Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Cell ; 180(2): 233-247.e21, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31978343

ABSTRACT

Wnt dependency and Lgr5 expression define multiple mammalian epithelial stem cell types. Under defined growth factor conditions, such adult stem cells (ASCs) grow as 3D organoids that recapitulate essential features of the pertinent epithelium. Here, we establish long-term expanding venom gland organoids from several snake species. The newly assembled transcriptome of the Cape coral snake reveals that organoids express high levels of toxin transcripts. Single-cell RNA sequencing of both organoids and primary tissue identifies distinct venom-expressing cell types as well as proliferative cells expressing homologs of known mammalian stem cell markers. A hard-wired regional heterogeneity in the expression of individual venom components is maintained in organoid cultures. Harvested venom peptides reflect crude venom composition and display biological activity. This study extends organoid technology to reptilian tissues and describes an experimentally tractable model system representing the snake venom gland.


Subject(s)
Cell Culture Techniques/methods , Organoids/growth & development , Snake Venoms/metabolism , Adult Stem Cells/metabolism , Animals , Coral Snakes/metabolism , Gene Expression Profiling/methods , Organoids/metabolism , Salivary Glands/metabolism , Snake Venoms/genetics , Snakes/genetics , Snakes/growth & development , Stem Cells/metabolism , Toxins, Biological/genetics , Transcriptome/genetics
2.
Proc Natl Acad Sci U S A ; 121(9): e2310082121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38377205

ABSTRACT

Embryonic development is often considered shielded from the effects of natural selection, being selected primarily for reliable development. However, embryos sometimes represent virulent parasites, triggering a coevolutionary "arms race" with their host. We have examined embryonic adaptations to a parasitic lifestyle in the bitterling fish. Bitterlings are brood parasites that lay their eggs in the gill chamber of host mussels. Bitterling eggs and embryos have adaptations to resist being flushed out by the mussel. These include a pair of projections from the yolk sac that act as an anchor. Furthermore, bitterling eggs all adopt a head-down position in the mussel gills which further increases their chances of survival. To examine these adaptations in detail, we have studied development in the rosy bitterling (Rhodeus ocellatus) using molecular markers, X-ray tomography, and time-lapse imaging. We describe a suite of developmental adaptations to brood parasitism in this species. We show that the mechanism underlying these adaptions is a modified pattern of blastokinesis-a process unique, among fish, to bitterlings. Tissue movements during blastokinesis cause the embryo to do an extraordinary "front-flip" on the yolk. We suggest that this movement determines the spatial orientation of the other developmental adaptations to parasitism, ensuring that they are optimally positioned to help resist the ejection of the embryo from the mussel. Our study supports the notion that natural selection can drive the evolution of a suite of adaptations, both embryonic and extra-embryonic, via modifications in early development.


Subject(s)
Cyprinidae , Parasites , Animals , Host-Parasite Interactions
3.
Dev Biol ; 506: 7-19, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37995917

ABSTRACT

The evolutionary forces that allowed species adaptation to different terrestrial environments and led to great diversity in body shape and size required acquisition of innovative strategies of pattern formation during organogenesis. An extreme example is the formation of highly elongated viscera in snakes. What developmental patterning strategies allowed to overcome the space constraints of the snake's body to meet physiological demands? Here we show that the corn snake uses a Sox2-Sox9 developmental tool kit common to other species to generate and shape the lung in two phases. Initially Sox9 was found at low levels at the tip of the primary lung bud during outgrowth and elongation of the bronchial bud, without driving branching programs characteristic of mammalian lungs. Later, Sox9 induction is recapitulated in the formation of an extensive network of radial septae emerging along the elongated bronchial bud that generates the respiratory region. We propose that altogether these represent key patterning events for formation of both the respiratory faveolar and non-respiratory posterior compartments of the snake's lung.


Subject(s)
Colubridae , Lung , SOX9 Transcription Factor , Animals , Embryo, Nonmammalian , Lung/growth & development , Lung/metabolism , Organogenesis , SOX9 Transcription Factor/metabolism , Colubridae/growth & development , Colubridae/metabolism
4.
BMC Biol ; 20(1): 4, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34996434

ABSTRACT

BACKGROUND: The explosive radiation and diversification of the advanced snakes (superfamily Colubroidea) was associated with changes in all aspects of the shared venom system. Morphological changes included the partitioning of the mixed ancestral glands into two discrete glands devoted for production of venom or mucous respectively, as well as changes in the location, size and structural elements of the venom-delivering teeth. Evidence also exists for homology among venom gland toxins expressed across the advanced snakes. However, despite the evolutionary novelty of snake venoms, in-depth toxin molecular evolutionary history reconstructions have been mostly limited to those types present in only two front-fanged snake families, Elapidae and Viperidae. To have a broader understanding of toxins shared among extant snakes, here we first sequenced the transcriptomes of eight taxonomically diverse rear-fanged species and four key viperid species and analysed major toxin types shared across the advanced snakes. RESULTS: Transcriptomes were constructed for the following families and species: Colubridae - Helicops leopardinus, Heterodon nasicus, Rhabdophis subminiatus; Homalopsidae - Homalopsis buccata; Lamprophiidae - Malpolon monspessulanus, Psammophis schokari, Psammophis subtaeniatus, Rhamphiophis oxyrhynchus; and Viperidae - Bitis atropos, Pseudocerastes urarachnoides, Tropidolaeumus subannulatus, Vipera transcaucasiana. These sequences were combined with those from available databases of other species in order to facilitate a robust reconstruction of the molecular evolutionary history of the key toxin classes present in the venom of the last common ancestor of the advanced snakes, and thus present across the full diversity of colubroid snake venoms. In addition to differential rates of evolution in toxin classes between the snake lineages, these analyses revealed multiple instances of previously unknown instances of structural and functional convergences. Structural convergences included: the evolution of new cysteines to form heteromeric complexes, such as within kunitz peptides (the beta-bungarotoxin trait evolving on at least two occasions) and within SVMP enzymes (the P-IIId trait evolving on at least three occasions); and the C-terminal tail evolving on two separate occasions within the C-type natriuretic peptides, to create structural and functional analogues of the ANP/BNP tailed condition. Also shown was that the de novo evolution of new post-translationally liberated toxin families within the natriuretic peptide gene propeptide region occurred on at least five occasions, with novel functions ranging from induction of hypotension to post-synaptic neurotoxicity. Functional convergences included the following: multiple occasions of SVMP neofunctionalised in procoagulant venoms into activators of the clotting factors prothrombin and Factor X; multiple instances in procoagulant venoms where kunitz peptides were neofunctionalised into inhibitors of the clot destroying enzyme plasmin, thereby prolonging the half-life of the clots formed by the clotting activating enzymatic toxins; and multiple occasions of kunitz peptides neofunctionalised into neurotoxins acting on presynaptic targets, including twice just within Bungarus venoms. CONCLUSIONS: We found novel convergences in both structural and functional evolution of snake toxins. These results provide a detailed roadmap for future work to elucidate predator-prey evolutionary arms races, ascertain differential clinical pathologies, as well as documenting rich biodiscovery resources for lead compounds in the drug design and discovery pipeline.


Subject(s)
Elapidae , Snake Venoms , Animals , Elapid Venoms/genetics , Elapidae/genetics , Evolution, Molecular , Snake Venoms/chemistry , Snake Venoms/genetics , Snake Venoms/toxicity , Transcriptome
5.
Mol Biol Evol ; 38(10): 4222-4237, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34164688

ABSTRACT

The frameshift hypothesis is a widely accepted model of bird wing evolution. This hypothesis postulates a shift in positional values, or molecular-developmental identity, that caused a change in digit phenotype. The hypothesis synthesized developmental and paleontological data on wing digit homology. The "most anterior digit" (MAD) hypothesis presents an alternative view based on changes in transcriptional regulation in the limb. The molecular evidence for both hypotheses is that the MAD expresses Hoxd13 but not Hoxd11 and Hoxd12. This digit I "signature" is thought to characterize all amniotes. Here, we studied Hoxd expression patterns in a phylogenetic sample of 18 amniotes. Instead of a conserved molecular signature in digit I, we find wide variation of Hoxd11, Hoxd12, and Hoxd13 expression in digit I. Patterns of apoptosis, and Sox9 expression, a marker of the phalanx-forming region, suggest that phalanges were lost from wing digit IV because of early arrest of the phalanx-forming region followed by cell death. Finally, we show that multiple amniote lineages lost phalanges with no frameshift. Our findings suggest that the bird wing evolved by targeted loss of phalanges under selection. Consistent with our view, some recent phylogenies based on dinosaur fossils eliminate the need to postulate a frameshift in the first place. We suggest that the phenotype of the Archaeopteryx lithographica wing is also consistent with phalanx loss. More broadly, our results support a gradualist model of evolution based on tinkering with developmental gene expression.


Subject(s)
Dinosaurs , Wings, Animal , Animals , Birds/genetics , Birds/metabolism , Dinosaurs/anatomy & histology , Extremities , Phylogeny
6.
J Exp Zool B Mol Dev Evol ; 338(1-2): 36-61, 2022 01.
Article in English | MEDLINE | ID: mdl-34570438

ABSTRACT

Evolutionary developmental biology (evo-devo) is the study of the evolution of developmental mechanisms. Here, I review some of the theories, models, and laws in evo-devo, past and present. Nineteenth-century evo-devo was dominated by recapitulation theory and archetypes. It also gave us germ layer theory, the vertebral theory of the skull, floral organs as modified leaves, and the "inverted invertebrate" theory, among others. Newer theories and models include the frameshift theory, the genetic toolkit for development, the ABC model of flower development, the developmental hourglass, the zootype, Urbilateria, and the hox code. Some of these new theories show the influence of archetypes and recapitulation. Interestingly, recent studies support the old "primordial leaf," "inverted invertebrate," and "segmented head" theories. Furthermore, von Baer's first three laws may now need to be rehabilitated, and the hourglass model modified, in view of what Abzhanov has pointed out about the maternal-zygotic transition. There are many supposed "laws" of evo-devo but I argue that these are merely generalizations about trends in particular lineages. I argue that the "body plan" is an archetype, and is often used in such a way that it lacks any scientific meaning. Looking to the future, one challenge for evo-devo will be to develop new theories and models to accommodate the wealth of new data from high-throughput sequencing, including single-cell sequencing. One step in this direction is the use of sophisticated in silico analyses, as in the "transcriptomic hourglass" models.


Subject(s)
Biological Evolution , Developmental Biology , Animals , Embryonic Development/genetics , Transcriptome
7.
Exp Cell Res ; 392(2): 112032, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32353375

ABSTRACT

There is increasing interest in the possibility of culturing organ-like tissues (organoids) in vitro for biomedical applications. The ability to culture organoids would be greatly enhanced by having a functional circulation in vitro. The endothelial cell is the most important cell type in this context. Endothelial cells can be derived from pluripotent embryonic blastocyst cells in aggregates called embryoid bodies. Here, we examine the yield of endothelial-like cells in embryoid bodies (EBs) developed from transgenic zebrafish fli:GFP and kdrl:GFP blastocyst embryos. The isolated blastocyst cells developed into EBs within the first 24 h of culture and contained fli:GFP+ (putative endothelial, hematopoietic and other cell types); or kdrl:GFP+ (endothelial) cells. The addition of endothelial growth supplements to the media and culture on collagen type-I substratum increased the percentages of fli:GFP+ and kdrl:GFP+ cells in culture. We found that EBs developed in hanging-drop cultures possessed a higher percentage of fli:GFP+ (45.0 ± 3.1%) and kdrl:GFP+ cells (8.7 ± 0.7%) than those developed on conventional substrata (34.5 ± 1.4% or 5.2 ± 0.4%, respectively). The transcriptome analysis showed a higher expression of VEGF and TGFß genes in EB cultures compared to the adherent cultures. When transferred to conventional culture, the percentage of fli:GFP+ or kdrl:GFP+ cells declined significantly over subsequent days in the EBs. The fli:GFP+ cells formed a monolayer around the embryoid bodies, while the kdrl:GFP+ cells formed vascular network-like structures in the embryoid bodies. Differences were observed in the spreading of fli:GFP+ cells, and network formation of kdrl:GFP+ cells on different substrates. The fli:GFP+ cells could be maintained in primary culture and sub-cultures. By contrast, kdrl:GFP+ cells were almost completely absent at 8d of primary culture. Our culture model allows real-time observation of fli:GFP+ and kdrl:GFP+ cells in culture. The results obtained from this study will be important for the development of vascular and endothelial cell culture using embryonic cells.


Subject(s)
Animals, Genetically Modified/embryology , Cell Differentiation , Embryo, Nonmammalian/cytology , Embryoid Bodies/cytology , Embryonic Stem Cells/cytology , Endothelial Cells/cytology , Zebrafish/embryology , Animals , Animals, Genetically Modified/physiology , Blastocyst/cytology , Blastocyst/drug effects , Blastocyst/metabolism , Cells, Cultured , Culture Media/pharmacology , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Embryoid Bodies/drug effects , Embryoid Bodies/metabolism , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Green Fluorescent Proteins/metabolism , Intercellular Signaling Peptides and Proteins/pharmacology , Transcriptome , Zebrafish/physiology
8.
Pathologe ; 42(Suppl 1): 55-61, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34236458

ABSTRACT

Paraffin histology is one of the most important and commonly-used laboratory techniques in diagnostic histopathology. The discovery of paraffin embedding is often attributed to the pathologist Edwin Klebs. Klebs was following the lead of Stricker, who embedded embryos in a mixture of hot stearin and white beeswax. We show that Klebs experimented with paraffin wax for embedding tumour tissue. But he quickly rejected it as unsuitable because paraffin wax did not infiltrate the tissue. One of Klebs' correspondents, embryologist Wilhelm His, Sr., learned of Klebs' experiments and decided to try paraffin embedding. His dehydrated chicken embryos in alcohol, cleared them in lavender oil, and dripped hot paraffin wax onto them. This process allowed His to cut good sections. Here, we have replicated His's paraffin embedding protocol in order to determine whether His had indeed made the landmark discovery of infiltration embedding with paraffin wax. We followed the protocol that he gives in his 1868 monograph on the early development of the chicken. The protocol described by His failed, in our hands, to yield sections of the quality that he illustrates in his monograph. Typically, the tissue disintegrated when sectioned due to poor infiltration of the wax. Usable sections could only be obtained if His's protocol was modified by melting the embedded embryos in fresh paraffin wax. One explanation for our findings is that we failed to faithfully replicate His's protocol. Another is that his protocol was incomplete. We suggest that His is likely to have discovered and perfected infiltration embedding with paraffin wax but did not publish a complete protocol.


Subject(s)
Paraffin Embedding , Animals , Chick Embryo , Male
9.
Pathologe ; 42(4): 424-430, 2021 Jul.
Article in German | MEDLINE | ID: mdl-33983520

ABSTRACT

Paraffin histology is one of the most important and commonly used laboratory techniques in diagnostic histopathology. The discovery of paraffin embedding is often attributed to the pathologist Edwin Klebs. Klebs was following the lead of Stricker, who embedded embryos in a mixture of hot stearin and white beeswax. We show that Klebs experimented with paraffin wax for embedding tumour tissue. But he quickly rejected it as unsuitable because paraffin wax did not infiltrate the tissue. One of Klebs' correspondents, embryologist Wilhelm His, Sr., learned of Klebs' experiments and decided to try paraffin embedding. His dehydrated chicken embryos in alcohol, cleared them in lavender oil, and dripped hot paraffin wax onto them. This process allowed His to cut good sections. Here, we have replicated His's paraffin embedding protocol in order to determine whether His had indeed made the landmark discovery of infiltration embedding with paraffin wax. We followed the protocol that he gives in his 1868 monograph on the early development of the chicken. The protocol described by His failed, in our hands, to yield sections of the quality that he illustrates in his monograph. Typically, the tissue disintegrated when sectioned due to poor infiltration of the wax. Usable sections could only be obtained if His's protocol was modified by melting the embedded embryos in fresh paraffin wax. One explanation for our findings is that we failed to faithfully replicate His's protocol. Another is that his protocol was incomplete. We suggest that His is likely to have discovered and perfected infiltration embedding with paraffin wax but did not publish a complete protocol.


Subject(s)
Paraffin Embedding , Animals , Chick Embryo , Male
10.
BMC Genomics ; 20(1): 645, 2019 Aug 13.
Article in English | MEDLINE | ID: mdl-31409288

ABSTRACT

BACKGROUND: Venom has evolved in parallel in multiple animals for the purpose of self-defense, prey capture or both. These venoms typically consist of highly complex mixtures of toxins: diverse bioactive peptides and/or proteins each with a specific pharmacological activity. Because of their specificity, they can be used as experimental tools to study cell mechanisms and develop novel medicines and drugs. It is therefore potentially valuable to explore the venoms of various animals to characterize their toxins and identify novel toxin-families. This study focuses on the annotation and exploration of the transcriptomes of six scorpion species from three different families. The transcriptomes were annotated with a custom-built automated pipeline, primarily consisting of Basic Local Alignment Search Tool searches against UniProt databases and filter steps based on transcript coverage. RESULTS: We annotated the transcriptomes of four scorpions from the family Buthidae, one from Iuridae and one from Diplocentridae using our annotation pipeline. We found that the four buthid scorpions primarily produce disulfide-bridged ion-channel targeting toxins, while the non-buthid scorpions have a higher abundance of non-disulfide-bridged toxins. Furthermore, analysis of the "unidentified" transcripts resulted in the discovery of six novel putative toxin families containing a total of 37 novel putative toxins. Additionally, 33 novel toxins in existing toxin-families were found. Lastly, 19 novel putative secreted proteins without toxin-like disulfide bonds were found. CONCLUSIONS: We were able to assign most transcripts to a toxin family and classify the venom composition for all six scorpions. In addition to advancing our fundamental knowledge of scorpion venomics, this study may serve as a starting point for future research by facilitating the identification of the venom composition of scorpions and identifying novel putative toxin families.


Subject(s)
Gene Expression Profiling , Molecular Sequence Annotation , Scorpions/genetics , Toxins, Biological/genetics , Animals
11.
Nature ; 500(7463): 445-8, 2013 Aug 22.
Article in English | MEDLINE | ID: mdl-23831646

ABSTRACT

Evolution involves interplay between natural selection and developmental constraints. This is seen, for example, when digits are lost from the limbs during evolution. Extant archosaurs (crocodiles and birds) show several instances of digit loss under different selective regimes, and show limbs with one, two, three, four or the ancestral number of five digits. The 'lost' digits sometimes persist for millions of years as developmental vestiges. Here we examine digit loss in the Nile crocodile and five birds, using markers of three successive stages of digit development. In two independent lineages under different selection, wing digit I and all its markers disappear. In contrast, hindlimb digit V persists in all species sampled, both as cartilage, and as Sox9- expressing precartilage domains, 250 million years after the adult digit disappeared. There is therefore a mismatch between evolution of the embryonic and adult phenotypes. All limbs, regardless of digit number, showed similar expression of sonic hedgehog (Shh). Even in the one-fingered emu wing, expression of posterior genes Hoxd11 and Hoxd12 was conserved, whereas expression of anterior genes Gli3 and Alx4 was not. We suggest that the persistence of digit V in the embryo may reflect constraints, particularly the conserved posterior gene networks associated with the zone of polarizing activity (ZPA). The more rapid and complete disappearance of digit I may reflect its ZPA-independent specification, and hence, weaker developmental constraints. Interacting with these constraints are selection pressures for limb functions such as flying and perching. This model may help to explain the diverse patterns of digit loss in tetrapods. Our study may also help to understand how selection on adults leads to changes in development.


Subject(s)
Alligators and Crocodiles/anatomy & histology , Alligators and Crocodiles/embryology , Biological Evolution , Birds/anatomy & histology , Birds/embryology , Extremities/anatomy & histology , Selection, Genetic , Animals , Dromaiidae/anatomy & histology , Dromaiidae/embryology , Extremities/embryology , Forelimb/anatomy & histology , Forelimb/embryology , Gene Expression Regulation, Developmental , Hedgehog Proteins/metabolism , Hindlimb/anatomy & histology , Hindlimb/embryology , Homeodomain Proteins/metabolism , Molecular Sequence Data , Phenotype , Phylogeny , Wings, Animal/anatomy & histology , Wings, Animal/embryology
12.
Proc Natl Acad Sci U S A ; 110(51): 20651-6, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24297900

ABSTRACT

Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection.


Subject(s)
Adaptation, Biological/physiology , Elapid Venoms , Elapidae , Evolution, Molecular , Genome/physiology , Transcriptome/physiology , Animals , Elapid Venoms/genetics , Elapid Venoms/metabolism , Elapidae/genetics , Elapidae/metabolism , Exocrine Glands/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
13.
Proc Natl Acad Sci U S A ; 110(51): 20645-50, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24297902

ABSTRACT

Snakes possess many extreme morphological and physiological adaptations. Identification of the molecular basis of these traits can provide novel understanding for vertebrate biology and medicine. Here, we study snake biology using the genome sequence of the Burmese python (Python molurus bivittatus), a model of extreme physiological and metabolic adaptation. We compare the python and king cobra genomes along with genomic samples from other snakes and perform transcriptome analysis to gain insights into the extreme phenotypes of the python. We discovered rapid and massive transcriptional responses in multiple organ systems that occur on feeding and coordinate major changes in organ size and function. Intriguingly, the homologs of these genes in humans are associated with metabolism, development, and pathology. We also found that many snake metabolic genes have undergone positive selection, which together with the rapid evolution of mitochondrial proteins, provides evidence for extensive adaptive redesign of snake metabolic pathways. Additional evidence for molecular adaptation and gene family expansions and contractions is associated with major physiological and phenotypic adaptations in snakes; genes involved are related to cell cycle, development, lungs, eyes, heart, intestine, and skeletal structure, including GRB2-associated binding protein 1, SSH, WNT16, and bone morphogenetic protein 7. Finally, changes in repetitive DNA content, guanine-cytosine isochore structure, and nucleotide substitution rates indicate major shifts in the structure and evolution of snake genomes compared with other amniotes. Phenotypic and physiological novelty in snakes seems to be driven by system-wide coordination of protein adaptation, gene expression, and changes in the structure of the genome.


Subject(s)
Adaptation, Physiological/physiology , Boidae , Evolution, Molecular , Gene Expression Regulation/physiology , Genome/physiology , Transcription, Genetic/physiology , Animals , Boidae/genetics , Boidae/metabolism , Cell Cycle/physiology , Humans , Organ Specificity/physiology
14.
Nature ; 454(7204): 630-3, 2008 Jul 31.
Article in English | MEDLINE | ID: mdl-18668106

ABSTRACT

Many advanced snakes use fangs-specialized teeth associated with a venom gland-to introduce venom into prey or attacker. Various front- and rear-fanged groups are recognized, according to whether their fangs are positioned anterior (for example cobras and vipers) or posterior (for example grass snakes) in the upper jaw. A fundamental controversy in snake evolution is whether or not front and rear fangs share the same evolutionary and developmental origin. Resolving this controversy could identify a major evolutionary transition underlying the massive radiation of advanced snakes, and the associated developmental events. Here we examine this issue by visualizing the tooth-forming epithelium in the upper jaw of 96 snake embryos, covering eight species. We use the sonic hedgehog gene as a marker, and three-dimensionally reconstruct the development in 41 of the embryos. We show that front fangs develop from the posterior end of the upper jaw, and are strikingly similar in morphogenesis to rear fangs. This is consistent with their being homologous. In front-fanged snakes, the anterior part of the upper jaw lacks sonic hedgehog expression, and ontogenetic allometry displaces the fang from its posterior developmental origin to its adult front position-consistent with an ancestral posterior position of the front fang. In rear-fanged snakes, the fangs develop from an independent posterior dental lamina and retain their posterior position. In light of our findings, we put forward a new model for the evolution of snake fangs: a posterior subregion of the tooth-forming epithelium became developmentally uncoupled from the remaining dentition, which allowed the posterior teeth to evolve independently and in close association with the venom gland, becoming highly modified in different lineages. This developmental event could have facilitated the massive radiation of advanced snakes in the Cenozoic era, resulting in the spectacular diversity of snakes seen today.


Subject(s)
Phylogeny , Snakes/embryology , Tooth/embryology , Animals , Gene Expression Regulation, Developmental , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , In Situ Hybridization , Molecular Sequence Data , Snakes/anatomy & histology , Snakes/classification , Snakes/genetics , Tooth/anatomy & histology
15.
Environ Int ; 188: 108723, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744045

ABSTRACT

Nanoplastics can cause severe malformations in chicken embryos. To improve our understanding of the toxicity of nanoplastics to embryos, we have studied their biodistribution in living chicken embryos. We injected the embryos in the vitelline vein at stages 18-19. We injected polystyrene nanoparticles (PS-NPs) tagged with europium- or fluorescence. Their biodistribution was tracked using inductively-coupled plasma mass spectrometry on tissue lysates, paraffin histology, and vibratome sections analysed by machine learning algorithms. PS-NPs were found at high levels in the heart, liver and kidneys. Furthermore, PS-NPs crossed the endocardium of the heart at sites of epithelial-mesenchymal transformation; they also crossed the liver endothelium. Finally, we detected PS-NPs in the allantoic fluid, consistent with their being excreted by the kidneys. Our study shows the power of the chicken embryo model for analysing the biodistribution of nanoplastics in embryos. Such experiments are difficult or impossible in mammalian embryos. These findings are a major advance in our understanding of the biodistribution and tissue-specific accumulation of PS-NPs in developing animals.


Subject(s)
Nanoparticles , Polystyrenes , Animals , Polystyrenes/pharmacokinetics , Chick Embryo , Tissue Distribution , Kidney/metabolism , Liver/metabolism , Mass Spectrometry
16.
Environ Int ; 173: 107865, 2023 03.
Article in English | MEDLINE | ID: mdl-36907039

ABSTRACT

Nanomaterials are widespread in the human environment as pollutants, and are being actively developed for use in human medicine. We have investigated how the size and dose of polystyrene nanoparticles affects malformations in chicken embryos, and have characterized the mechanisms by which they interfere with normal development. We find that nanoplastics can cross the embryonic gut wall. When injected into the vitelline vein, nanoplastics become distributed in the circulation to multiple organs. We find that the exposure of embryos to polystyrene nanoparticles produces malformations that are far more serious and extensive than has been previously reported. These malformations include major congenital heart defects that impair cardiac function. We show that the mechanism of toxicity is the selective binding of polystyrene nanoplastics nanoparticles to neural crest cells, leading to the death and impaired migration of those cells. Consistent with our new model, most of the malformations seen in this study are in organs that depend for their normal development on neural crest cells. These results are a matter of concern given the large and growing burden of nanoplastics in the environment. Our findings suggest that nanoplastics may pose a health risk to the developing embryo.


Subject(s)
Heart Defects, Congenital , Neural Crest , Animals , Pregnancy , Female , Chick Embryo , Humans , Neural Crest/metabolism , Microplastics , Polystyrenes/toxicity , Embryonic Development
17.
Biol Lett ; 8(1): 74-7, 2012 Feb 23.
Article in English | MEDLINE | ID: mdl-21752813

ABSTRACT

Talpid moles across all northern continents exhibit a remarkably large, sickle-like radial sesamoid bone anterior to their five digits, always coupled with a smaller tibial sesamoid bone. A possible developmental mechanism behind this phenomenon was revealed using molecular markers during limb development in the Iberian mole (Talpa occidentalis) and a shrew (Cryptotis parva), as shrews represent the closest relatives of moles but do not show these conspicuous elements. The mole's radial sesamoid develops later than true digits, as shown by Sox9, and extends into the digit area, developing in relation to an Msx2-domain at the anterior border of the digital plate. Fgf8 expression, marking the apical ectodermal ridge, is comparable in both species. Developmental peculiarities facilitated the inclusion of the mole's radial sesamoid into the digit series; talpid moles circumvent the almost universal pentadactyly constraint by recruiting wrist sesamoids into their digital region using a novel developmental pathway and timing.


Subject(s)
Biological Evolution , Carpus, Animal/embryology , Gene Expression Regulation, Developmental/physiology , Moles/embryology , Sesamoid Bones/embryology , Shrews/embryology , Animals , Carpus, Animal/anatomy & histology , Electron Microscope Tomography , Fibroblast Growth Factors/metabolism , Homeodomain Proteins/metabolism , In Situ Hybridization , Moles/anatomy & histology , SOX9 Transcription Factor/metabolism , Sesamoid Bones/anatomy & histology , Shrews/anatomy & histology , Spain , Species Specificity
18.
Nature ; 439(7076): 584-8, 2006 Feb 02.
Article in English | MEDLINE | ID: mdl-16292255

ABSTRACT

Among extant reptiles only two lineages are known to have evolved venom delivery systems, the advanced snakes and helodermatid lizards (Gila Monster and Beaded Lizard). Evolution of the venom system is thought to underlie the impressive radiation of the advanced snakes (2,500 of 3,000 snake species). In contrast, the lizard venom system is thought to be restricted to just two species and to have evolved independently from the snake venom system. Here we report the presence of venom toxins in two additional lizard lineages (Monitor Lizards and Iguania) and show that all lineages possessing toxin-secreting oral glands form a clade, demonstrating a single early origin of the venom system in lizards and snakes. Construction of gland complementary-DNA libraries and phylogenetic analysis of transcripts revealed that nine toxin types are shared between lizards and snakes. Toxinological analyses of venom components from the Lace Monitor Varanus varius showed potent effects on blood pressure and clotting ability, bioactivities associated with a rapid loss of consciousness and extensive bleeding in prey. The iguanian lizard Pogona barbata retains characteristics of the ancestral venom system, namely serial, lobular non-compound venom-secreting glands on both the upper and lower jaws, whereas the advanced snakes and anguimorph lizards (including Monitor Lizards, Gila Monster and Beaded Lizard) have more derived venom systems characterized by the loss of the mandibular (lower) or maxillary (upper) glands. Demonstration that the snakes, iguanians and anguimorphs form a single clade provides overwhelming support for a single, early origin of the venom system in lizards and snakes. These results provide new insights into the evolution of the venom system in squamate reptiles and open new avenues for biomedical research and drug design using hitherto unexplored venom proteins.


Subject(s)
Biological Evolution , Lizards/physiology , Snakes/physiology , Venoms/metabolism , Animals , Evolution, Molecular , Lizards/anatomy & histology , Male , Mice , Models, Molecular , Molecular Sequence Data , Phylogeny , Platelet Aggregation/drug effects , Protein Conformation , Rats , Snake Venoms/chemistry , Snake Venoms/metabolism , Snake Venoms/pharmacology , Snakes/anatomy & histology , Venoms/chemistry , Venoms/pharmacology
19.
Biol Rev Camb Philos Soc ; 97(3): 1131-1160, 2022 06.
Article in English | MEDLINE | ID: mdl-35106889

ABSTRACT

Swiss-born embryologist Wilhelm His, Sr. (1831-1904) was the first scientist to study embryos using paraffin histology, serial sectioning and three-dimensional modelling. With these techniques, His made many important discoveries in vertebrate embryology and developmental neurobiology, earning him two Nobel Prize nominations. He also developed several theories of mechanical and evolutionary developmental biology. His argued that adult form is determined by the differential growth of developmental primordia. Furthermore, he suggested that changes in the growth parameters of those primordia are responsible for generating new phenotypes during evolution. His developed these theories in his book 'Our Bodily Form' (Unsere Körperform). Here, we review His's work with special emphasis on its potential importance to the disciplines of evolutionary developmental biology (evo-devo) and mechanobiology.


Subject(s)
Developmental Biology , Embryonic Development , Animals , Biological Evolution , Developmental Biology/history , Male , Phenotype
20.
J Comp Neurol ; 530(12): 2132-2153, 2022 08.
Article in English | MEDLINE | ID: mdl-35470436

ABSTRACT

Bitterlings are carp-like teleost fish (Cypriniformes: Acheilanathidae) known for their specialized brood parasitic lifestyle. Bitterling embryos, in fact, develop inside the gill chamber of their freshwater mussel hosts. However, little is known about how their parasitic lifestyle affects brain development in comparison to nonparasitic species. Here, we document the development of the brain of the rosy bitterling, Rhodeus ocellatus, at four embryonic stages of 165, 185, 210, 235 hours postfertilization (hpf) using micro-computed tomography (microCT). Focusing on developmental regionalization and brain ventricular organization, we relate the development of the brain divisions to those described for zebrafish using the prosomeric model as a reference paradigm. Segmentation and three-dimensional visualization of the ventricular system allowed us to identify changes in the longitudinal brain axis as a result of cephalic flexure during development. The results show that during early embryonic and larval development, histological differentiation, tissue boundaries, periventricular proliferation zones, and ventricular spaces are all detectable by microCT. The results of this study visualized with differential CT profiles are broadly consistent with comparable histological studies, and with the genoarchitecture of teleosts like the zebrafish. Compared to the zebrafish, our study identifies distinct developmental heterochronies in the rosy bitterling, such as a precocious development of the inferior lobe.


Subject(s)
Cyprinidae , Cypriniformes , Animals , Neuroanatomy , X-Ray Microtomography , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL