resistance, and physiology, yet the specific mechanism(s) by which saNOS intersects with other known regulatory circuits is largely unknown. The SrrAB two-component system, which modulates gene expression in response to the reduced state of respiratory menaquinones, is a positive regulator of nos expression. Several SrrAB-regulated genes were also previously shown to be induced in an aerobically respiring nos mutant, suggesting a potential interplay between saNOS and SrrAB. Therefore, a combination of genetic, molecular, and physiological approaches was employed to characterize a nos srrAB mutant, which had significant reductions in the maximum specific growth rate and oxygen consumption when cultured under conditions promoting aerobic respiration. The nos srrAB mutant secreted elevated lactate levels, correlating with the increased transcription of lactate dehydrogenases. Expression of nitrate and nitrite reductase genes was also significantly enhanced in the nos srrAB double mutant, and its aerobic growth defect could be partially rescued with supplementation with nitrate, nitrite, or ammonia. Furthermore, elevated ornithine and citrulline levels and highly upregulated expression of arginine deiminase genes were observed in the double mutant. These data suggest that a dual deficiency in saNOS and SrrAB limits S. aureus to fermentative metabolism, with a reliance on nitrate assimilation and the urea cycle to help fuel energy production. The nos, srrAB, and nos srrAB mutants showed comparable defects in endothelial intracellular survival, whereas the srrAB and nos srrAB mutants were highly attenuated during murine sepsis, suggesting that SrrAB-mediated metabolic versatility is dominant in vivo.


Subject(s)
Bacterial Proteins , Nitric Oxide Synthase/metabolism , Repressor Proteins , Staphylococcus aureus , Virulence/physiology , Bacterial Proteins/genetics , Cells, Cultured , Gene Expression Regulation, Bacterial/physiology , Mutation , Nitrates/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase/genetics , Oxidative Stress/physiology , Repressor Proteins/genetics , Staphylococcus aureus/metabolism , Staphylococcus aureus/pathogenicity , Transcription, Genetic , Virulence/genetics
6.
Microbiology (Reading) ; 165(1): 113-123, 2019 01.
Article in English | MEDLINE | ID: mdl-30475201

ABSTRACT

The Streptococcus mutans Cid/Lrg system represents an ideal model for studying this organism's ability to withstand various stressors encountered in the oral cavity. The lrg and cid operons display distinct and opposite patterns of expression in response to growth phase and glucose levels, suggesting that the activity and regulation of these proteins must be tightly coordinated in the cell and closely associated with metabolic pathways of the organism. Here, we demonstrate that expression of the cid and lrg operons is directly mediated by a global transcriptional regulator CcpA in response to glucose levels. Comparison of the cid and lrg promoter regions with the conserved CcpA binding motif revealed the presence of two potential cre sites (for CcpA binding) in the cid promoter (designated cid-cre1 and cid-cre2), which were arranged in a similar manner to those previously identified in the lrg promoter region (designated lrg-cre1 and lrg-cre2). We demonstrated that CcpA binds to both the cid and lrg promoters with a high affinity, but has an opposing glucose-dependent effect on the regulation of cid (positive) and lrg (negative) expression. DNase I footprinting analyses revealed potential binding sequences for CcpA in both cid and lrg promoter regions. Collectively, these data suggest that CcpA is a direct regulator of cid and lrg expression, and are suggestive of a potential mechanism by which Cid/Lrg-mediated virulence and cellular homeostasis is integrated with signals associated with both the environment and cellular metabolic status.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Operon , Repressor Proteins/metabolism , Streptococcus mutans/metabolism , Bacterial Proteins/genetics , Glucose/metabolism , Promoter Regions, Genetic , Repressor Proteins/genetics , Streptococcus mutans/genetics
7.
BMC Microbiol ; 19(1): 223, 2019 10 12.
Article in English | MEDLINE | ID: mdl-31606034

ABSTRACT

BACKGROUND: Our recent '-omics' comparisons of Streptococcus mutans wild-type and lrgAB-mutant revealed that this organism undergoes dynamic cellular changes in the face of multiple exogenous stresses, consequently affecting its comprehensive virulence traits. In this current study, we further demonstrate that LrgAB functions as a S. mutans pyruvate uptake system. RESULTS: S. mutans excretes pyruvate during growth as an overflow metabolite, and appears to uptake this excreted pyruvate via LrgAB once the primary carbon source is exhausted. This utilization of excreted pyruvate was tightly regulated by glucose levels and stationary growth phase lrgAB induction. The degree of lrgAB induction was reduced by high extracellular levels of pyruvate, suggesting that lrgAB induction is subject to negative feedback regulation, likely through the LytST TCS, which is required for expression of lrgAB. Stationary phase lrgAB induction was efficiently inhibited by low concentrations of 3FP, a toxic pyruvate analogue, without affecting cell growth, suggesting that accumulated pyruvate is sensed either directly or indirectly by LytS, subsequently triggering lrgAB expression. S. mutans growth was inhibited by high concentrations of 3FP, implying that pyruvate uptake is necessary for S. mutans exponential phase growth and occurs in a Lrg-independent manner. Finally, we found that stationary phase lrgAB induction is modulated by hydrogen peroxide (H2O2) and by co-cultivation with H2O2-producing S. gordonii. CONCLUSIONS: Pyruvate may provide S. mutans with an alternative carbon source under limited growth conditions, as well as serving as a buffer against exogenous oxidative stress. Given the hypothesized role of LrgAB in cell death and lysis, these data also provide an important basis for how these processes are functionally and mechanically connected to key metabolic pathways such as pyruvate metabolism.


Subject(s)
Bacteriological Techniques/methods , Membrane Proteins/genetics , Pyruvic Acid/metabolism , Streptococcus mutans/growth & development , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbon/metabolism , Feedback, Physiological , Gene Expression Regulation, Bacterial , Glucose/metabolism , Hydrogen Peroxide/pharmacology , Membrane Proteins/metabolism , Operon , Streptococcus mutans/genetics
8.
Mol Microbiol ; 105(1): 139-157, 2017 07.
Article in English | MEDLINE | ID: mdl-28431199

ABSTRACT

Nitric oxide (NO) is generated from arginine and oxygen via NO synthase (NOS). Staphylococcus aureus NOS (saNOS) has previously been shown to affect virulence and resistance to exogenous oxidative stress, yet the exact mechanism is unknown. Herein, a previously undescribed role of saNOS in S. aureus aerobic physiology was reported. Specifically, aerobic S. aureus nos mutant cultures presented with elevated endogenous reactive oxygen species (ROS) and superoxide levels, as well as increased membrane potential, increased respiratory dehydrogenase activity and slightly elevated oxygen consumption. Elevated ROS levels in the nos mutant likely resulted from altered respiratory function, as inhibition of NADH dehydrogenase brought ROS levels back to wild-type levels. These results indicate that, in addition to its recently reported role in regulating the switch to nitrate-based respiration during low-oxygen growth, saNOS also plays a modulatory role during aerobic respiration. Multiple transcriptional changes were also observed in the nos mutant, including elevated expression of genes associated with oxidative/nitrosative stress, anaerobic respiration and lactate metabolism. Targeted metabolomics revealed decreased cellular lactate levels, and altered levels of TCA cycle intermediates, the latter of which may be related to decreased aconitase activity. Collectively, these findings demonstrate a key contribution of saNOS to S. aureus aerobic respiratory metabolism.


Subject(s)
Nitric Oxide Synthase/metabolism , Staphylococcus aureus/metabolism , Arginine/metabolism , Cell Physiological Phenomena/physiology , Nitrates/metabolism , Nitric Oxide/metabolism , Oxidation-Reduction , Oxidative Stress , Oxygen/metabolism , Oxygen Consumption/physiology , Reactive Oxygen Species/metabolism , Staphylococcal Infections/metabolism , Staphylococcus aureus/genetics , Superoxides/metabolism , Virulence
9.
RNA Biol ; 15(4-5): 508-517, 2018.
Article in English | MEDLINE | ID: mdl-28726545

ABSTRACT

Endoribonuclease toxins (ribotoxins) are produced by bacteria and fungi to respond to stress, eliminate non-self competitor species, or interdict virus infection. PrrC is a bacterial ribotoxin that targets and cleaves tRNALysUUU in the anticodon loop. In vitro studies suggested that the post-transcriptional modification threonylcarbamoyl adenosine (t6A) is required for PrrC activity but this prediction had never been validated in vivo. Here, by using t6A-deficient yeast derivatives, it is shown that t6A is a positive determinant for PrrC proteins from various bacterial species. Streptococcus mutans is one of the few bacteria where the t6A synthesis gene tsaE (brpB) is dispensable and its genome encodes a PrrC toxin. We had previously shown using an HPLC-based assay that the S. mutans tsaE mutant was devoid of t6A. However, we describe here a novel and a more sensitive hybridization-based t6A detection method (compared to HPLC) that showed t6A was still present in the S. mutans ΔtsaE, albeit at greatly reduced levels (93% reduced compared with WT). Moreover, mutants in 2 other S. mutans t6A synthesis genes (tsaB and tsaC) were shown to be totally devoid of the modification thus confirming its dispensability in this organism. Furthermore, analysis of t6A modification ratios and of t6A synthesis genes mRNA levels in S. mutans suggest they may be regulated by growth phase.


Subject(s)
Adenosine/analogs & derivatives , Bacterial Proteins/genetics , Endoribonucleases/genetics , RNA Processing, Post-Transcriptional , RNA, Transfer, Lys/genetics , Streptococcus mutans/genetics , Adenosine/deficiency , Adenosine/genetics , Anticodon/chemistry , Anticodon/metabolism , Bacterial Proteins/metabolism , Bacterial Toxins/biosynthesis , Bacterial Toxins/genetics , Endoribonucleases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Nucleic Acid Conformation , Protein Biosynthesis , RNA, Transfer, Lys/metabolism , Streptococcus mutans/metabolism
10.
J Bacteriol ; 199(5)2017 03 01.
Article in English | MEDLINE | ID: mdl-28031278

ABSTRACT

In previous studies, we identified the fatty acid kinase virulence factor regulator B (VfrB) as a potent regulator of α-hemolysin and other virulence factors in Staphylococcus aureus In this study, we demonstrated that VfrB is a positive activator of the SaeRS two-component regulatory system. Analysis of vfrB, saeR, and saeS mutant strains revealed that VfrB functions in the same pathway as SaeRS. At the transcriptional level, the promoter activities of SaeRS class I (coa) and class II (hla) target genes were downregulated during the exponential growth phase in the vfrB mutant, compared to the wild-type strain. In addition, saePQRS expression was decreased in the vfrB mutant strain, demonstrating a need for this protein in the autoregulation of SaeRS. The requirement for VfrB-mediated activation was circumvented when SaeS was constitutively active due to an SaeS (L18P) substitution. Furthermore, activation of SaeS via human neutrophil peptide 1 (HNP-1) overcame the dependence on VfrB for transcription from class I Sae promoters. Consistent with the role of VfrB in fatty acid metabolism, hla expression was decreased in the vfrB mutant with the addition of exogenous myristic acid. Lastly, we determined that aspartic acid residues D38 and D40, which are predicted to be key to VfrB enzymatic activity, were required for VfrB-mediated α-hemolysin production. Collectively, this study implicates VfrB as a novel accessory protein needed for the activation of SaeRS in S. aureusIMPORTANCE The SaeRS two-component system is a key regulator of virulence determinant production in Staphylococcus aureus Although the regulon of this two-component system is well characterized, the activation mechanisms, including the specific signaling molecules, remain elusive. Elucidating the complex regulatory circuit of SaeRS regulation is important for understanding how the system contributes to disease causation by this pathogen. To this end, we have identified the fatty acid kinase VfrB as a positive regulatory modulator of SaeRS-mediated transcription of virulence factors in S. aureus In addition to describing a new regulatory aspect of SaeRS, this study establishes a link between fatty acid kinase activity and virulence factor regulation.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Protein Kinases/metabolism , Staphylococcus aureus/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Conserved Sequence , Protein Kinases/genetics , Staphylococcus aureus/genetics , Transcription Factors
11.
Appl Environ Microbiol ; 82(20): 6189-6203, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27520814

ABSTRACT

The Streptococcus mutans lrgAB and cidAB operons have been previously described as a potential model system to dissect the complexity of biofilm development and virulence of S. mutans Herein, we have attempted to further characterize the Cid/Lrg system by focusing on CidB, which has been shown to be critical for the ability of S. mutans to survive and persist in a nonpreferred oxygen-enriched condition. We have found that the expression level of cidB is critical to oxidative stress tolerance of S. mutans, most likely by impacting lrg expression. Intriguingly, the impaired aerobic growth phenotype of the cidB mutant could be restored by the additional loss of either CidA or LrgA. Growth-dependent expression of cid and lrg was demonstrated to be tightly under the control of both CcpA and the VicKR two-component system (TCS), regulators known to play an essential role in controlling major catabolic pathways and cell envelope homeostasis, respectively. RNA sequencing (RNA-Seq) analysis revealed that mutation of cidB resulted in global gene expression changes, comprising major domains of central metabolism and virulence processes, particularly in those involved with oxidative stress resistance. Loss of CidB also significantly changed the expression of genes related to genomic islands (GI) TnSmu1 and TnSmu2, the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas system, and toxin-antitoxin (T/A) modules. Taken together, these data show that CidB impinges on the stress response, as well as the fundamental cellular physiology of S. mutans, and further suggest a potential link between Cid/Lrg-mediated cellular processes, S. mutans pathogenicity, and possible programmed growth arrest and cell death mechanisms. IMPORTANCE: The ability of Streptococcus mutans to survive a variety of harmful or stressful conditions and to emerge as a numerically significant member of stable oral biofilm communities are essential elements for its persistence and cariogenicity. In this study, the homologous cidAB and lrgAB operons, previously identified as being highly balanced and coordinated during S. mutans aerobic growth, were further characterized through the functional and transcriptomic analysis of CidB. Precise control of CidB levels is shown to impact the expression of lrg, oxidative stress tolerance, major metabolic domains, and the molecular modules linked to cell death and lysis. This study advances our understanding of the Cid/Lrg system as a key player in the integration of complex environmental signals (such as oxidative stress) into the regulatory networks that modulate S. mutans virulence and cell homeostasis.


Subject(s)
Bacterial Proteins/metabolism , Streptococcus mutans/metabolism , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Operon , Oxidative Stress , Streptococcus mutans/genetics , Virulence
12.
Pharm Res ; 31(11): 3031-7, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24831311

ABSTRACT

PURPOSE: The purpose of this study was to develop a novel, drug-free therapy that can reduce the over-accumulation of cariogenic bacteria on dental surfaces. METHODS: We designed and synthesized a polyethylene glycol (PEG)-based hydrophilic copolymer functionalized with a pyrophosphate (PPi) tooth-binding anchor using "click" chemistry. The polymer was then evaluated for hydroxyapatite (HA) binding kinetics and capability of reducing bacteria adhesion to artificial tooth surface. RESULTS: The PPi-PEG copolymer can effectively inhibit salivary protein adsorption after rapid binding to an artificial tooth surface. As a result, the in vitro S. mutans adhesion study showed that the PPi-PEG copolymer can inhibit saliva protein-promoted S. mutans adhesion through the creation of a neutral, hydrophilic layer on the artificial tooth surface. CONCLUSIONS: The results suggested the potential application of a PPi-PEG copolymer as a drug-free alternative to current antimicrobial therapy for caries prevention.


Subject(s)
Dental Caries/prevention & control , Bacterial Adhesion/drug effects , Dental Caries/microbiology , Diphosphates/administration & dosage , Diphosphates/chemistry , Hydrophobic and Hydrophilic Interactions , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/chemistry , Polymers/administration & dosage , Polymers/chemistry , Saliva/microbiology , Streptococcus mutans/drug effects , Tooth/microbiology
13.
NPJ Microgravity ; 10(1): 89, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39251626

ABSTRACT

Biofilms are a concern for spaceflight missions, given their propensity for biofouling systems and their potential threat to astronaut health. Herein, we describe a random positioning machine-based method for growing fluorescent protein-expressing streptococcal biofilms under simulated microgravity. Biofilms can be subsequently imaged by confocal microscopy without further manipulation, minimizing disruption of architecture. This methodology could be adaptable to other bacteria, potentially standardizing biofilm growth and study under simulated microgravity.

14.
NPJ Microgravity ; 10(1): 2, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191486

ABSTRACT

Staphylococcus aureus colonizes the nares of approximately 30% of humans, a risk factor for opportunistic infections. To gain insight into S. aureus virulence potential in the spaceflight environment, we analyzed RNA-Seq, cellular proteomics, and metabolomics data from the "Biological Research in Canisters-23" (BRIC-23) GeneLab spaceflight experiment, a mission designed to measure the response of S. aureus to growth in low earth orbit on the international space station. This experiment used Biological Research in Canisters-Petri Dish Fixation Units (BRIC-PDFUs) to grow asynchronous ground control and spaceflight cultures of S. aureus for 48 h. RNAIII, the effector of the Accessory Gene Regulator (Agr) quorum sensing system, was the most highly upregulated gene transcript in spaceflight relative to ground controls. The agr operon gene transcripts were also highly upregulated during spaceflight, followed by genes encoding phenol-soluble modulins and secreted proteases, which are positively regulated by Agr. Upregulated spaceflight genes/proteins also had functions related to urease activity, type VII-like Ess secretion, and copper transport. We also performed secretome analysis of BRIC-23 culture supernatants, which revealed that spaceflight samples had increased abundance of secreted virulence factors, including Agr-regulated proteases (SspA, SspB), staphylococcal nuclease (Nuc), and EsxA (secreted by the Ess system). These data also indicated that S. aureus metabolism is altered in spaceflight conditions relative to the ground controls. Collectively, these data suggest that S. aureus experiences increased quorum sensing and altered expression of virulence factors in response to the spaceflight environment that may impact its pathogenic potential.

15.
Appl Environ Microbiol ; 79(11): 3413-24, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23524683

ABSTRACT

The Staphylococcus aureus cid and lrg operons play significant roles in the control of autolysis and accumulation of extracellular genomic DNA (eDNA) during biofilm development. Although the molecular mechanisms mediating this control are only beginning to be revealed, it is clear that cell death must be limited to a subfraction of the biofilm population. In the present study, we tested the hypothesis that cid and lrg expression varies during biofilm development as a function of changes in the availability of oxygen. To examine cid and lrg promoter activity during biofilm development, fluorescent reporter fusion strains were constructed and grown in a BioFlux microfluidic system, generating time-lapse epifluorescence images of biofilm formation, which allows the spatial and temporal localization of gene expression. Consistent with cid induction under hypoxic conditions, the cid::gfp fusion strain expressed green fluorescent protein predominantly within the interior of the tower structures, similar to the pattern of expression observed with a strain carrying a gfp fusion to the hypoxia-induced promoter controlling the expression of the lactose dehydrogenase gene. The lrg promoter was also expressed within towers but appeared more diffuse throughout the tower structures, indicating that it was oxygen independent. Unexpectedly, the results also demonstrated the existence of tower structures with different expression phenotypes and physical characteristics, suggesting that these towers exhibit different metabolic activities. Overall, the findings presented here support a model in which oxygen is important in the spatial and temporal control of cid expression within a biofilm and that tower structures formed during biofilm development exhibit metabolically distinct niches.


Subject(s)
Biofilms/growth & development , Gene Expression Regulation, Bacterial/genetics , Microfluidic Analytical Techniques/methods , Staphylococcus aureus/growth & development , Staphylococcus aureus/metabolism , Microscopy, Fluorescence , Models, Biological , Oxygen/metabolism , Promoter Regions, Genetic/genetics , Real-Time Polymerase Chain Reaction , Staphylococcus aureus/genetics
16.
Pharm Res ; 30(11): 2808-17, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23765401

ABSTRACT

PURPOSE: Development of dentotropic (tooth-binding) micelle formulations to improved efficacy and safety of antimicrobial therapy for dental plaque prevention and treatment. METHODS: Because of their excellent biocompatibility and biodegradability, diphosphoserine peptide and pyrophosphate were selected as the tooth-binding moieties to replace alendronate, which was used previously. Diphosphoserine peptide was conjugated to Pluronic P123 using "click" chemistry, whereas pyrophosphate was attached to P123 through an ester bond. The tooth-binding micelles (TBMs) were prepared by self-assembly of the modified P123 with the antimicrobial agent triclosan. The influence of human saliva and/or its components on TBMs' drug-releasing profile, tooth-binding potential and binding stability was evaluated in vitro. S. mutans UA159 biofilm formed on hydroxyapatite (HA) discs was used to evaluate the TBMs' therapeutic potential. RESULTS: Saliva does not affect triclosan release from TBMs. More than 60% of TBMs' HA binding capacity was maintained in the presence of saliva. Less than 5% of TBMs bound to HA was released over 24 h in human saliva, protease or phosphatase, suggesting the retention properties of the TBMs will not be compromised due to the biodegradable nature of the binding moieties. In both in vitro biofilm prevention and treatment studies, the TBM treated group showed significantly lower CFU per HA disc compared to the controls (2-log reduction, p < 0.05). CONCLUSION: The data from these studies suggest that the novel dentotropic micelle formulations bearing biodegradable tooth-binding moieties can be used as an effective and safe delivery tool for antimicrobials to improve dental plaque prevention and treatment.


Subject(s)
Anti-Infective Agents, Local/administration & dosage , Diphosphates/chemistry , Drug Carriers/chemistry , Micelles , Phosphoserine/chemistry , Tooth/metabolism , Triclosan/administration & dosage , Anti-Infective Agents, Local/pharmacology , Biofilms/drug effects , Dental Plaque/drug therapy , Diphosphates/metabolism , Drug Carriers/metabolism , Drug Delivery Systems , Humans , Phosphoserine/metabolism , Poloxalene/chemistry , Poloxalene/metabolism , Streptococcus mutans/drug effects , Streptococcus mutans/physiology , Tooth/microbiology , Triclosan/pharmacology
17.
Microbiol Spectr ; : e0168823, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37747881

ABSTRACT

Staphylococcus aureus nitric oxide synthase (saNOS) contributes to oxidative stress resistance, antibiotic tolerance, virulence, and modulation of aerobic and nitrate-based cellular respiration. Despite its involvement in these essential processes, the genetic regulation of nos expression has not been well characterized. 5' rapid amplification of cDNA ends on nos RNA isolated from S. aureus UAMS-1 (USA200 strain) and AH1263 (USA300 strain) revealed that the nos transcriptional start site mapped to an adenine nucleotide in the predicted Shine-Dalgarno site located 11 bp upstream of the nos ATG start codon, suggesting that the nos transcript may have a leaderless organization or may be subject to processing. The SrrAB two-component system (TCS) was previously identified as a positive regulator of nos RNA levels, and experiments using a ß-galactosidase reporter plasmid confirmed that SrrAB is a positive regulator of nos promoter activity. In addition, the quorum-sensing system Agr was identified as a negative regulator of low-oxygen nos expression in UAMS-1, with activity epistatic to SrrAB. Involvement of Agr was strain dependent, as nos expression remained unchanged in an AH1263 agr mutant, which has higher Agr activity compared to UAMS-1. Furthermore, nos promoter activity and RNA levels were significantly stronger in AH1263 relative to UAMS-1 during late-exponential low-oxygen growth, when nos expression is maximal. Global regulators Rex and MgrA were also implicated as negative regulators of low-oxygen nos promoter activity in UAMS-1. Collectively, these results provide new insight into factors that control nos expression.IMPORTANCEBacterial nitric oxide synthase (bNOS) has recently emerged in several species as a key player in resistance to stresses commonly encountered during infection. Although Staphylococcus aureus (sa)NOS has been suggested to be a promising drug target in S. aureus, an obstacle to this in practice is the existence of mammalian NOS, whose oxygenase domain is like bacterial NOS. Increased understanding of the nos regulatory network in S. aureus could allow targeting of saNOS through its regulators, bypassing the issue of also inhibiting mammalian NOS. Furthermore, the observed strain-dependent differences in S. aureus nos regulation presented in this study reinforce the importance of studying bacterial NOS regulation and function at both the strain and species levels.

18.
bioRxiv ; 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38187551

ABSTRACT

The wobble bases of tRNAs that decode split codons are often heavily modified. In Bacteria tRNA Glu, Gln, Asp contain a variety of xnm 5 s 2 U derivatives. The synthesis pathway for these modifications is complex and fully elucidated only in a handful of organisms, including the Gram-negative Escherichia coli K12 model. Despite the ubiquitous presence of mnm 5 s 2 U modification, genomic analysis shows the absence of mnmC orthologous genes, suggesting the occurrence of alternate biosynthetic schemes for the installation of this modification. Using a combination of comparative genomics and genetic studies, a member of the YtqA subgroup of the Radical Sam superfamily was found to be involved in the synthesis of mnm 5 s 2 U in both Bacillus subtilis and Streptococcus mutans . This protein, renamed MnmL, is encoded in an operon with the recently discovered MnmM methylase involved in the methylation of the pathway intermediate nm 5 s 2 U into mnm 5 s 2 U in B. subtilis . Analysis of tRNA modifications of both S. mutans and Streptococcus pneumoniae shows that growth conditions and genetic backgrounds influence the ratios of pathways intermediates in regulatory loops that are not yet understood. The MnmLM pathway is widespread along the bacterial tree, with some phyla, such as Bacilli, relying exclusively on these two enzymes. The occurrence of fusion proteins, alternate arrangements of biosynthetic components, and loss of biosynthetic branches provide examples of biosynthetic diversity to retain a conserved tRNA modification in nature. Importance: The xnm 5 s 2 U modifications found in several tRNAs at the wobble base position are widespread in Bacteria where they have an important role in decoding efficiency and accuracy. This work identifies a novel enzyme (MnmL) that is a member of a subgroup of the very versatile Radical SAM superfamily and is involved in the synthesis of mnm 5 s 2 U in several Gram-positive bacteria, including human pathogens. This is another novel example of a non-orthologous displacement in the field of tRNA modification synthesis, showing how different solutions evolve to retain U34 tRNA modifications.

19.
BMC Microbiol ; 12: 187, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22937869

ABSTRACT

BACKGROUND: The S. mutans LrgA/B holin-like proteins have been shown to affect biofilm formation and oxidative stress tolerance, and are regulated by oxygenation, glucose levels, and by the LytST two-component system. In this study, we sought to determine if LytST was involved in regulating lrgAB expression in response to glucose and oxygenation in S. mutans. RESULTS: Real-time PCR revealed that growth phase-dependent regulation of lrgAB expression in response to glucose metabolism is mediated by LytST under low-oxygen conditions. However, the effect of LytST on lrgAB expression was less pronounced when cells were grown with aeration. RNA expression profiles in the wild-type and lytS mutant strains were compared using microarrays in early exponential and late exponential phase cells. The expression of 40 and 136 genes in early-exponential and late exponential phase, respectively, was altered in the lytS mutant. Although expression of comYB, encoding a DNA binding-uptake protein, was substantially increased in the lytS mutant, this did not translate to an effect on competence. However, a lrgA mutant displayed a substantial decrease in transformation efficiency, suggestive of a previously-unknown link between LrgA and S. mutans competence development. Finally, increased expression of genes encoding antioxidant and DNA recombination/repair enzymes was observed in the lytS mutant, suggesting that the mutant may be subjected to increased oxidative stress during normal growth. Although the intracellular levels of reaction oxygen species (ROS) appeared similar between wild-type and lytS mutant strains after overnight growth, challenge of these strains with hydrogen peroxide (H2O2) resulted in increased intracellular ROS in the lytS mutant. CONCLUSIONS: Overall, these results: (1) Reinforce the importance of LytST in governing lrgAB expression in response to glucose and oxygen, (2) Define a new role for LytST in global gene regulation and resistance to H2O2, and (3) Uncover a potential link between LrgAB and competence development in S. mutans.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Oxidative Stress , Regulon , Streptococcus mutans/physiology , Stress, Physiological , Bacterial Proteins/genetics , DNA Transformation Competence , Gene Expression Profiling , Gene Knockout Techniques , Glucose/metabolism , Hydrogen Peroxide/metabolism , Real-Time Polymerase Chain Reaction , Streptococcus mutans/genetics
20.
J Biol Chem ; 285(53): 41557-66, 2010 Dec 31.
Article in English | MEDLINE | ID: mdl-20952389

ABSTRACT

5-Formyltetrahydrofolate (5-CHO-THF) is formed by a side reaction of serine hydroxymethyltransferase. Unlike other folates, it is not a one-carbon donor but a potent inhibitor of folate enzymes and must therefore be metabolized. Only 5-CHO-THF cycloligase (5-FCL) is generally considered to do this. However, comparative genomic analysis indicated (i) that certain prokaryotes lack 5-FCL, implying that they have an alternative 5-CHO-THF-metabolizing enzyme, and (ii) that the histidine breakdown enzyme glutamate formiminotransferase (FT) might moonlight in this role. A functional complementation assay for 5-CHO-THF metabolism was developed in Escherichia coli, based on deleting the gene encoding 5-FCL (ygfA). The deletion mutant accumulated 5-CHO-THF and, with glycine as sole nitrogen source, showed a growth defect; both phenotypes were complemented by bacterial or archaeal genes encoding FT. Furthermore, utilization of supplied 5-CHO-THF by Streptococcus pyogenes was shown to require expression of the native FT. Recombinant bacterial and archaeal FTs catalyzed formyl transfer from 5-CHO-THF to glutamate, with k(cat) values of 0.1-1.2 min(-1) and K(m) values for 5-CHO-THF and glutamate of 0.4-5 µM and 0.03-1 mM, respectively. Although the formyltransferase activities of these proteins were far lower than their formiminotransferase activities, the K(m) values for both substrates relative to their intracellular levels in prokaryotes are consistent with significant in vivo flux through the formyltransferase reaction. Collectively, these data indicate that FTs functionally replace 5-FCL in certain prokaryotes.


Subject(s)
Carbon-Nitrogen Ligases/chemistry , Glutamate Formimidoyltransferase/metabolism , Animals , Archaea/metabolism , Escherichia coli/enzymology , Escherichia coli/metabolism , Folic Acid/chemistry , Genetic Complementation Test , Genomics , Glutamic Acid/chemistry , Histidine/chemistry , Kinetics , Models, Genetic , Mutation , Phenotype , Recombinant Proteins/chemistry , Streptococcus pyogenes/metabolism , Swine
SELECTION OF CITATIONS
SEARCH DETAIL