Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 289
Filter
Add more filters

Publication year range
1.
J Proteome Res ; 23(5): 1779-1787, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38655860

ABSTRACT

To prevent doping practices in sports, the World Anti-Doping Agency implemented the Athlete Biological Passport (ABP) program, monitoring biological variables over time to indirectly reveal the effects of doping rather than detect the doping substance or the method itself. In the context of this program, a highly multiplexed mass spectrometry-based proteomics assay for 319 peptides corresponding to 250 proteins was developed, including proteins associated with blood-doping practices. "Baseline" expression profiles of these potential biomarkers in capillary blood (dried blood spots (DBS)) were established using multiple reaction monitoring (MRM). Combining DBS microsampling with highly multiplexed MRM assays is the best-suited technology to enhance the effectiveness of the ABP program, as it represents a cost-effective and robust alternative analytical method with high specificity and selectivity of targets in the attomole range. DBS data were collected from 10 healthy athlete volunteers over a period of 140 days (28 time points per participant). These comprehensive findings provide a personalized targeted blood proteome "fingerprint" showcasing that the targeted proteome is unique to an individual and likely comparable to a DNA fingerprint. The results can serve as a baseline for future studies investigating doping-related perturbations.


Subject(s)
Blood Proteins , Doping in Sports , Dried Blood Spot Testing , Proteomics , Humans , Doping in Sports/prevention & control , Proteomics/methods , Blood Proteins/analysis , Dried Blood Spot Testing/methods , Dried Blood Spot Testing/standards , Male , Reference Values , Adult , Biomarkers/blood , Mass Spectrometry/methods , Substance Abuse Detection/methods , Proteome/analysis , Athletes , Female
2.
Mol Cell Proteomics ; 21(10): 100277, 2022 10.
Article in English | MEDLINE | ID: mdl-35931319

ABSTRACT

The recent surge of coronavirus disease 2019 (COVID-19) hospitalizations severely challenges healthcare systems around the globe and has increased the demand for reliable tests predictive of disease severity and mortality. Using multiplexed targeted mass spectrometry assays on a robust triple quadrupole MS setup which is available in many clinical laboratories, we determined the precise concentrations of hundreds of proteins and metabolites in plasma from hospitalized COVID-19 patients. We observed a clear distinction between COVID-19 patients and controls and, strikingly, a significant difference between survivors and nonsurvivors. With increasing length of hospitalization, the survivors' samples showed a trend toward normal concentrations, indicating a potential sensitive readout of treatment success. Building a machine learning multi-omic model that considers the concentrations of 10 proteins and five metabolites, we could predict patient survival with 92% accuracy (area under the receiver operating characteristic curve: 0.97) on the day of hospitalization. Hence, our standardized assays represent a unique opportunity for the early stratification of hospitalized COVID-19 patients.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Machine Learning , Hospitalization , ROC Curve , Retrospective Studies
3.
Breast Cancer Res ; 25(1): 99, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37608351

ABSTRACT

BACKGROUND: Obesity increases breast cancer risk and breast cancer-specific mortality, particularly for people with estrogen receptor (ER)-positive tumors. Body mass index (BMI) is used to define obesity, but it may not be the best predictor of breast cancer risk or prognosis on an individual level. Adult weight gain is an independent indicator of breast cancer risk. Our previous work described a murine model of obesity, ER-positive breast cancer, and weight gain and identified fibroblast growth factor receptor (FGFR) as a potential driver of tumor progression. During adipose tissue expansion, the FGF1 ligand is produced by hypertrophic adipocytes as a stimulus to stromal preadipocytes that proliferate and differentiate to provide additional lipid storage capacity. In breast adipose tissue, FGF1 production may stimulate cancer cell proliferation and tumor progression. METHODS: We explored the effects of FGF1 on ER-positive endocrine-sensitive and resistant breast cancer and compared that to the effects of the canonical ER ligand, estradiol. We used untargeted proteomics, specific immunoblot assays, gene expression profiling, and functional metabolic assessments of breast cancer cells. The results were validated in tumors from obese mice and breast cancer datasets from women with obesity. RESULTS: FGF1 stimulated ER phosphorylation independently of estradiol in cells that grow in obese female mice after estrogen deprivation treatment. Phospho- and total proteomic, genomic, and functional analyses of endocrine-sensitive and resistant breast cancer cells show that FGF1 promoted a cellular phenotype characterized by glycolytic metabolism. In endocrine-sensitive but not endocrine-resistant breast cancer cells, mitochondrial metabolism was also regulated by FGF1. Comparison of gene expression profiles indicated that tumors from women with obesity shared hallmarks with endocrine-resistant breast cancer cells. CONCLUSIONS: Collectively, our data suggest that one mechanism by which obesity and weight gain promote breast cancer progression is through estrogen-independent ER activation and cancer cell metabolic reprogramming, partly driven by FGF/FGFR. The first-line treatment for many patients with ER-positive breast cancer is inhibition of estrogen synthesis using aromatase inhibitors. In women with obesity who are experiencing weight gain, locally produced FGF1 may activate ER to promote cancer cell metabolic reprogramming and tumor progression independently of estrogen.


Subject(s)
Breast Neoplasms , Fibroblast Growth Factor 1 , Receptors, Estrogen , Animals , Female , Mice , Estradiol , Estrogens , Fibroblast Growth Factor 1/metabolism , Ligands , Obesity/complications , Proteomics , Receptors, Estrogen/genetics , Weight Gain , Breast Neoplasms/metabolism
4.
Expert Rev Proteomics ; 20(4-6): 87-92, 2023.
Article in English | MEDLINE | ID: mdl-37309581

ABSTRACT

INTRODUCTION: Proteomic analysis of formalin-fixed paraffin-embedded (FFPE) tumor tissue specimens has gained interest in the last 5 years due to technological advances and improved sample collection, as well as biobanking for clinical trials. The real-world implementation of clinical proteomics to these specimens, however, is hampered by tedious sample preparation steps and long instrument acquisition times. AREAS COVERED: To advance the translation of quantitative proteomics into the clinic, we are comparing the performance of the leading commercial nanoflow liquid chromatography (nLC) system (based on literature reviews), the Easy-nLC 1200 (Thermo Fisher Scientific, Waltham, MA, U.S.A.), to the Evosep One HPLC (Evosep Biosystems, Odense, Denmark). We measured FFPE-tissue digests from 21 biological replicates with a similar gradient on both of the LC systems while keeping the on-column amount (1 µg total protein) and the single-shot data-dependent acquisition-based MS/MS method constant. EXPERT OPINION: Overall, the Evosep One facilitates robust and sensitive high-throughput sample acquisition, making it suitable for clinical MS. We found the Evosep One to be a useful platform for positioning mass spectrometry-based proteomics in the clinical setting. The clinical application of nLC/MS will inform clinical decision-making in oncology and other diseases.


Subject(s)
Proteomics , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Proteomics/methods , Biological Specimen Banks , Chromatography, Liquid/methods , Chromatography, High Pressure Liquid , Paraffin Embedding/methods , Formaldehyde/chemistry , Tissue Fixation/methods
5.
Ann Vasc Surg ; 93: 18-28, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36572096

ABSTRACT

BACKGROUND: We hypothesized that supraceliac aortic cross clamping could induce lung injury mediated by an inflammatory ischemia-reperfusion (IR) trigger. We aimed to characterize glycocalyx (GCX), a component of endothelial membrane, participating to remote lung injury. METHODS: Rats underwent supraceliac aortic cross clamping for 40 min and were sacrificed at 0, 3, 6, and 24 hr of reperfusion (n = 10/group). Each group was compared to sham (n = 6/group). GCX products (syndecan-1 [Sdc-1] and heparan sulfate [HS]), tumor necrosis factor-alpha (TNF-α), and interleukin-1ß (IL-1ß) were measured in plasma (enzyme-linked immunosorbent assay[ELISA]). Lungs were harvested for measurements of TNF-α, IL-1ß (polymerase chain reaction) and Sdc-1 (western blotting [WB]). Histologic lung injury scoring and pulmonary gravimetry were analyzed in a blinded manner. RESULTS: Plasmatic Sdc-1, HS, TNF-α, and IL-1ß reached peak levels at 3 hr. Levels were significantly higher in clamping groups than sham at 6 hr for Sdc-1, at 0 and 3 hr for HS, at 3 and 6 hr for TNF-α, and at 3 hr for IL-1ß. Lung TNF-α and Interleukin-1ß reached peak levels at 6 hr. Levels were significantly higher than sham at 6 and 24 hr for TNF-α and at 6 hr for IL-1ß. Lung Sdc-1 was lowest at 3 hr. Sdc-1 was not significantly different compared to sham at the different reperfusion times. At 3 hr, it was 0.27 ± 0.03 vs. 0.33 ± 0.02 (sham) (P = 0.09). Histopathologic scores at 6 and 24 hr were higher in clamping groups than sham. At 6 and 24 hr, it was higher for hemorrhage, polynuclear neutrophil (PNN) infiltration and intravascular leukocytes. Pulmonary edema was higher by gravimetry at 0 and 6 hr. CONCLUSIONS: Supra celiac aortic clamping causes early lung injury in relation with a systemic inflammatory response associated with altered GCX structure.


Subject(s)
Lung Injury , Reperfusion Injury , Rats , Animals , Lung Injury/etiology , Interleukin-1beta , Tumor Necrosis Factor-alpha , Constriction , Glycocalyx , Treatment Outcome , Lung/pathology , Reperfusion Injury/pathology
6.
Int J Mol Sci ; 24(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36901833

ABSTRACT

Although metabolic complications are common in thalassemia patients, there is still an unmet need to better understand underlying mechanisms. We used unbiased global proteomics to reveal molecular differences between the th3/+ mouse model of thalassemia and wild-type control animals focusing on skeletal muscles at 8 weeks of age. Our data point toward a significantly impaired mitochondrial oxidative phosphorylation. Furthermore, we observed a shift from oxidative fibre types toward more glycolytic fibre types in these animals, which was further supported by larger fibre-type cross-sectional areas in the more oxidative type fibres (type I/type IIa/type IIax hybrid). We also observed an increase in capillary density in th3/+ mice, indicative of a compensatory response. Western blotting for mitochondrial oxidative phosphorylation complex proteins and PCR analysis of mitochondrial genes indicated reduced mitochondrial content in the skeletal muscle but not the hearts of th3/+ mice. The phenotypic manifestation of these alterations was a small but significant reduction in glucose handling capacity. Overall, this study identified many important alterations in the proteome of th3/+ mice, amongst which mitochondrial defects leading to skeletal muscle remodelling and metabolic dysfunction were paramount.


Subject(s)
beta-Thalassemia , Mice , Animals , beta-Thalassemia/metabolism , Proteomics , Muscle, Skeletal/metabolism , Mitochondria/metabolism , Oxidation-Reduction
7.
BMC Infect Dis ; 22(1): 821, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36348312

ABSTRACT

BACKGROUND: Poliomyelitis outbreaks due to pathogenic vaccine-derived polioviruses (VDPVs) are threatening and complicating the global polio eradication initiative. Most of these VDPVs are genetic recombinants with non-polio enteroviruses (NPEVs) of species C. Little is known about factors favoring this genetic macroevolution process. Since 2001, Madagascar has experienced several outbreaks of poliomyelitis due to VDPVs, and most of VDPVs were isolated in the south of the island. The current study explored some of the viral factors that can promote and explain the emergence of recombinant VDPVs in Madagascar. METHODS: Between May to August 2011, we collected stools from healthy children living in two southern and two northern regions of Madagascar. Virus isolation was done in RD, HEp-2c, and L20B cell lines, and enteroviruses were detected using a wide-spectrum 5'-untranslated region RT-PCR assay. NPEVs were then sequenced for the VP1 gene used for viral genotyping. RESULTS: Overall, we collected 1309 stools, of which 351 NPEVs (26.8%) were identified. Sequencing revealed 33 types of viruses belonging to three different species: Enterovirus A (8.5%), Enterovirus B (EV-B, 40.2%), and Enterovirus C (EV-C, 51.3%). EV-C species included coxsackievirus A13, A17, and A20 previously described as putative recombination partners for poliovirus vaccine strains. Interestingly, the isolation rate was higher among stools originating from the South (30.3% vs. 23.6%, p-value = 0.009). EV-C were predominant in southern sites (65.7%) while EV-B predominated in northern sites (54.9%). The factors that explain the relative abundance of EV-C in the South are still unknown. CONCLUSIONS: Whatever its causes, the relative abundance of EV-C in the South of Madagascar may have promoted the infections of children by EV-C, including the PV vaccine strains, and have favored the recombination events between PVs and NPEVs in co-infected children, thus leading to the recurrent emergence of recombinant VDPVs in this region of Madagascar.


Subject(s)
Enterovirus C, Human , Enterovirus Infections , Enterovirus , Poliomyelitis , Poliovirus Vaccines , Poliovirus , Child , Humans , Madagascar/epidemiology , Phylogeny , Enterovirus Infections/epidemiology , Poliomyelitis/prevention & control , Enterovirus C, Human/genetics , Disease Outbreaks , Poliovirus Vaccine, Oral/adverse effects
8.
Int J Mol Sci ; 23(16)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36012201

ABSTRACT

The routine use of mechanical circulatory support during lung transplantation (LTx) is still controversial. The use of prophylactic human albumin (HA) or hypertonic sodium lactate (HSL) prime in mechanical circulatory support during LTx could prevent ischemia−reperfusion (IR) injuries and pulmonary endothelial dysfunction and thus prevent the development of pulmonary graft dysfunction. The objective was to investigate the impact of cardiopulmonary bypass (CPB) priming with HA and HSL compared to a CPB prime with Gelofusine (GF) on pulmonary endothelial dysfunction in a lung IR rat model. Rats were assigned to four groups: IR-CPB-GF group, IR-CPB-HA group, IR-CPB-HSL group and a sham group. The study of pulmonary vascular reactivity by wire myograph was the primary outcome. Glycocalyx degradation (syndecan-1 and heparan) was also assessed by ELISA and electron microscopy, systemic and pulmonary inflammation by ELISA (IL-1ß, IL-10, and TNF-α) and immunohistochemistry. Clinical parameters were evaluated. We employed a CPB model with three different primings, permitting femoral−femoral assistance with left pulmonary hilum ischemia for IR. Pulmonary endothelium-dependent relaxation to acetylcholine was significantly decreased in the IR-CPB-GF group (11.9 ± 6.2%) compared to the IR-CPB-HA group (52.8 ± 5.2%, p < 0.0001), the IR-CPB-HSL group (57.7 ± 6.3%, p < 0.0001) and the sham group (80.8 ± 6.5%, p < 0.0001). We did not observe any difference between the groups concerning glycocalyx degradation, and systemic or tissular inflammation. The IR-CPB-HSL group needed more vascular filling and developed significantly more pulmonary edema than the IR-CPB-GF group and the IR-CPB-HA group. Using HA as a prime in CPB during Ltx could decrease pulmonary endothelial dysfunction's IR-mediated effects. No effects of HA were found on inflammation.


Subject(s)
Cardiopulmonary Bypass , Reperfusion Injury , Animals , Cardiopulmonary Bypass/adverse effects , Disease Models, Animal , Humans , Inflammation , Ischemia , Rats , Reperfusion , Serum Albumin, Human
9.
Arterioscler Thromb Vasc Biol ; 40(7): 1722-1737, 2020 07.
Article in English | MEDLINE | ID: mdl-32404007

ABSTRACT

OBJECTIVE: Lymphatics play an essential pathophysiological role in promoting fluid and immune cell tissue clearance. Conversely, immune cells may influence lymphatic function and remodeling. Recently, cardiac lymphangiogenesis has been proposed as a therapeutic target to prevent heart failure after myocardial infarction (MI). We investigated the effects of gene therapy to modulate cardiac lymphangiogenesis post-MI in rodents. Second, we determined the impact of cardiac-infiltrating T cells on lymphatic remodeling in the heart. Approach and Results: Comparing adenoviral versus adeno-associated viral gene delivery in mice, we found that only sustained VEGF (vascular endothelial growth factor)-CC156S therapy, achieved by adeno-associated viral vectors, increased cardiac lymphangiogenesis, and led to reduced cardiac inflammation and dysfunction by 3 weeks post-MI. Conversely, inhibition of VEGF-C/-D signaling, through adeno-associated viral delivery of soluble VEGFR3 (vascular endothelial growth factor receptor 3), limited infarct lymphangiogenesis. Unexpectedly, this treatment improved cardiac function post-MI in both mice and rats, linked to reduced infarct thinning due to acute suppression of T-cell infiltration. Finally, using pharmacological, genetic, and antibody-mediated prevention of cardiac T-cell recruitment in mice, we discovered that both CD4+ and CD8+ T cells potently suppress, in part through interferon-γ, cardiac lymphangiogenesis post-MI. CONCLUSIONS: We show that resolution of cardiac inflammation after MI may be accelerated by therapeutic lymphangiogenesis based on adeno-associated viral gene delivery of VEGF-CC156S. Conversely, our work uncovers a major negative role of cardiac-recruited T cells on lymphatic remodeling. Our results give new insight into the interconnection between immune cells and lymphatics in orchestration of cardiac repair after injury.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Genetic Therapy , Lymphangiogenesis , Lymphatic Vessels/metabolism , Myocardial Infarction/therapy , Myocardium/metabolism , Vascular Endothelial Growth Factor C/metabolism , Vascular Endothelial Growth Factor Receptor-3/metabolism , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Dependovirus/genetics , Disease Models, Animal , Female , Genetic Vectors , Interferon-gamma/metabolism , Lymphatic Vessels/immunology , Lymphatic Vessels/physiopathology , Male , Mice, Inbred C57BL , Myocardial Infarction/genetics , Myocardial Infarction/immunology , Myocardial Infarction/metabolism , Myocardium/immunology , Myocardium/pathology , Rats, Wistar , Recovery of Function , Signal Transduction , Time Factors , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor Receptor-3/genetics , Ventricular Function, Left
10.
Proteomics ; 20(9): e1900029, 2020 05.
Article in English | MEDLINE | ID: mdl-31729135

ABSTRACT

An enormous amount of research effort has been devoted to biomarker discovery and validation. With the completion of the human genome, proteomics is now playing an increasing role in this search for new and better biomarkers. Here, what leads to successful biomarker development is reviewed and how these features may be applied in the context of proteomic biomarker research is considered. The "fit-for-purpose" approach to biomarker development suggests that untargeted proteomic approaches may be better suited for early stages of biomarker discovery, while targeted approaches are preferred for validation and implementation. A systematic screening of published biomarker articles using MS-based proteomics reveals that while both targeted and untargeted technologies are used in proteomic biomarker development, most researchers do not combine these approaches. i) The reasons for this discrepancy, (ii) how proteomic technologies can overcome technical challenges that seem to limit their translation into the clinic, and (iii) how MS can improve, complement, or replace existing clinically important assays in the future are discussed.


Subject(s)
Biomarkers/analysis , Mass Spectrometry/methods , Proteins/analysis , Proteomics/methods , Biomarkers/metabolism , Biomedical Research , Hemoglobinopathies/blood , Hemoglobinopathies/diagnosis , Humans , Immunoassay/methods , Prostate-Specific Antigen/analysis , Protein Isoforms/analysis , Proteomics/trends , Reproducibility of Results
11.
Crit Care ; 24(1): 354, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32546181

ABSTRACT

BACKGROUND: Hypertonic sodium lactate (HSL) may be of interest during inflammation. We aimed to evaluate its effects during experimental sepsis in rats (cecal ligation and puncture (CLP)). METHODS: Three groups were analyzed (n = 10/group): sham, CLP-NaCl 0.9%, and CLP-HSL (2.5 mL/kg/h of fluids for 18 h after CLP). Mesenteric microcirculation, echocardiography, cytokines, and biochemical parameters were evaluated. Two additional experiments were performed for capillary leakage (Evans blue, n = 5/group) and cardiac hemodynamics (n = 7/group). RESULTS: HSL improved mesenteric microcirculation (CLP-HSL 736 [407-879] vs. CLP-NaCl 241 [209-391] UI/pixel, p = 0.0006), cardiac output (0.34 [0.28-0.43] vs. 0.14 [0.10-0.18] mL/min/g, p < 0.0001), and left ventricular fractional shortening (55 [46-73] vs. 39 [33-52] %, p = 0.009). HSL also raised dP/dtmax slope (6.3 [3.3-12.1] vs. 2.7 [2.0-3.9] 103 mmHg/s, p = 0.04), lowered left ventricular end-diastolic pressure-volume relation (1.9 [1.1-2.3] vs. 3.0 [2.2-3.7] RVU/mmHg, p = 0.005), and reduced Evans blue diffusion in the gut (37 [31-43] vs. 113 [63-142], p = 0.03), the lung (108 [82-174] vs. 273 [222-445], p = 0.006), and the liver (24 [14-37] vs. 70 [50-89] ng EB/mg, p = 0.04). Lactate and 3-hydroxybutyrate were higher in CLP-HSL (6.03 [3.08-10.30] vs. 3.19 [2.42-5.11] mmol/L, p = 0.04; 400 [174-626] vs. 189 [130-301] µmol/L, p = 0.03). Plasma cytokines were reduced in HSL (IL-1ß, 172 [119-446] vs. 928 [245-1470] pg/mL, p = 0.004; TNFα, 17.9 [12.5-50.3] vs. 53.9 [30.8-85.6] pg/mL, p = 0.005; IL-10, 352 [267-912] vs. 905 [723-1243] pg/mL) as well as plasma VEGF-A (198 [185-250] vs. 261 [250-269] pg/mL, p = 0.009). CONCLUSIONS: Hypertonic sodium lactate fluid protects against cardiac dysfunction, mesenteric microcirculation alteration, and capillary leakage during sepsis and simultaneously reduces inflammation and enhances ketone bodies.


Subject(s)
Inflammation , Microcirculation , Sepsis , Sodium Lactate , Animals , Rats , Analysis of Variance , Disease Models, Animal , Echocardiography/methods , Endothelial Growth Factors/analysis , Endothelial Growth Factors/blood , Heart Function Tests/methods , Hypertonic Solutions/therapeutic use , Inflammation/drug therapy , Inflammation/physiopathology , Interleukin-10/analysis , Interleukin-10/blood , Interleukin-1beta/analysis , Interleukin-1beta/blood , Microcirculation/drug effects , Microcirculation/physiology , Prospective Studies , Sepsis/drug therapy , Sepsis/physiopathology , Sodium Lactate/pharmacology , Sodium Lactate/therapeutic use , Syndecan-1/analysis , Syndecan-1/blood , Tumor Necrosis Factor-alpha/analysis , Tumor Necrosis Factor-alpha/blood
12.
Cardiovasc Diabetol ; 18(1): 35, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30885203

ABSTRACT

BACKGROUND: This pathophysiological study addressed the hypothesis that soluble epoxide hydrolase (sEH), which metabolizes the vasodilator and anti-inflammatory epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids (DHETs), contributes to conduit artery endothelial dysfunction in type 2 diabetes. METHODS AND RESULTS: Radial artery endothelium-dependent flow-mediated dilatation in response to hand skin heating was reduced in essential hypertensive patients (n = 9) and type 2 diabetic subjects with (n = 19) or without hypertension (n = 10) compared to healthy subjects (n = 36), taking into consideration cardiovascular risk factors, flow stimulus and endothelium-independent dilatation to glyceryl trinitrate. Diabetic patients but not non-diabetic hypertensive subjects displayed elevated whole blood reactive oxygen species levels and loss of NO release during heating, assessed by measuring local plasma nitrite variation. Moreover, plasma levels of EET regioisomers increased during heating in healthy subjects, did not change in hypertensive patients and decreased in diabetic patients. Correlation analysis showed in the overall population that the less NO and EETs bioavailability increases during heating, the more flow-mediated dilatation is reduced. The expression and activity of sEH, measured in isolated peripheral blood mononuclear cells, was elevated in diabetic but not hypertensive patients, leading to increased EETs conversion to DHETs. Finally, hyperglycemic and hyperinsulinemic euglycemic clamps induced a decrease in flow-mediated dilatation in healthy subjects and this was associated with an altered EETs release during heating. CONCLUSIONS: These results demonstrate that an increased EETs degradation by sEH and altered NO bioavailability are associated with conduit artery endothelial dysfunction in type 2 diabetic patients independently from their hypertensive status. The hyperinsulinemic and hyperglycemic state in these patients may contribute to these alterations. Trial registration NCT02311075. Registered December 8, 2014.


Subject(s)
Diabetes Mellitus, Type 2/blood , Diabetic Angiopathies/blood , Eicosanoids/blood , Essential Hypertension/blood , Radial Artery/metabolism , Vasodilation , Aged , Biomarkers/blood , Case-Control Studies , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/physiopathology , Diabetic Angiopathies/diagnosis , Diabetic Angiopathies/physiopathology , Epoxide Hydrolases/metabolism , Essential Hypertension/diagnosis , Essential Hypertension/physiopathology , Female , Humans , Hyperthermia, Induced , Male , Middle Aged , Nitric Oxide/metabolism , Nitrites/blood , Nitroglycerin/administration & dosage , Radial Artery/drug effects , Radial Artery/physiopathology , Vasodilation/drug effects , Vasodilator Agents/administration & dosage
13.
BMC Infect Dis ; 19(1): 321, 2019 Apr 11.
Article in English | MEDLINE | ID: mdl-30975098

ABSTRACT

BACKGROUND: Rabies remains a major public health problem in developing countries. Most fatal rabies cases, especially in children, result from dog bites and occur in low-income countries, such as those in Sub-Saharan Africa. Rabies can be controlled through mass dog vaccination and human deaths prevented through timely and appropriate post-exposure prophylaxis (PEP). As access to appropriate PEP remains a serious challenge for bite-victims, the aim of this study was to understand the use of PEP, to evaluate the knowledge, attitudes and practices with respect to rabies and to identify risk factors related to non-compliance with PEP to define recommendations for improving PEP in Senegal. METHODS: This study included patients with suspicion of rabies exposure who sought PEP at the Pasteur Institute of Dakar from April 2013 to March 2014. Patients with rabies clinical symptoms, those who had already started PEP and those with exposure outside Senegal or for more than 3 months were excluded. Data on risk factors and propensity to seek and complete PEP were collected using questionnaires and phone interviews. The association between acceptability and compliance with PEP and other independent variables were evaluated using multivariate regression analysis. RESULTS: Among the 905 patients enrolled into the study, 67% were male (sex ratio M/F, 2) and 46%, children under 15 years of age. Exposures by animal bites represented 87%, whereas the remainder were due to scratches or contact; 76% were classified as WHO category III and 88% were due to dogs. Among these patients, 7% refused to start PEP and 54.5% completed the full schedule. Main factors reported by non-compliant patients were vaccine costs and affordability, and knowledge on status of biting animal. CONCLUSION: This study shows that despite the awareness about rabies dangers and prevention, only half of the patients completed the full PEP schedule. The following recommendations, such as free of charge prophylaxis or intradermal regimens as an alternative to intramuscular regimens, should be considered to increase the adherence to PEP at the Pasteur Institute of Dakar and in Senegal.


Subject(s)
Health Knowledge, Attitudes, Practice , Post-Exposure Prophylaxis , Rabies Vaccines/therapeutic use , Rabies/prevention & control , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Bites and Stings , Child , Child, Preschool , Cohort Studies , Costs and Cost Analysis , Developing Countries , Female , Humans , Infant , Male , Middle Aged , Patient Compliance , Post-Exposure Prophylaxis/methods , Post-Exposure Prophylaxis/trends , Prospective Studies , Rabies Vaccines/economics , Risk Factors , Senegal , Young Adult
14.
Br J Haematol ; 180(5): 715-720, 2018 03.
Article in English | MEDLINE | ID: mdl-29363751

ABSTRACT

Heparin anticoagulation followed by protamine reversal is commonly used in cardiopulmonary bypass (CPB). As an alternative to protamine, a recombinant inactive antithrombin (riAT) was designed as an antidote to heparin and was previously shown to be as potent as protamine in-vitro. In the present study, riAT was assessed for its ability to neutralize heparin after CPB in a rat model. After 60 min of CPB under heparin, rats received 5 mg/kg protamine, 37.5 mg/kg riAT or phosphate buffered saline (PBS) as placebo. Residual anticoagulant activity was assessed using the activated partial thromboplastin time assay before, and 10-30 min after reversion. Haemodynamic monitoring was performed and plasma histamine concentration was also measured. In this model, riAT appeared to be as efficient as protamine in neutralizing heparin. Ten minutes after injection, riAT and protamine both decreased heparin activity, to 1.8 ± 1.3 and 4.5 ± 1.4 u/ml, respectively (23.1 ± 5.1 u/ml in placebo group). Furthermore, evolution of mean carotid arterial pressure, heart rate and plasma histamine levels was comparable in rats treated with PBS or riAT, while protamine exhibited haemodynamic side effects and increased histamine plasma concentration. Thus, riAT could represent an advantage over protamine in CPB because it efficiently reverses heparin activity without negative effects on haemodynamic parameters and plasma histamine level.


Subject(s)
Anticoagulants/pharmacology , Cardiopulmonary Bypass , Heparin Antagonists/pharmacology , Heparin/pharmacology , Protamines/pharmacology , Animals , Antithrombins/pharmacology , Hemodynamics/drug effects , Histamine/metabolism , Male , Rats, Wistar
15.
Am J Physiol Heart Circ Physiol ; 314(6): H1279-H1288, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29569957

ABSTRACT

We have previously shown that protein tyrosine phosphatase 1B (PTP1B) inactivation in mice [PTP1B-deficient (PTP1B-/-) mice] improves left ventricular (LV) angiogenesis, perfusion, remodeling, and function and limits endothelial dysfunction after myocardial infarction. However, whether PTP1B inactivation slows aging-associated cardiovascular dysfunction remains unknown. Wild-type (WT) and PTP1B-/- mice were allowed to age until 18 mo. Compared with old WT mice, in which aging increased the LV mRNA expression of PTP1B, old PTP1B-/- mice had 1) reduced cardiac hypertrophy with decreased LV mRNA levels of hypertrophic markers and atrial and brain natriuretic peptides, 2) lower LV fibrosis (collagen: 16 ± 3% in WT mice and 5 ± 3% in PTP1B-/- mice, P < 0.001) with decreased mRNA levels of transforming growth-factor-ß1 and matrix metalloproteinase-2, and 3) higher LV capillary density and lower LV mRNA level of hypoxic inducible factor-1α, which was associated over time with a higher rate of proangiogenic M2 type macrophages and a stable LV mRNA level of VEGF receptor-2. Echocardiography revealed an age-dependent LV increase in end-diastolic volume in WT mice together with alterations of fractional shortening and diastole (transmitral Doppler E-to-A wave ratio). Invasive hemodynamics showed better LV systolic contractility and better diastolic compliance in old PTP1B-/- mice (LV end-systolic pressure-volume relation: 13.9 ± 0.9 in WT mice and 18.4 ± 1.6 in PTP1B-/- mice; LV end-diastolic pressure-volume relation: 5.1 ± 0.8 mmHg/relative volume unit in WT mice and 1.2 ± 0.3 mmHg/relative volume unit in PTP1B-/- mice, P < 0.05). In addition, old PTP1B-/- mice displayed a reduced amount of LV reactive oxygen species. Finally, in isolated resistance mesenteric arteries, PTP1B inactivation reduced aging-associated endothelial dysfunction (flow-mediated dilatation: -0.4 ± 2.1% in WT mice and 8.2 ± 2.8% in PTP1B-/- mice, P < 0.05). We conclude that PTP1B inactivation slows aging-associated LV remodeling and dysfunction and reduces endothelial dysfunction in mesenteric arteries. NEW & NOTEWORTHY The present study shows that protein tyrosine phosphatase 1B inactivation in aged mice improves left ventricular systolic and diastolic function associated with reduced adverse cardiac remodeling (hypertrophy, fibrosis, and capillary rarefaction) and limits vascular endothelial dysfunction. This suggests that protein tyrosine phosphatase 1B inhibition could be an interesting treatment approach in age-related cardiovascular dysfunction.


Subject(s)
Heart Failure/prevention & control , Heart Ventricles/enzymology , Hypertrophy, Left Ventricular/prevention & control , Protein Tyrosine Phosphatase, Non-Receptor Type 1/deficiency , Ventricular Dysfunction, Left/prevention & control , Ventricular Function, Left , Ventricular Remodeling , Age Factors , Aging/genetics , Aging/metabolism , Animals , Disease Models, Animal , Fibrosis , Gene Expression Regulation, Enzymologic , Heart Failure/enzymology , Heart Failure/genetics , Heart Failure/physiopathology , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Hemodynamics , Hypertrophy, Left Ventricular/enzymology , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/physiopathology , Male , Mesenteric Arteries/enzymology , Mesenteric Arteries/physiopathology , Mice, Inbred BALB C , Mice, Knockout , Neovascularization, Physiologic , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Ventricular Dysfunction, Left/enzymology , Ventricular Dysfunction, Left/genetics , Ventricular Dysfunction, Left/physiopathology
16.
Diabetes Obes Metab ; 20(10): 2399-2407, 2018 10.
Article in English | MEDLINE | ID: mdl-29862614

ABSTRACT

AIM: To determine whether non-steroidal mineralocorticoid receptor (MR) antagonists oppose metabolic syndrome-related end-organ, i.e. cardiac, damage. MATERIALS AND METHODS: In Zucker fa/fa rats, a rat model of metabolic syndrome, we assessed the effects of the non-steroidal MR antagonist finerenone (oral 2 mg/kg/day) on left ventricular (LV) function, haemodynamics and remodelling (using echocardiography, magnetic resonance imaging and biochemical methods). RESULTS: Long-term (90 days) finerenone modified neither systolic blood pressure nor heart rate, but reduced LV end-diastolic pressure and LV end-diastolic pressure-volume relationship, without modifying LV end-systolic pressure and LV end-systolic pressure-volume relationship. Simultaneously, long-term finerenone reduced both LV systolic and diastolic diameters, associated with reductions in LV weight and LV collagen density, while proteinuria and renal nGAL expression were reduced. Short-term (7 days) finerenone improved LV haemodynamics and reduced LV systolic diameter, without modifying LV diastolic diameter. Moreover, short-term finerenone increased myocardial tissue perfusion and reduced myocardial reactive oxygen species, while plasma nitrite levels, an indicator of nitric oxide (NO) bio-availability, were increased. CONCLUSIONS: In rats with metabolic syndrome, the non-steroidal MR antagonist finerenone opposed metabolic syndrome-related diastolic cardiac dysfunction and nephropathy. This involved acute effects, such as improved myocardial perfusion, reduced oxidative stress/increased NO bioavailability, as well as long-term effects, such as modifications in the myocardial structure.


Subject(s)
Cardiovascular Diseases/prevention & control , Kidney Diseases/prevention & control , Metabolic Syndrome/drug therapy , Mineralocorticoid Receptor Antagonists/administration & dosage , Naphthyridines/administration & dosage , Animals , Cardiovascular Diseases/complications , Drug Administration Schedule , Heart Rate/drug effects , Hemodynamics/drug effects , Kidney Diseases/complications , Male , Metabolic Syndrome/complications , Metabolic Syndrome/pathology , Metabolic Syndrome/physiopathology , Mineralocorticoid Receptor Antagonists/adverse effects , Naphthyridines/adverse effects , Nitric Oxide/metabolism , Oxidative Stress/drug effects , Rats , Rats, Zucker , Time Factors , Ventricular Function, Left/drug effects
17.
Ann Vasc Surg ; 52: 192-200, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29673584

ABSTRACT

BACKGROUND: The treatment of thoracoabdominal aortic aneurysms through an open approach has general and pulmonary consequences of multiple etiologies. Our assumption was that the supraceliac aortic clamping needed for this operation causes a systemic inflammatory response associated with a pulmonary attack. METHODS: We developed a model of 30-min supraceliac aortic clamping in Wistar rats weighing 300 g. After 90 min of reperfusion, the rats were sacrificed. The effects on the digestive tract wall were analyzed by measurement of the mucosal thickness/total thickness ratio. The effects on the mesenteric endothelial function were determined by an ex situ measurement of the arterial pressure/volume curves (third branch). The systemic consequences of the procedure were analyzed by dosing tumor necrosis factor alpha (TNFα), interleukin (IL)1ß, and IL10 in the blood. The pulmonary consequences were analyzed by the measurement of macrophages, polymorphonuclear neutrophils (PNs), T lymphocyte infiltration, pulmonary apoptosis (TUNEL) and active caspase 3. The experimental scheme included 20 rats with ischemia-reperfusion (IR) and 20 control rats. An analysis of survival was carried out on 20 other rats (10 IR and 10 controls). RESULTS: The results were expressed as average ± standard error of the mean. The statistical tests were Student's t-test and Mann-Whitney test. This visceral IR model decreased the ratio of the thickness of the intestinal mucosa compared with that of the control rats (0.77 ± 0.008 vs. 0.82 ± 0.009 [P < 0.001]). This local effect was not accompanied by any mesenteric endothelial dysfunction (P = 0.91). On a systemic level, IR increased TNFα (37.9 ± 1.5 vs. 28.2 ± 0.6 pg/mL; P < 0.0001), IL1ß (67.1 ± 9.8 vs. 22.5 ± 5.6 pg/mL; P < 0.001), and IL10 (753.3 ± 96 vs. 3.7 ± 1.7 pg/mL; P < 0.0001). As regards the lungs, IR increased the parenchymal cellular infiltration by macrophages (6.8 ± 0.8 vs. 4.5 ± 0.4 cells per field; P < 0.05) and PNs (7.4 ± 0.5 vs. 6.2 ± 03 cells per field; P < 0.05). There was no increase in the pulmonary cellular apoptosis measured by TUNEL (P = 0.77) or in the caspase 3 activity (P = 0.59). The mortality of the visceral IR rats was 100% at 36 hr vs. 0% in the animals without IR. CONCLUSIONS: This work showed that the inflammatory response to visceral IR had systemic and pulmonary effects which always results in the death in the rat.


Subject(s)
Aorta/surgery , Lung Injury/etiology , Reperfusion Injury/etiology , Systemic Inflammatory Response Syndrome/etiology , Vascular Surgical Procedures/adverse effects , Animals , Aorta/physiopathology , Apoptosis , Chemotaxis, Leukocyte , Constriction , Cytokines/blood , Inflammation Mediators/blood , Intestinal Mucosa/pathology , Lung/metabolism , Lung/pathology , Lung Injury/blood , Lung Injury/pathology , Macrophage Activation , Macrophages/metabolism , Macrophages/pathology , Male , Rats, Wistar , Reperfusion Injury/blood , Reperfusion Injury/pathology , Systemic Inflammatory Response Syndrome/blood , Systemic Inflammatory Response Syndrome/pathology , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Time Factors
18.
Circulation ; 133(15): 1484-97; discussion 1497, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-26933083

ABSTRACT

BACKGROUND: The lymphatic system regulates interstitial tissue fluid balance, and lymphatic malfunction causes edema. The heart has an extensive lymphatic network displaying a dynamic range of lymph flow in physiology. Myocardial edema occurs in many cardiovascular diseases, eg, myocardial infarction (MI) and chronic heart failure, suggesting that cardiac lymphatic transport may be insufficient in pathology. Here, we investigate in rats the impact of MI and subsequent chronic heart failure on the cardiac lymphatic network. Further, we evaluate for the first time the functional effects of selective therapeutic stimulation of cardiac lymphangiogenesis post-MI. METHODS AND RESULTS: We investigated cardiac lymphatic structure and function in rats with MI induced by either temporary occlusion (n=160) or permanent ligation (n=100) of the left coronary artery. Although MI induced robust, intramyocardial capillary lymphangiogenesis, adverse remodeling of epicardial precollector and collector lymphatics occurred, leading to reduced cardiac lymphatic transport capacity. Consequently, myocardial edema persisted for several months post-MI, extending from the infarct to noninfarcted myocardium. Intramyocardial-targeted delivery of the vascular endothelial growth factor receptor 3-selective designer protein VEGF-CC152S, using albumin-alginate microparticles, accelerated cardiac lymphangiogenesis in a dose-dependent manner and limited precollector remodeling post-MI. As a result, myocardial fluid balance was improved, and cardiac inflammation, fibrosis, and dysfunction were attenuated. CONCLUSIONS: We show that, despite the endogenous cardiac lymphangiogenic response post-MI, the remodeling and dysfunction of collecting ducts contribute to the development of chronic myocardial edema and inflammation-aggravating cardiac fibrosis and dysfunction. Moreover, our data reveal that therapeutic lymphangiogenesis may be a promising new approach for the treatment of cardiovascular diseases.


Subject(s)
Edema/prevention & control , Lymphangiogenesis/drug effects , Myocardial Infarction/therapy , Vascular Endothelial Growth Factor C/therapeutic use , Vascular Endothelial Growth Factor Receptor-3/drug effects , Amino Acid Substitution , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Fibrosis , Heart/diagnostic imaging , Heart/drug effects , Imaging, Three-Dimensional , Lymphatic Vessels/drug effects , Lymphatic Vessels/physiopathology , Lymphography , Male , Myocardial Infarction/complications , Myocardium/chemistry , Myocardium/pathology , Rats , Rats, Wistar , Vascular Endothelial Growth Factor A/analysis , Vascular Endothelial Growth Factor C/analysis , Vascular Endothelial Growth Factor C/pharmacology , Vascular Endothelial Growth Factor Receptor-3/analysis
19.
J Am Chem Soc ; 139(17): 6217-6225, 2017 05 03.
Article in English | MEDLINE | ID: mdl-28398052

ABSTRACT

We report here a unique example of an in situ generated aluminum initiator stabilized by a C2-symmetric salen ligand which shows a hitherto unknown high activity for the ROP of rac-lactide at room temperature. Using a simple and robust catalyst system, which is prepared from a salen complex and an onium salt, this convenient route employs readily available reagents that afford polylactide in good yields with narrow polydispersity indices, without the need for time-consuming and expensive processes that are typically required for catalyst preparation and purification. In line with the experimental evidence, DFT studies reveal that initiation and propagation proceed via an external alkoxide attack on the coordinated monomer.

20.
Planta ; 246(6): 1109-1124, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28815300

ABSTRACT

MAIN CONCLUSION: A chemical screen of plant-derived compounds identified holaphyllamine, a steroid, able to trigger defense responses in Arabidopsis thaliana and improve resistance against the pathogenic bacterium Pseudomonas syringae pv tomato DC3000. A chemical screen of 1600 plant-derived compounds was conducted and allowed the identification of a steroid able to activate defense responses in A. thaliana at a concentration of 1 µM without altering growth. The identified compound is holaphyllamine (HPA) whose chemical structure is similar to steroid pregnanes of mammals. Our data show that HPA, which is not constitutively present in A. thaliana, is able to trigger the formation of reactive oxygen species, deposition of callose and expression of several pathogenesis-related genes of the salicylic and jasmonic acid pathways. In addition, the results show that pre-treatment of A. thaliana seedlings with HPA before infection with the pathogenic bacterium Pseudomonas syringae pv tomato DC3000 results in a significant reduction of symptoms (i.e., reduction of bacterial colonies). Using A. thaliana mutants, we have found that the activation of defense responses by HPA does not depend on BRI1/BAK1 receptor kinases. Finally, a structure/function study reveals that the minimal structure required for activity is a 5-pregnen-20-one steroid with an equatorial nucleophilic group in C-3. Together, these findings demonstrate that HPA can activate defense responses that lead to improved resistance against bacterial infection in A. thaliana.


Subject(s)
Arabidopsis/drug effects , Disease Resistance , Gene Expression Regulation, Plant/drug effects , Phytosterols/pharmacology , Plant Diseases/immunology , Pseudomonas syringae/physiology , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cells, Cultured , Cyclopentanes/metabolism , Glucans/metabolism , Mutation , Oxylipins/metabolism , Phytosterols/chemistry , Plant Diseases/microbiology , Plant Growth Regulators/metabolism , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/microbiology , Reactive Oxygen Species/metabolism , Respiratory Burst/drug effects , Salicylic Acid/metabolism , Seedlings/drug effects , Seedlings/genetics , Seedlings/immunology , Seedlings/microbiology , Small Molecule Libraries , Nicotiana/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL