Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Mol Genet Metab ; 142(3): 108507, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815294

ABSTRACT

Mucopolysaccharidoses are inherited metabolic diseases caused by mutations in genes encoding enzymes required for degradation of glycosaminoglycans. A lack or severe impairment of activity of these enzymes cause accumulation of GAGs which is the primary biochemical defect. Depending on the kind of the deficient enzyme, there are 12 types and subtypes of MPS distinguished. Despite the common primary metabolic deficit (inefficient GAG degradation), the course and symptoms of various MPS types can be different, though majority of the diseases from the group are characterized by severe symptoms and significantly shortened live span. Here, we analysed the frequency of specific, direct causes of death of patients with different MPS types, the subject which was not investigated comprehensively to date. We examined a total of 1317 cases of death among MPS patients, including 393 cases of MPS I, 418 cases of MPS II, 232 cases of MPS III, 45 cases of MPS IV, 208 cases of MPS VI, and 22 cases of MPS VII. Our analyses indicated that the most frequent causes of death differ significantly between MPS types, with cardiovascular and respiratory failures being predominant in MPS I, MPS II, and MPS VI, neurological deficits in MPS III, respiratory issues in MPS IV, and hydrops fetalis in MPS VII. Results of such studies suggest what specific clinical problems should be considered with the highest priority in specific MPS types, apart from attempts to correct the primary causes of the diseases, to improve the quality of life of patients and to prolong their lives.


Subject(s)
Cause of Death , Mucopolysaccharidoses , Humans , Mucopolysaccharidoses/genetics , Mucopolysaccharidoses/complications , Male , Child , Female , Child, Preschool , Adolescent , Infant , Adult , Young Adult , Infant, Newborn , Glycosaminoglycans/metabolism , Middle Aged , Mucopolysaccharidosis II/genetics , Mucopolysaccharidosis II/mortality
2.
Int J Mol Sci ; 25(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38256186

ABSTRACT

Mucopolysaccharidoses (MPSs) are a group of inborn errors of the metabolism caused by a deficiency in the lysosomal enzymes required to break down molecules called glycosaminoglycans (GAGs). These GAGs accumulate over time in various tissues and disrupt multiple biological systems, including catabolism of other substances, autophagy, and mitochondrial function. These pathological changes ultimately increase oxidative stress and activate innate immunity and inflammation. We have described the pathophysiology of MPS and activated inflammation in this paper, starting with accumulating the primary storage materials, GAGs. At the initial stage of GAG accumulation, affected tissues/cells are reversibly affected but progress irreversibly to: (1) disruption of substrate degradation with pathogenic changes in lysosomal function, (2) cellular dysfunction, secondary/tertiary accumulation (toxins such as GM2 or GM3 ganglioside, etc.), and inflammatory process, and (3) progressive tissue/organ damage and cell death (e.g., skeletal dysplasia, CNS impairment, etc.). For current and future treatment, several potential treatments for MPS that can penetrate the blood-brain barrier and bone have been proposed and/or are in clinical trials, including targeting peptides and molecular Trojan horses such as monoclonal antibodies attached to enzymes via receptor-mediated transport. Gene therapy trials with AAV, ex vivo LV, and Sleeping Beauty transposon system for MPS are proposed and/or underway as innovative therapeutic options. In addition, possible immunomodulatory reagents that can suppress MPS symptoms have been summarized in this review.


Subject(s)
Mucopolysaccharidoses , Osteochondrodysplasias , Humans , Therapies, Investigational , Mucopolysaccharidoses/genetics , Mucopolysaccharidoses/therapy , Antibodies, Monoclonal , Glycosaminoglycans , Inflammation
3.
Mol Genet Metab ; 140(3): 107648, 2023 11.
Article in English | MEDLINE | ID: mdl-37598508

ABSTRACT

Lysosomal storage diseases (LSDs) are caused by monogenic mutations in genes encoding for proteins related to the lysosomal function. Lysosome plays critical roles in molecule degradation and cell signaling through interplay with many other cell organelles, such as mitochondria, endoplasmic reticulum, and peroxisomes. Even though several strategies (i.e., protein replacement and gene therapy) have been attempted for LSDs with promising results, there are still some challenges when hard-to-treat tissues such as bone (i.e., cartilages, ligaments, meniscus, etc.), the central nervous system (mostly neurons), and the eye (i.e., cornea, retina) are affected. Consistently, searching for novel strategies to reach those tissues remains a priority. Molecular Trojan Horses have been well-recognized as a potential alternative in several pathological scenarios for drug delivery, including LSDs. Even though molecular Trojan Horses refer to genetically engineered proteins to overcome the blood-brain barrier, such strategy can be extended to strategies able to transport and deliver drugs to specific tissues or cells using cell-penetrating peptides, monoclonal antibodies, vesicles, extracellular vesicles, and patient-derived cells. Only some of those platforms have been attempted in LSDs. In this paper, we review the most recent efforts to develop molecular Trojan Horses and discuss how this strategy could be implemented to enhance the current efficacy of strategies such as protein replacement and gene therapy in the context of LSDs.


Subject(s)
Blood-Brain Barrier , Lysosomal Storage Diseases , Humans , Blood-Brain Barrier/metabolism , Drug Delivery Systems/methods , Lysosomal Storage Diseases/genetics , Lysosomal Storage Diseases/therapy , Central Nervous System , Genetic Therapy/methods
4.
Arch Biochem Biophys ; 747: 109754, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37708928

ABSTRACT

Mucopolysaccharidoses (MPS) are a group of inherited disorders, caused by mutations in the genes coding for proteins involved (directly or indirectly) in glycosaminoglycan (GAG) degradation. A lack or drastically decreased residual activity of a GAG-degrading enzyme leads to the storage of these compounds, thus damaging proper functions of different cells, including neurons. The disease leads to serious psycho-motor dysfunctions and death before reaching the adulthood. Until now, induction of the autophagy process was considered as one of the therapeutic strategies for treatment of diseases caused by protein aggregation (Alzheimer's, Parkinson's, and Huntington's diseases). However, this strategy has only been recently suggested as a potential therapy for MPS. In this work, we show that the pharmacological stimulation of autophagy, by using valproic acid and lithium chloride, led to accelerated degradation of accumulated GAGs. Cytotoxicity tests indicated the safety of the use of the investigated compounds. We observed an increased number of lysosomes and enhanced degradation of heparan sulfate (one of GAGs). Induction of the autophagy process was confirmed by measuring abundance of the marker proteins, including LC3-II. Moreover, inhibition of this process resulted in abolition of the valproic acid- and LiCl-mediated reduction in GAG levels. This is the first report on the possibility of using valproic acid and lithium chloride for reducing levels of GAGs in neuronopathic forms of MPS.

5.
J Inherit Metab Dis ; 46(5): 916-930, 2023 09.
Article in English | MEDLINE | ID: mdl-37395296

ABSTRACT

Until now, only a few studies have focused on the early onset of symptoms of alkaptonuria (AKU) in the pediatric population. This prospective, longitudinal study is a comprehensive approach to the assessment of children with recognized AKU during childhood. The study includes data from 32 visits of 13 patients (five males, eight females; age 4-17 years) with AKU. A clinical evaluation was performed with particular attention to eye, ear, and skin pigmentation, musculoskeletal complaints, magnetic resonance imaging (MRI), and ultrasound (US) imaging abnormalities. The cognitive functioning and adaptive abilities were examined. Molecular genetic analyses were performed. The most common symptoms observed were dark urine (13/13), followed by joint pain (6/13), and dark ear wax (6/13). In 4 of 13 patients the values obtained in the KOOS-child questionnaire were below the reference values. MRI and US did not show degenerative changes in knee cartilages. One child had nephrolithiasis. Almost half of the children with AKU (5/13) presented deficits in cognitive functioning and/or adaptive abilities. The most frequent HGD variants observed in the patients were c.481G>A (p.Gly161Arg) mutation and the c.240A>T (p.His80Gln) polymorphism. The newly described allele of the HGD gene (c.948G>T, p.Val316Phe) which is potentially pathogenic was identified.


Subject(s)
Alkaptonuria , Child , Male , Female , Humans , Child, Preschool , Adolescent , Alkaptonuria/diagnosis , Alkaptonuria/genetics , Alkaptonuria/pathology , Homogentisate 1,2-Dioxygenase/genetics , Prospective Studies , Longitudinal Studies , Mutation
6.
Int J Mol Sci ; 24(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36835321

ABSTRACT

The oxytocin receptor (OXTR), encoded by the OXTR gene, is responsible for the signal transduction after binding its ligand, oxytocin. Although this signaling is primarily involved in controlling maternal behavior, it was demonstrated that OXTR also plays a role in the development of the nervous system. Therefore, it is not a surprise that both the ligand and the receptor are involved in the modulation of behaviors, especially those related to sexual, social, and stress-induced activities. As in the case of every regulatory system, any disturbances in the structures or functions of oxytocin and OXTR may lead to the development or modulation of various diseases related to the regulated functions, which in this case include either mental problems (autism, depression, schizophrenia, obsessive-compulsive disorders) or those related to the functioning of reproductive organs (endometriosis, uterine adenomyosis, premature birth). Nevertheless, OXTR abnormalities are also connected to other diseases, including cancer, cardiac disorders, osteoporosis, and obesity. Recent reports indicated that the changes in the levels of OXTR and the formation of its aggregates may influence the course of some inherited metabolic diseases, such as mucopolysaccharidoses. In this review, the involvement of OXTR dysfunctions and OXTR polymorphisms in the development of different diseases is summarized and discussed. The analysis of published results led us to suggest that changes in OXTR expression and OXTR abundance and activity are not specific to individual diseases, but rather they influence processes (mostly related to behavioral changes) that might modulate the course of various disorders. Moreover, a possible explanation of the discrepancies in the published results of effects of the OXTR gene polymorphisms and methylation on different diseases is proposed.


Subject(s)
Disease , Oxytocin , Receptors, Oxytocin , Female , Humans , Pregnancy , DNA Methylation , Ligands , Maternal Behavior , Oxytocin/metabolism , Receptors, Oxytocin/metabolism
7.
Int J Mol Sci ; 24(12)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37373036

ABSTRACT

Mucopolysaccharidosis IVA (MPS IVA; Morquio A syndrome) is caused by a deficiency of the N-acetylgalactosamine-6-sulfate-sulfatase (GALNS) enzyme, leading to the accumulation of glycosaminoglycans (GAG), keratan sulfate (KS) and chondroitin-6-sulfate (C6S), mainly in cartilage and bone. This lysosomal storage disorder (LSD) is characterized by severe systemic skeletal dysplasia. To this date, none of the treatment options for the MPS IVA patients correct bone pathology. Enzyme replacement therapy with elosulfase alpha provides a limited impact on bone growth and skeletal lesions in MPS IVA patients. To improve bone pathology, we propose a novel gene therapy with a small peptide as a growth-promoting agent for MPS IVA. A small molecule in this peptide family has been found to exert biological actions over the cardiovascular system. This work shows that an AAV vector expressing a C-type natriuretic (CNP) peptide induces bone growth in the MPS IVA mouse model. Histopathological analysis showed the induction of chondrocyte proliferation. CNP peptide also changed the pattern of GAG levels in bone and liver. These results suggest the potential for CNP peptide to be used as a treatment in MPS IVA patients.


Subject(s)
Mucopolysaccharidosis IV , Animals , Mice , Keratan Sulfate , Glycosaminoglycans , Cartilage/pathology , Bone Development
8.
Metab Brain Dis ; 37(2): 299-310, 2022 02.
Article in English | MEDLINE | ID: mdl-34928474

ABSTRACT

Mucopolysaccharidoses (MPS) are a group of diseases caused by mutations resulting in deficiencies of lysosomal enzymes which lead to the accumulation of partially undegraded glycosaminoglycans (GAG). This phenomenon causes severe and chronic disturbances in the functioning of the organism, and leads to premature death. The metabolic defects affect also functions of the brain in most MPS types (except types IV, VI, and IX). The variety of symptoms, as well as the ineffectiveness of GAG-lowering therapies, question the early theory that GAG storage is the only cause of these diseases. As disorders of ion homeostasis increasingly turn out to be co-causes of the pathogenesis of various human diseases, the aim of this work was to determine the perturbations related to the maintenance of the ion balance at both the transcriptome and cellular levels in MPS. Transcriptomic studies, performed with fibroblasts derived from patients with all types/subtypes of MPS, showed extensive changes in the expression of genes involved in processes related to ion binding, transport and homeostasis. Detailed analysis of these data indicated specific changes in the expression of genes coding for proteins participating in the metabolism of Ca2+, Fe2+ and Zn2+. The results of tests carried out with the mouse MPS I model (Idua-/-) showed reductions in concentrations of these 3 ions in the liver and spleen. The results of these studies indicate for the first time ionic concentration disorders as possible factors influencing the course of MPS and show them as hypothetical, additional therapeutic targets for this rare disease.


Subject(s)
Mucopolysaccharidoses , Mucopolysaccharidosis I , Animals , Cell Line , Glycosaminoglycans/metabolism , Homeostasis , Humans , Mice , Mucopolysaccharidoses/metabolism , Transcriptome
9.
Int J Mol Sci ; 23(11)2022 May 25.
Article in English | MEDLINE | ID: mdl-35682595

ABSTRACT

The skeletal development process in the body occurs through sequential cellular and molecular processes called endochondral ossification. Endochondral ossification occurs in the growth plate where chondrocytes differentiate from resting, proliferative, hypertrophic to calcified zones. Natriuretic peptides (NPTs) are peptide hormones with multiple functions, including regulation of blood pressure, water-mineral balance, and many metabolic processes. NPTs secreted from the heart activate different tissues and organs, working in a paracrine or autocrine manner. One of the natriuretic peptides, C-type natriuretic peptide-, induces bone growth through several mechanisms. This review will summarize the knowledge, including the newest discoveries, of the mechanism of CNP activation in bone growth.


Subject(s)
Bone Development , Natriuretic Peptide, C-Type , Chondrocytes/metabolism , Growth Plate/metabolism , Natriuretic Peptide, C-Type/metabolism , Osteogenesis
10.
Int J Mol Sci ; 24(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36613919

ABSTRACT

Mucopolysaccharidoses (MPSs) constitute a heterogeneous group of lysosomal storage disorders characterized by the lysosomal accumulation of glycosaminoglycans (GAGs). Although lysosomal dysfunction is mainly affected, several cellular organelles such as mitochondria, endoplasmic reticulum, Golgi apparatus, and their related process are also impaired, leading to the activation of pathophysiological cascades. While supplying missing enzymes is the mainstream for the treatment of MPS, including enzyme replacement therapy (ERT), hematopoietic stem cell transplantation (HSCT), or gene therapy (GT), the use of modulators available to restore affected organelles for recovering cell homeostasis may be a simultaneous approach. This review summarizes the current knowledge about the cellular consequences of the lysosomal GAGs accumulation and discusses the use of potential modulators that can reestablish normal cell function beyond ERT-, HSCT-, or GT-based alternatives.


Subject(s)
Lysosomal Storage Diseases , Mucopolysaccharidoses , Humans , Glycosaminoglycans/therapeutic use , Mucopolysaccharidoses/genetics , Lysosomal Storage Diseases/drug therapy , Lysosomes , Enzyme Replacement Therapy
11.
Cell Biol Int ; 45(3): 549-557, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32125037

ABSTRACT

Mucopolysaccharidoses (MPS), a group of lysosomal storage diseases (LSD), are inherited disorders caused by mutations in genes coding for enzymes involved in the degradation of glycosaminoglycans (GAGs). Therefore, accumulated GAGs in lysosomes lead to severe symptoms in patients and significantly shortened life span. Although GAG accumulation in cells is the primary cellular defect in MPS, recent reports indicated that severe changes in cellular processes occur there as secondary or tertiary effects, which may contribute significantly to the disease pathomechanism. Apoptosis is one of such process, while mechanisms leading to dysregulation of this process in MPS remain largely unknown. To learn about these mechanisms, we have performed transcriptomic studies using cultures of fibroblasts derived from patients suffering from all types and subtypes of MPS, and assessed genes related to apoptosis. We found that there are significant changes in expression levels of many such genes relative to control fibroblasts (Human Dermal Fibroblasts-adult cell line), and the number of down- or up-regulated transcripts was between 19 and 73 in different MPS types. We have identified apoptosis-related genes, which were considerably dysregulated in many MPS types, as well as those in which expression was significantly changed in specific MPS types. BNIP3, C1D, CLU, GPER1, KREMEN1, and PRKCD genes displayed the most changed expression profiles in most MPS types relative to control cells. Caspase 3/7 activity was increased in MPS IVA and IX. These results indicate that changes in apoptosis, observed in MPS, may arise, at least partially, from dysregulation of genes coding for proteins involved in this process.


Subject(s)
Apoptosis/genetics , Gene Expression Profiling , Gene Expression Regulation , Mucopolysaccharidoses/genetics , Adult , Caspase 3/metabolism , Caspase 7/metabolism , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism
12.
Int J Mol Sci ; 22(5)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803318

ABSTRACT

Mucopolysaccharidoses (MPS) are inherited metabolic diseases characterized by accumulation of incompletely degraded glycosaminoglycans (GAGs) in lysosomes. Although primary causes of these diseases are mutations in genes coding for enzymes involved in lysosomal GAG degradation, it was demonstrated that storage of these complex carbohydrates provokes a cascade of secondary and tertiary changes affecting cellular functions. Potentially, this might lead to appearance of cellular disorders which could not be corrected even if the primary cause of the disease is removed. In this work, we studied changes in cellular organelles in MPS fibroblasts relative to control cells. All 11 types and subtypes of MPS were included into this study to obtain a complex picture of changes in organelles in this group of diseases. Two experimental approaches were employed, transcriptomic analyses and electron microscopic assessment of morphology of organelles. We analyzed levels of transcripts of genes grouped into two terms included into the QuickGO database, 'Cellular component organization' (GO:0016043) and 'Cellular anatomical entity' (GO:0110165), to find that number of transcripts with significantly changed levels in MPS fibroblasts vs. controls ranged from 109 to 322 (depending on MPS type) in GO:0016043, and from 70 to 208 in GO:0110165. This dysregulation of expression of genes crucial for proper structures and functions of various organelles was accompanied by severe changes in morphologies of lysosomes, nuclei, mitochondria, Golgi apparatus, and endoplasmic reticulum. Interestingly, some observed changes occurred in all/most MPS types while others were specific to particular disease types/subtypes. We suggest that severe changes in organelles in MPS cells might arise from dysregulation of expression of a battery of genes involved in organelles' structures and functions. Intriguingly, normalization of GAG levels by using recombinant human enzymes specific to different MPS types corrected morphologies of some, but not all, organelles, while it failed to improve regulation of expression of selected genes. These results might suggest reasons for inability of enzyme replacement therapy to correct all MPS symptoms, particularly if initiated at advanced stages of the disease.


Subject(s)
Fibroblasts , Gene Expression Regulation , Mucopolysaccharidoses , Organelles , Cell Line , Fibroblasts/metabolism , Fibroblasts/ultrastructure , Humans , Mucopolysaccharidoses/metabolism , Mucopolysaccharidoses/pathology , Organelles/metabolism , Organelles/ultrastructure
13.
Postepy Biochem ; 67(2): 117-129, 2021 06 30.
Article in Polish | MEDLINE | ID: mdl-34378891

ABSTRACT

Development of therapies for neurodegenerative diseases, disorders characterized by progressing loss of neurons, is a great challenge for current medicine. Searching for drugs for these diseases is being proceeded in many laboratories in the world. To date, several therapeutical strategies have been proposed which, however, are either of insufficient efficacy or at the early preclinical stages. One of the newest concepts is elevated efficiency of degradation of protein aggregates which are causes of 70% of these diseases. Autophagy, i.e. lysosomal degradation of macromolecules, is a process which could be employed in such a strategy Searching for a compound which would not only stimulate autophagy but also reveal safety in a long-term usage and be able to cross the blood-brain-barrier led to studies on one of flavonoids, genistein which occurs at high concentrations in soy. Experiments with this compound indicated its enormous efficiency in removing protein aggregated formed by beta-amyloid, hyperphosphorylated tau protein, and mutant huntingtin. Moreover, using animal models of these diseases, correction of cognitive and motoric symptoms was demonstrated. Considering safety of genistein as well as its ability to crossing the blood-brain-barrier, one may assume that this molecule is a candidate for an effective drug in therapies of not only Alzheimer disease and Huntington disease, but also other disorders caused be protein aggregates. In this article, recent results of studies on the use of genistein in different models of neurodegenerative diseases are summarized, with special emphasis on its autophagy-dependent action.


Subject(s)
Alzheimer Disease , Huntington Disease , Neurodegenerative Diseases , Alzheimer Disease/drug therapy , Animals , Autophagy , Genistein/pharmacology , Genistein/therapeutic use , Neurodegenerative Diseases/drug therapy
14.
Eur J Nutr ; 59(4): 1421-1432, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31123866

ABSTRACT

PURPOSE: Isothiocyanates (ITCs) are compounds derived from Brassica plants with documented anticancer activity. Molecular mechanisms of their selective activity against cancer cells are still underexplored. In this work, the impact of ITC on DNA replication and damage was compared between PC-3 prostate cancer cells and HDFa normal fibroblasts as well as PNT2 prostate epithelial cells. METHODS: Cells were treated with sulforaphane or phenethyl isothiocyanate. [3H]thymidine incorporation and the level of histone γH2A.X were estimated as indicators of DNA replication and double-strand breaks (DSB), respectively. Levels of HDAC3, CtIP, and p-RPA were investigated by immunoblotting. Comet assay was performed to visualize DNA damage. RESULTS: ITCs inhibited DNA replication in all tested cell lines, and this activity was independent of reactive oxygen species of mitochondrial origin. It was followed by DSB which were more pronounced in cancer than noncancerous cells. This difference was independent of HDAC activity which was decreased in both cell lines when treated with ITCs. On the other hand, it correlated with faster removal of DSB, and thus, transient activation of repair proteins in normal cells, while in PC-3 prostate cancer, cell DNA repair was significantly less effective. CONCLUSION: DNA damage induced by ITCs is a consequence of the block in DNA replication which is observed in both, cancer and normal cells. Selective antiproliferative activity of ITCs towards cancer cells results from less efficient DNA repair in cancer cells relative to normal cells.


Subject(s)
Anticarcinogenic Agents/pharmacology , DNA Damage/drug effects , DNA Repair/drug effects , Isothiocyanates/pharmacology , Prostatic Neoplasms/drug therapy , Cell Line, Tumor , Cells, Cultured , Humans , In Vitro Techniques , Male
15.
Int J Mol Sci ; 21(9)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32366041

ABSTRACT

Although mucopolysaccharidoses (MPS), inherited metabolic diseases from the group of lysosomal storage diseases (LSD), are monogenic disorders, recent studies indicated that their molecular mechanisms are complicated. Storage of glycosaminoglycans (GAGs), arising from a deficiency in one of the enzymes involved in the degradation of these compounds, is the primary cause of each MPS type. However, dysfunctions of various cellular organelles and disturbance of cellular processes have been reported which contribute considerably to pathomechanisms of the disease. Here, we present a complex transcriptomic analysis in which all types and subtypes of MPS were investigated, with special emphasis on genes related to cell activation processes. Complex changes in expression of these genes were found in fibroblasts of all MPS types, with number of transcripts revealing higher or lower levels (relative to control fibroblasts) between 19 and over 50, depending on MPS type. Genes in which expression was significantly affected in most MPS types code for proteins involved in following processes, classified according to Gene Ontology knowledge database: cell activation, cell growth, cell recognition, and cell division. Levels of some transcripts (including CD9, CLU, MME and others) were especially significantly changed (over five times relative to controls). Our results are discussed in the light of molecular pathomechanisms of MPS, indicating that secondary and/or tertiary changes, relative to GAG storage, might significantly modulate cellular dysfunctions and contribute to molecular mechanisms of the disease. This may influence the efficacy of various therapies and suggests why various treatments are not fully effective in improving the complex symptoms of MPS.


Subject(s)
Lysosomal Storage Diseases/metabolism , Mucopolysaccharidoses/metabolism , Adolescent , Cell Cycle/genetics , Cell Cycle/physiology , Cell Proliferation/genetics , Cell Proliferation/physiology , Child , Child, Preschool , Female , Gene Ontology , Humans , Infant , Lysosomal Storage Diseases/genetics , Male , Transcriptome/genetics , Transcriptome/physiology
16.
Int J Mol Sci ; 21(4)2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32054071

ABSTRACT

Mucopolysaccharidoses (MPS), a group of inherited metabolic disorders caused by deficiency in enzymes involved in degradation of glycosaminoglycans (GAGs), are examples (and models) of monogenic diseases. Accumulation of undegraded GAGs in lysosomes was supposed to be the major cause of MPS symptoms; however, their complexity and variability between particular types of the disease can be hardly explained by such a simple storage mechanism. Here we show that transcriptomic (RNA-seq) analysis of the material derived from fibroblasts of patients suffering from all types and subtypes of MPS, supported by RT-qPCR results, revealed surprisingly large changes in expression of genes involved in various cellular processes, indicating complex mechanisms of MPS. Although each MPS type and subtype was characterized by specific changes in gene expression profile, there were genes with significantly changed expression relative to wild-type cells that could be classified as common for various MPS types, suggesting similar disturbances in cellular processes. Therefore, both common features of all MPS types, and differences between them, might be potentially explained on the basis of changes in certain cellular processes arising from disturbed regulations of genes' expression. These results may shed a new light on the mechanisms of genetic diseases, indicating how a single mutation can result in complex pathomechanism, due to perturbations in the network of cellular reactions. Moreover, they should be considered in studies on development of novel therapies, suggesting also why currently available treatment methods fail to correct all/most symptoms of MPS. We propose a hypothesis that disturbances in some cellular processes cannot be corrected by simple reduction of GAG levels; thus, combined therapies are necessary which may require improvement of these processes.


Subject(s)
Fibroblasts/pathology , Mucopolysaccharidoses/genetics , Transcriptome , Cell Line , Fibroblasts/metabolism , Gene Expression Regulation , Glycosaminoglycans/genetics , Glycosaminoglycans/metabolism , Humans , Mucopolysaccharidoses/pathology , Mutation
17.
Metab Brain Dis ; 33(4): 989-1008, 2018 08.
Article in English | MEDLINE | ID: mdl-29542037

ABSTRACT

Autophagy is a process of degradation of macromolecules in the cytoplasm, particularly proteins of a long half-life, as well as whole organelles, in eukaryotic cells. Lysosomes play crucial roles during this degradation. Autophagy is a phylogenetically old, and evolutionarily conserved phenomenon which occurs in all eukaryotic cells. It can be found in yeast Saccharomyces cerevisiae, insect Drosophila melanogaster, and mammals, including humans. Its high importance for cell physiology has been recognized, and in fact, dysfunctions causing impaired autophagy are associated with many severe disorders, including cancer and metabolic brain diseases. The types and molecular mechanisms of autophagy have been reviewed recently by others, and in this paper they will be summarized only briefly. Regulatory networks controlling the autophagy process are usually described as negative regulations. In contrast, here, we focus on different ways by which autophagy can be stimulated. In fact, activation of this process by different factors or processes can be considered as a therapeutic strategy in metabolic neurodegenerative diseases. These aspects are reviewed and discussed in this article.


Subject(s)
Autophagy/drug effects , Neurodegenerative Diseases/drug therapy , Neuroprotective Agents/therapeutic use , Animals , Humans , Lysosomes/metabolism , Neurodegenerative Diseases/metabolism , Neuroprotective Agents/pharmacology , Signal Transduction/drug effects
18.
Postepy Biochem ; 64(4): 262-276, 2018 Dec 29.
Article in Polish | MEDLINE | ID: mdl-30656911

ABSTRACT

Genetic and immunological diseases, despite many attempts to develop effective treatments, still remain a great challenge for medicine. Current therapies of these diseases consist of pharmacological alleviation of symptoms, rehabilitation and psychological help which, although very important, are not sufficient. Therefore, searching for new therapeutics which could remove the major causes of these diseases is of particular importance for the society. Natural compounds reveal many biological activities which makes them candidates for drugs in such diseases. One of them is genistein, a compound from the group of flavonoids. As it affects multiple processes, genistein has become in the center of interest of many scientists working on diseases of various etiology, course and inheritance. It was used in experimental therapies of some genetic diseases (Huntington's disease, amyotrophic lateral sclerosis Parkinson disease, cystic fibrosis), as well as autoimmunological diseases and allergies. Clinical trials with the use of genistein in treatment of patients suffering from Alzheimer's diseases and mucopolysaccharidosis type III are ongoing. The employment of differential properties of genistein in attempts to treat each of these diseases is of special interest. In this review, detailed molecular mechanisms of genistein action are summarized in the light of therapies of the above mentioned genetic and immunological diseases, including description of therapeutic potentials of each activity of this isoflavone, efficiency of its action, and its potential use as a drug in the future.


Subject(s)
Genistein/pharmacology , Genistein/therapeutic use , Immune System Diseases/drug therapy , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Humans , Huntington Disease/drug therapy , Huntington Disease/genetics , Mucopolysaccharidosis III/drug therapy , Parkinson Disease/drug therapy , Parkinson Disease/genetics
19.
Neurochem Int ; 178: 105774, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38797393

ABSTRACT

Glucocerebrosidase (GCase), encoded by the GBA1 gene, is one of the lysosomal enzymes responsible for hydrolyzing the glycosphingolipids. Deficiency in GCase activity (in patients with two defective alleles of GBA1) leads to glucosylceramide storage in lysosomes which in turn results in the development of the Gaucher diseases, a lysosomal storage disorder, while a heterozygous state may be correlated with the GBA1 mutation-associated Parkinson disease. One of the proposed forms of therapy for these two conditions is the use of pharmacological chaperones which work by facilitating the achievement of the correct conformation of abnormally folded enzymes. Several compounds with chaperone activities against GCase have already been tested, one of which turned out to be ambroxol. Studies conducted on the action of this compound have indeed indicated its effectiveness in increasing GCase levels and activity. However, some data have begun to question its activity as a chaperone against certain GCase variants. Then, a number of articles appeared pointing to other mechanisms of action of ambroxol, which may also contribute to the improvement of patients' condition. This paper summarizes the biological mechanisms of action of ambroxol in Gaucher disease and GBA1 mutation-associated Parkinson disease, focused on its activity as a chaperone, modulator of ERAD pathways, inducer of autophagy, and pain reliever in cellular and animal models as well as in patients. The effects of these activities on the reduction of disease markers and symptoms in patients are also discussed. Consideration of all the properties of ambroxol can help in the appropriate choice of therapy and the determination of the effective drug dose.


Subject(s)
Ambroxol , Gaucher Disease , Glucosylceramidase , Mutation , Parkinson Disease , Gaucher Disease/drug therapy , Gaucher Disease/genetics , Gaucher Disease/metabolism , Ambroxol/pharmacology , Ambroxol/therapeutic use , Humans , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Parkinson Disease/metabolism , Animals
20.
Mol Ther Nucleic Acids ; 35(2): 102211, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38831899

ABSTRACT

Mucopolysaccharidosis type IVA (MPS IVA) is caused by a deficiency of the galactosamine (N-acetyl)-6-sulfatase (GALNS) enzyme responsible for the degradation of specific glycosaminoglycans (GAGs). The progressive accumulation of GAGs leads to various skeletal abnormalities (short stature, hypoplasia, tracheal obstruction) and several symptoms in other organs. To date, no treatment is effective for patients with bone abnormalities. To improve bone pathology, we propose a novel combination treatment with the adeno-associated virus (AAV) vectors expressing GALNS enzyme and a natriuretic peptide C (CNP; NPPC gene) as a growth-promoting agent for MPS IVA. In this study, an MPS IVA mouse model was treated with an AAV vector expressing GALNS combined with another AAV vector expressing NPPC gene, followed for 12 weeks. After the combination therapy, bone growth in mice was induced with increased enzyme activity in tissues (bone, liver, heart, lung) and plasma. Moreover, there were significant changes in bone morphology in CNP-treated mice with increased CNP activity in plasma. Delivering combinations of CNP and GALNS gene therapies enhanced bone growth in MPS IVA mice more than in GALNS gene therapy alone. Enzyme expression therapy alone fails to reach the bone growth region; our results indicate that combining it with CNP offers a potential alternative.

SELECTION OF CITATIONS
SEARCH DETAIL