Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cell ; 160(1-2): 191-203, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25557079

ABSTRACT

In animals, Hox transcription factors define regional identity in distinct anatomical domains. How Hox genes encode this specificity is a paradox, because different Hox proteins bind with high affinity in vitro to similar DNA sequences. Here, we demonstrate that the Hox protein Ultrabithorax (Ubx) in complex with its cofactor Extradenticle (Exd) bound specifically to clusters of very low affinity sites in enhancers of the shavenbaby gene of Drosophila. These low affinity sites conferred specificity for Ubx binding in vivo, but multiple clustered sites were required for robust expression when embryos developed in variable environments. Although most individual Ubx binding sites are not evolutionarily conserved, the overall enhancer architecture-clusters of low affinity binding sites-is maintained and required for enhancer function. Natural selection therefore works at the level of the enhancer, requiring a particular density of low affinity Ubx sites to confer both specific and robust expression.


Subject(s)
DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Enhancer Elements, Genetic , Homeodomain Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , Base Sequence , Drosophila melanogaster/genetics , Embryo, Nonmammalian/metabolism , Gene Expression Regulation , Molecular Sequence Data , Protein Binding , Sequence Alignment
2.
Development ; 148(4)2021 02 18.
Article in English | MEDLINE | ID: mdl-33472847

ABSTRACT

Differential Hox gene expression is central for specification of axial neuronal diversity in the spinal cord. Here, we uncover an additional function of Hox proteins in the developing spinal cord, restricted to B cluster Hox genes. We found that members of the HoxB cluster are expressed in the trunk neural tube of chicken embryo earlier than Hox from the other clusters, with poor antero-posterior axial specificity and with overlapping expression in the intermediate zone (IZ). Gain-of-function experiments of HoxB4, HoxB8 and HoxB9, respectively, representative of anterior, central and posterior HoxB genes, resulted in ectopic progenitor cells in the mantle zone. The search for HoxB8 downstream targets in the early neural tube identified the leucine zipper tumor suppressor 1 gene (Lzts1), the expression of which is also activated by HoxB4 and HoxB9. Gain- and loss-of-function experiments showed that Lzts1, which is expressed endogenously in the IZ, controls neuronal delamination. These data collectively indicate that HoxB genes have a generic function in the developing spinal cord, controlling the expression of Lzts1 and neuronal delamination.


Subject(s)
Embryonic Development/genetics , Gene Expression Regulation, Developmental , Genes, Homeobox , Neural Tube/embryology , Neural Tube/metabolism , Neurons/metabolism , Tumor Suppressor Proteins/genetics , Animals , Chickens , Fluorescent Antibody Technique , Gene Expression Profiling , Neurogenesis
3.
Int J Mol Sci ; 22(16)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34445617

ABSTRACT

HOX transcription factors are members of an evolutionarily conserved family of proteins required for the establishment of the anteroposterior body axis during bilaterian development. Although they are often deregulated in cancers, the molecular mechanisms by which they act as oncogenes or tumor suppressor genes are only partially understood. Since the MAPK/ERK signaling pathway is deregulated in most cancers, we aimed at apprehending if and how the Hox proteins interact with ERK oncogenicity. Using an in vivo neoplasia model in the chicken embryo consisting in the overactivation of the ERK1/2 kinases in the trunk neural tube, we analyzed the consequences of the HOXB8 gain of function at the morphological and transcriptional levels. We found that HOXB8 acts as a tumor suppressor, counteracting ERK-induced neoplasia. The HOXB8 tumor suppressor function relies on a large reversion of the oncogenic transcriptome induced by ERK. In addition to showing that the HOXB8 protein controls the transcriptional responsiveness to ERK oncogenic signaling, our study identified new downstream targets of ERK oncogenic activation in an in vivo context that could provide clues for therapeutic strategies.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinogenesis/pathology , Homeodomain Proteins/metabolism , MAP Kinase Kinase 1/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Neoplasms/pathology , Animals , Biomarkers, Tumor/genetics , Carcinogenesis/genetics , Carcinogenesis/metabolism , Chick Embryo , Chickens , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/genetics , Humans , MAP Kinase Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 3/genetics , Neoplasms/etiology , Neoplasms/metabolism , Prognosis , Survival Rate , Transcriptome
4.
Nat Commun ; 14(1): 99, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36609400

ABSTRACT

DNA methylation is a fundamental epigenetic modification regulating gene expression. Aberrant DNA methylation is the most common molecular lesion in cancer cells. However, medical intervention has been limited to the use of broadly acting, small molecule-based demethylating drugs with significant side-effects and toxicities. To allow for targeted DNA demethylation, we integrated two nucleic acid-based approaches: DNMT1 interacting RNA (DiR) and RNA aptamer strategy. By combining the RNA inherent capabilities of inhibiting DNMT1 with an aptamer platform, we generated a first-in-class DNMT1-targeted approach - aptaDiR. Molecular modelling of RNA-DNMT1 complexes coupled with biochemical and cellular assays enabled the identification and characterization of aptaDiR. This RNA bio-drug is able to block DNA methylation, impair cancer cell viability and inhibit tumour growth in vivo. Collectively, we present an innovative RNA-based approach to modulate DNMT1 activity in cancer or diseases characterized by aberrant DNA methylation and suggest the first alternative strategy to overcome the limitations of currently approved non-specific hypomethylating protocols, which will greatly improve clinical intervention on DNA methylation.


Subject(s)
DNA Methylation , RNA , RNA/genetics , RNA/metabolism , DNA (Cytosine-5-)-Methyltransferases/metabolism , Gene Expression Regulation, Neoplastic , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Epigenesis, Genetic
5.
Cells ; 10(11)2021 11 02.
Article in English | MEDLINE | ID: mdl-34831209

ABSTRACT

Nutritional intake impacts the human epigenome by directing epigenetic pathways in normal cell development via as yet unknown molecular mechanisms. Consequently, imbalance in the nutritional intake is able to dysregulate the epigenetic profile and drive cells towards malignant transformation. Here we present a novel epigenetic effect of the essential nutrient, NAD. We demonstrate that impairment of DNMT1 enzymatic activity by NAD-promoted ADP-ribosylation leads to demethylation and transcriptional activation of the CEBPA gene, suggesting the existence of an unknown NAD-controlled region within the locus. In addition to the molecular events, NAD- treated cells exhibit significant morphological and phenotypical changes that correspond to myeloid differentiation. Collectively, these results delineate a novel role for NAD in cell differentiation, and indicate novel nutri-epigenetic strategies to regulate and control gene expression in human cells.


Subject(s)
Cell Differentiation , DNA Methylation/genetics , NAD/pharmacology , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Differentiation/drug effects , Cell Line , DNA Demethylation/drug effects , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Myeloid Cells/cytology , Myeloid Cells/drug effects , Neoplasms/genetics , Neoplasms/pathology , Oxidative Phosphorylation/drug effects , Poly Adenosine Diphosphate Ribose/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription, Genetic/drug effects
6.
Int J Dev Biol ; 62(11-12): 755-766, 2018.
Article in English | MEDLINE | ID: mdl-30604845

ABSTRACT

The functional identification and dissection of protein domains has been a successful approach towards the understanding of Hox protein specificity. However, only a few functional protein domains have been identified; this has been a major limitation in deciphering the molecular modalities of Hox protein action. We explore here, by in silico survey of short linear motifs (SLiMs) in Hox proteins, the contribution of SLiMs to Hox proteins, focusing on the mouse, chick and Drosophila Hox complement. Our findings reveal a widespread and uniform distribution of SLiMs along Hox protein sequences and identify the most apparent features of Hox associated SLiMs. While few motifs have been associated with Hox proteins so far, this work suggests that many more contribute to Hox protein functions. The potential and difficulties to apprehend the full contribution of SLiMs in controlling Hox protein functions are discussed.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/metabolism , Homeodomain Proteins/metabolism , Animals , Chick Embryo , Computer Simulation , Mice
SELECTION OF CITATIONS
SEARCH DETAIL