Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 162
Filter
Add more filters

Publication year range
1.
Cell ; 149(3): 525-37, 2012 Apr 27.
Article in English | MEDLINE | ID: mdl-22521361

ABSTRACT

Balanced chromosomal abnormalities (BCAs) represent a relatively untapped reservoir of single-gene disruptions in neurodevelopmental disorders (NDDs). We sequenced BCAs in patients with autism or related NDDs, revealing disruption of 33 loci in four general categories: (1) genes previously associated with abnormal neurodevelopment (e.g., AUTS2, FOXP1, and CDKL5), (2) single-gene contributors to microdeletion syndromes (MBD5, SATB2, EHMT1, and SNURF-SNRPN), (3) novel risk loci (e.g., CHD8, KIRREL3, and ZNF507), and (4) genes associated with later-onset psychiatric disorders (e.g., TCF4, ZNF804A, PDE10A, GRIN2B, and ANK3). We also discovered among neurodevelopmental cases a profoundly increased burden of copy-number variants from these 33 loci and a significant enrichment of polygenic risk alleles from genome-wide association studies of autism and schizophrenia. Our findings suggest a polygenic risk model of autism and reveal that some neurodevelopmental genes are sensitive to perturbation by multiple mutational mechanisms, leading to variable phenotypic outcomes that manifest at different life stages.


Subject(s)
Child Development Disorders, Pervasive/genetics , Chromosome Aberrations , Autistic Disorder/diagnosis , Autistic Disorder/genetics , Child , Child Development Disorders, Pervasive/diagnosis , Chromosome Breakage , Chromosome Deletion , DNA Copy Number Variations , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Nervous System/growth & development , Schizophrenia/genetics , Sequence Analysis, DNA , Signal Transduction
2.
Bioinformatics ; 39(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-36651666

ABSTRACT

MOTIVATION: The number of significantly associated regions reported in genome-wide association studies (GWAS) for polygenic traits typically increases with sample size. A traditional tool for quality control and identification of significant regions has been a visual inspection of how significant and correlated genetic variants cluster within a region. However, while inspecting hundreds of regions, this subjective method can misattribute significance to some loci or neglect others that are significant. RESULTS: The GWAS quality score (GQS) identifies suspicious regions and prevents erroneous interpretations with an objective, quantitative and automated method. The GQS assesses all measured single nucleotide polymorphisms (SNPs) that are linked by inheritance to each other [linkage disequilibrium (LD)] and compares the significance of trait association of each SNP to its LD value for the reported index SNP. A GQS value of 1.0 ascribes a high level of confidence to the entire region and its underlying gene(s), while GQS values <1.0 indicate the need to closely inspect the outliers. We applied the GQS to published and non-published genome-wide summary statistics and report suspicious regions requiring secondary inspection while supporting the majority of reported regions from large-scale published meta-analyses. AVAILABILITY AND IMPLEMENTATION: The GQS code/scripts can be cloned from GitHub (https://github.com/Xswapnil/GQS/). The analyst can use whole-genome summary statistics to estimate GQS for each defined region. We also provide an online tool (http://35.227.18.38/) that gives access to the GQS. The quantitative measure of quality attributes by GQS and its visualization is an objective method that enhances the confidence of each genomic hit. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genome-Wide Association Study , Genomics , Genome-Wide Association Study/methods , Phenotype , Linkage Disequilibrium , Genomics/methods , Databases, Genetic , Polymorphism, Single Nucleotide
3.
Eur Arch Psychiatry Clin Neurosci ; 274(1): 181-193, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37020043

ABSTRACT

Obsessive-compulsive symptoms (OCS) are frequently observed in individuals with schizophrenia (SCZ) treated with clozapine (CLZ). This study aimed to analyze prevalence of OCS and obsessive-compulsive disorder (OCD) in this subgroup and find possible correlations with different phenotypes. Additionally, this is the first study to examine polygenetic risk scores (PRS) in individuals with SCZ and OCS. A multicenter cohort of 91 individuals with SCZ who were treated with CLZ was recruited and clinically and genetically assessed. Symptom severity was examined using the Positive and Negative Symptom Scale (PANSS), Clinical Global Impression Scale (CGI), the Calgary Depression Scale for Schizophrenia (CDSS), Global Assessment of Functioning Scale (GAF) and Yale-Brown Obsessive-Compulsive Scale (Y-BOCS). Participants were divided into subgroups based on phenotypic OCS or OCD using Y-BOCS scores. Genomic-wide data were generated, and PRS analyses were performed to evaluate the association between either phenotypic OCD or OCS severity and genotype-predicted predisposition for OCD, SCZ, cross-disorder, and CLZ/norclozapine (NorCLZ) ratio, CLZ metabolism and NorCLZ metabolism. OCS and OCD were frequent comorbidities in our sample of CLZ-treated SCZ individuals, with a prevalence of 39.6% and 27.5%, respectively. Furthermore, the Y-BOCS total score correlated positively with the duration of CLZ treatment in years (r = 0.28; p = 0.008) and the PANSS general psychopathology subscale score (r = 0.23; p = 0.028). A significant correlation was found between OCD occurrence and PRS for CLZ metabolism. We found no correlation between OCS severity and PRS for CLZ metabolism. We found no correlation for either OCD or OCS and PRS for OCD, cross-disorder, SCZ, CLZ/NorCLZ ratio or NorCLZ metabolism. Our study was able to replicate previous findings on clinical characteristics of CLZ-treated SCZ individuals. OCS is a frequent comorbidity in this cohort and is correlated with CLZ treatment duration in years and PANSS general psychopathology subscale score. We found a correlation between OCD and PRS for CLZ metabolism, which should be interpreted as incidental for now. Future research is necessary to replicate significant findings and to assess possible genetic predisposition of CLZ-treated individuals with SCZ to OCS/OCD. Limitations attributed to the small sample size or the inclusion of subjects on co-medication must be considered. If the association between OCD and PRS for CLZ metabolism can be replicated, it should be further evaluated if CYP1A2 alteration, respectively lower CLZ plasma level, is relevant for OCD development.


Subject(s)
Clozapine , Obsessive-Compulsive Disorder , Schizophrenia , Humans , Schizophrenia/drug therapy , Schizophrenia/genetics , Schizophrenia/diagnosis , Clozapine/therapeutic use , Schizophrenic Psychology , Obsessive-Compulsive Disorder/drug therapy , Obsessive-Compulsive Disorder/epidemiology , Obsessive-Compulsive Disorder/genetics , Comorbidity , Genetic Risk Score , Phenotype
4.
Addict Biol ; 29(7): e13419, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38949209

ABSTRACT

Substance use disorders (SUDs) are seen as a continuum ranging from goal-directed and hedonic drug use to loss of control over drug intake with aversive consequences for mental and physical health and social functioning. The main goals of our interdisciplinary German collaborative research centre on Losing and Regaining Control over Drug Intake (ReCoDe) are (i) to study triggers (drug cues, stressors, drug priming) and modifying factors (age, gender, physical activity, cognitive functions, childhood adversity, social factors, such as loneliness and social contact/interaction) that longitudinally modulate the trajectories of losing and regaining control over drug consumption under real-life conditions. (ii) To study underlying behavioural, cognitive and neurobiological mechanisms of disease trajectories and drug-related behaviours and (iii) to provide non-invasive mechanism-based interventions. These goals are achieved by: (A) using innovative mHealth (mobile health) tools to longitudinally monitor the effects of triggers and modifying factors on drug consumption patterns in real life in a cohort of 900 patients with alcohol use disorder. This approach will be complemented by animal models of addiction with 24/7 automated behavioural monitoring across an entire disease trajectory; i.e. from a naïve state to a drug-taking state to an addiction or resilience-like state. (B) The identification and, if applicable, computational modelling of key molecular, neurobiological and psychological mechanisms (e.g., reduced cognitive flexibility) mediating the effects of such triggers and modifying factors on disease trajectories. (C) Developing and testing non-invasive interventions (e.g., Just-In-Time-Adaptive-Interventions (JITAIs), various non-invasive brain stimulations (NIBS), individualized physical activity) that specifically target the underlying mechanisms for regaining control over drug intake. Here, we will report on the most important results of the first funding period and outline our future research strategy.


Subject(s)
Substance-Related Disorders , Humans , Animals , Germany , Behavior, Addictive , Alcoholism
5.
Psychol Med ; 53(4): 1196-1204, 2023 03.
Article in English | MEDLINE | ID: mdl-34231451

ABSTRACT

BACKGROUND: Alcohol use disorder (AUD) and schizophrenia (SCZ) frequently co-occur, and large-scale genome-wide association studies (GWAS) have identified significant genetic correlations between these disorders. METHODS: We used the largest published GWAS for AUD (total cases = 77 822) and SCZ (total cases = 46 827) to identify genetic variants that influence both disorders (with either the same or opposite direction of effect) and those that are disorder specific. RESULTS: We identified 55 independent genome-wide significant single nucleotide polymorphisms with the same direction of effect on AUD and SCZ, 8 with robust effects in opposite directions, and 98 with disorder-specific effects. We also found evidence for 12 genes whose pleiotropic associations with AUD and SCZ are consistent with mediation via gene expression in the prefrontal cortex. The genetic covariance between AUD and SCZ was concentrated in genomic regions functional in brain tissues (p = 0.001). CONCLUSIONS: Our findings provide further evidence that SCZ shares meaningful genetic overlap with AUD.


Subject(s)
Alcoholism , Schizophrenia , Humans , Schizophrenia/genetics , Genome-Wide Association Study , Alcoholism/genetics , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease
6.
BMC Psychiatry ; 23(1): 31, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36635663

ABSTRACT

BACKGROUND: Large-scale collaborative efforts in the field of psychiatric genetics have made substantial progress in unraveling the biological architecture of schizophrenia (SCZ). Although both genetic and environmental factors are known to play a role in schizophrenia etiology our mechanistic understanding of how they shape risk, resilience and disease trajectories remains limited. METHODS: Here, we present the study protocol of the Berlin Research Initiative for Diagnostics, Genetic and Environmental Factors of Schizophrenia (BRIDGE-S), which aims to collect a densely phenotyped genetic cohort of 1,000 schizophrenia cases and 1,000 controls. The study's main objectives are to build a resource for i) promoting genetic discoveries and ii) genotype-phenotype associations to infer specific disease subtypes, and iii) exploring gene-environment interactions using polyrisk models. All subjects provide a biological sample for genotyping and complete a core questionnaire capturing a variety of environmental exposures, demographic, psychological and health data. Approximately 50% of individuals in the sample will further undergo a comprehensive clinical and neurocognitive assessment. DISCUSSION: With BRIDGE-S we created a valuable database to study genomic and environmental contributions to schizophrenia risk, onset, and outcomes. Results of the BRIDGE-S study could yield insights into the etiological mechanisms of schizophrenia that could ultimately inform risk prediction, and early intervention and treatment strategies.


Subject(s)
Schizophrenia , Humans , Schizophrenia/etiology , Schizophrenia/genetics , Genetic Predisposition to Disease , Berlin , Gene-Environment Interaction , Phenotype , Genome-Wide Association Study
7.
Psychol Med ; 52(6): 1069-1079, 2022 04.
Article in English | MEDLINE | ID: mdl-32758327

ABSTRACT

BACKGROUND: Schizotypy is a putative risk phenotype for psychosis liability, but the overlap of its genetic architecture with schizophrenia is poorly understood. METHODS: We tested the hypothesis that dimensions of schizotypy (assessed with the SPQ-B) are associated with a polygenic risk score (PRS) for schizophrenia in a sample of 623 psychiatrically healthy, non-clinical subjects from the FOR2107 multi-centre study and a second sample of 1133 blood donors. RESULTS: We did not find correlations of schizophrenia PRS with either overall SPQ or specific dimension scores, nor with adjusted schizotypy scores derived from the SPQ (addressing inter-scale variance). Also, PRS for affective disorders (bipolar disorder and major depression) were not significantly associated with schizotypy. CONCLUSIONS: This important negative finding demonstrates that despite the hypothesised continuum of schizotypy and schizophrenia, schizotypy might share less genetic risk with schizophrenia than previously assumed (and possibly less compared to psychotic-like experiences).


Subject(s)
Bipolar Disorder , Psychotic Disorders , Schizophrenia , Schizotypal Personality Disorder , Humans , Schizophrenia/genetics , Schizotypal Personality Disorder/psychology , Psychotic Disorders/psychology , Phenotype
8.
Alcohol Clin Exp Res ; 46(4): 667-681, 2022 04.
Article in English | MEDLINE | ID: mdl-35257381

ABSTRACT

BACKGROUND: While drinking alcohol, one must choose between the immediate rewarding effects and the delayed reward of a healthier lifestyle. Individuals differ in their devaluation of a delayed reward based on the time required to receive it, i.e., delay discounting (DD). Previous studies have shown that adolescents discount more steeply than adults and that steeper DD is associated with heavier alcohol use in both groups. METHODS: In a large-scale longitudinal study, we investigated whether higher rates of DD are an antecedent or a consequence of alcohol use during adolescent development. As part of the IMAGEN project, 2220 adolescents completed the Monetary Choice Questionnaire as a DD measure, the Alcohol Use Disorders Identification Test, and the Timeline Follow Back interview at ages 14, 16, 18, and 22. Bivariate latent growth curve models were applied to investigate the relationship between DD and drinking. To explore the consequences of drinking, we computed the cumulative alcohol consumption and correlated it with the development of discounting. A subsample of 221 participants completed an intertemporal choice task (iTeCh) during functional magnetic resonance imaging at ages 14, 16, and 18. Repeated-measures ANOVA was used to differentiate between high-risk and low-risk drinkers on the development of neural processing during intertemporal choices. RESULTS: Overall, high rates of DD at age 14 predicted a greater increase in drinking over 8 years. In contrast, on average, moderate alcohol use did not affect DD from ages 14 to 22. Of note, we found indicators for less brain activity in top-down control areas during intertemporal choices in the participants who drank more. CONCLUSIONS: Steep DD was shown to be a predictor rather than a consequence of alcohol use in low-level drinking adolescents. Important considerations for future longitudinal studies are the sampling strategies to be used and the reliability of the assessments.


Subject(s)
Alcoholism , Delay Discounting , Adolescent , Adult , Humans , Longitudinal Studies , Reproducibility of Results , Reward , Young Adult
9.
Addict Biol ; 27(5): e13198, 2022 09.
Article in English | MEDLINE | ID: mdl-36001430

ABSTRACT

This study investigated the recently reported association between alcohol dependence and accelerated ageing and the potential effects of abstinence and relapse on DNA methylation status using Levine's epigenetic clock to estimate DNA methylation age in two independent cohorts. The first sample comprised 88 (15 female) detoxified patients with alcohol use disorder (AUD) and 32 (5 female) healthy control (CON) subjects (NCT02615977), and the second included 69 (10 female) AUD patients that were followed up for 12 months with respect to relapse (n = 38, 4 female) and abstinence (n = 31, 6 female) (NCT01679145). To account for the different aspects of ageing captured by various clocks, we performed additional analyses of the first-generation Horvath clock and next-generation Zhang clock. To account for the genetic liability of AUD and its potential influence on DNA methylation, we calculated a polygenic risk score for alcohol dependence. We found that ageing was accelerated by 3.64 years in AUD patients compared with the CON group according to Levine's DNAm PhenoAge. Furthermore, in a second longitudinal sample, we found that abstaining AUD patients displayed a decrease in DNAm PhenoAge by 3.1 years, but we found an over proportional increase by 2.7 years in those who relapsed. Polygenic risk did not affect epigenetic ageing within our sample. These results confirm the age acceleration associated with AUD and provide the first evidence for a recovery of this effect upon abstinence from alcohol.


Subject(s)
Alcoholism , Epigenesis, Genetic , Aging/genetics , Alcoholism/genetics , DNA Methylation , Female , Humans , Male , Recurrence
10.
Bioinformatics ; 36(3): 930-933, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31393554

ABSTRACT

SUMMARY: Genome-wide association study (GWAS) analyses, at sufficient sample sizes and power, have successfully revealed biological insights for several complex traits. RICOPILI, an open-sourced Perl-based pipeline was developed to address the challenges of rapidly processing large-scale multi-cohort GWAS studies including quality control (QC), imputation and downstream analyses. The pipeline is computationally efficient with portability to a wide range of high-performance computing environments. RICOPILI was created as the Psychiatric Genomics Consortium pipeline for GWAS and adopted by other users. The pipeline features (i) technical and genomic QC in case-control and trio cohorts, (ii) genome-wide phasing and imputation, (iv) association analysis, (v) meta-analysis, (vi) polygenic risk scoring and (vii) replication analysis. Notably, a major differentiator from other GWAS pipelines, RICOPILI leverages on automated parallelization and cluster job management approaches for rapid production of imputed genome-wide data. A comprehensive meta-analysis of simulated GWAS data has been incorporated demonstrating each step of the pipeline. This includes all the associated visualization plots, to allow ease of data interpretation and manuscript preparation. Simulated GWAS datasets are also packaged with the pipeline for user training tutorials and developer work. AVAILABILITY AND IMPLEMENTATION: RICOPILI has a flexible architecture to allow for ongoing development and incorporation of newer available algorithms and is adaptable to various HPC environments (QSUB, BSUB, SLURM and others). Specific links for genomic resources are either directly provided in this paper or via tutorials and external links. The central location hosting scripts and tutorials is found at this URL: https://sites.google.com/a/broadinstitute.org/RICOPILI/home. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genome-Wide Association Study , Software , Algorithms , Genome , Genomics
11.
Br J Psychiatry ; 219(6): 659-669, 2021 12.
Article in English | MEDLINE | ID: mdl-35048876

ABSTRACT

BACKGROUND: Studying phenotypic and genetic characteristics of age at onset (AAO) and polarity at onset (PAO) in bipolar disorder can provide new insights into disease pathology and facilitate the development of screening tools. AIMS: To examine the genetic architecture of AAO and PAO and their association with bipolar disorder disease characteristics. METHOD: Genome-wide association studies (GWASs) and polygenic score (PGS) analyses of AAO (n = 12 977) and PAO (n = 6773) were conducted in patients with bipolar disorder from 34 cohorts and a replication sample (n = 2237). The association of onset with disease characteristics was investigated in two of these cohorts. RESULTS: Earlier AAO was associated with a higher probability of psychotic symptoms, suicidality, lower educational attainment, not living together and fewer episodes. Depressive onset correlated with suicidality and manic onset correlated with delusions and manic episodes. Systematic differences in AAO between cohorts and continents of origin were observed. This was also reflected in single-nucleotide variant-based heritability estimates, with higher heritabilities for stricter onset definitions. Increased PGS for autism spectrum disorder (ß = -0.34 years, s.e. = 0.08), major depression (ß = -0.34 years, s.e. = 0.08), schizophrenia (ß = -0.39 years, s.e. = 0.08), and educational attainment (ß = -0.31 years, s.e. = 0.08) were associated with an earlier AAO. The AAO GWAS identified one significant locus, but this finding did not replicate. Neither GWAS nor PGS analyses yielded significant associations with PAO. CONCLUSIONS: AAO and PAO are associated with indicators of bipolar disorder severity. Individuals with an earlier onset show an increased polygenic liability for a broad spectrum of psychiatric traits. Systematic differences in AAO across cohorts, continents and phenotype definitions introduce significant heterogeneity, affecting analyses.


Subject(s)
Autism Spectrum Disorder , Bipolar Disorder , Depressive Disorder, Major , Age of Onset , Bipolar Disorder/diagnosis , Bipolar Disorder/epidemiology , Bipolar Disorder/genetics , Depressive Disorder, Major/genetics , Genome-Wide Association Study , Humans , Multifactorial Inheritance
12.
Mol Psychiatry ; 25(11): 2648-2671, 2020 11.
Article in English | MEDLINE | ID: mdl-32601453

ABSTRACT

Imaging genetics offers the possibility of detecting associations between genotype and brain structure as well as function, with effect sizes potentially exceeding correlations between genotype and behavior. However, study results are often limited due to small sample sizes and methodological differences, thus reducing the reliability of findings. The IMAGEN cohort with 2000 young adolescents assessed from the age of 14 onwards tries to eliminate some of these limitations by offering a longitudinal approach and sufficient sample size for analyzing gene-environment interactions on brain structure and function. Here, we give a systematic review of IMAGEN publications since the start of the consortium. We then focus on the specific phenotype 'drug use' to illustrate the potential of the IMAGEN approach. We describe findings with respect to frontocortical, limbic and striatal brain volume, functional activation elicited by reward anticipation, behavioral inhibition, and affective faces, and their respective associations with drug intake. In addition to describing its strengths, we also discuss limitations of the IMAGEN study. Because of the longitudinal design and related attrition, analyses are underpowered for (epi-) genome-wide approaches due to the limited sample size. Estimating the generalizability of results requires replications in independent samples. However, such densely phenotyped longitudinal studies are still rare and alternative internal cross-validation methods (e.g., leave-one out, split-half) are also warranted. In conclusion, the IMAGEN cohort is a unique, very well characterized longitudinal sample, which helped to elucidate neurobiological mechanisms involved in complex behavior and offers the possibility to further disentangle genotype × phenotype interactions.


Subject(s)
Adolescent Behavior , Genetics , Multicenter Studies as Topic , Neuroimaging , Adolescent , Cohort Studies , Humans , Reproducibility of Results , Reward , Time Factors
13.
Cereb Cortex ; 30(4): 2707-2718, 2020 04 14.
Article in English | MEDLINE | ID: mdl-31828294

ABSTRACT

Recent large-scale, genome-wide association studies (GWAS) have identified hundreds of genetic loci associated with general intelligence. The cumulative influence of these loci on brain structure is unknown. We examined if cortical morphology mediates the relationship between GWAS-derived polygenic scores for intelligence (PSi) and g-factor. Using the effect sizes from one of the largest GWAS meta-analysis on general intelligence to date, PSi were calculated among 10 P value thresholds. PSi were assessed for the association with g-factor performance, cortical thickness (CT), and surface area (SA) in two large imaging-genetics samples (IMAGEN N = 1651; IntegraMooDS N = 742). PSi explained up to 5.1% of the variance of g-factor in IMAGEN (F1,1640 = 12.2-94.3; P < 0.005), and up to 3.0% in IntegraMooDS (F1,725 = 10.0-21.0; P < 0.005). The association between polygenic scores and g-factor was partially mediated by SA and CT in prefrontal, anterior cingulate, insula, and medial temporal cortices in both samples (PFWER-corrected < 0.005). The variance explained by mediation was up to 0.75% in IMAGEN and 0.77% in IntegraMooDS. Our results provide evidence that cumulative genetic load influences g-factor via cortical structure. The consistency of our results across samples suggests that cortex morphology could be a novel potential biomarker for neurocognitive dysfunction that is among the most intractable psychiatric symptoms.


Subject(s)
Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Genome-Wide Association Study/methods , Intelligence/physiology , Multifactorial Inheritance/physiology , Adolescent , Female , Humans , Longitudinal Studies , Male
14.
Addict Biol ; 26(1): e12880, 2021 01.
Article in English | MEDLINE | ID: mdl-32064741

ABSTRACT

Eating disorders and substance use disorders frequently co-occur. Twin studies reveal shared genetic variance between liabilities to eating disorders and substance use, with the strongest associations between symptoms of bulimia nervosa and problem alcohol use (genetic correlation [rg ], twin-based = 0.23-0.53). We estimated the genetic correlation between eating disorder and substance use and disorder phenotypes using data from genome-wide association studies (GWAS). Four eating disorder phenotypes (anorexia nervosa [AN], AN with binge eating, AN without binge eating, and a bulimia nervosa factor score), and eight substance-use-related phenotypes (drinks per week, alcohol use disorder [AUD], smoking initiation, current smoking, cigarettes per day, nicotine dependence, cannabis initiation, and cannabis use disorder) from eight studies were included. Significant genetic correlations were adjusted for variants associated with major depressive disorder and schizophrenia. Total study sample sizes per phenotype ranged from ~2400 to ~537 000 individuals. We used linkage disequilibrium score regression to calculate single nucleotide polymorphism-based genetic correlations between eating disorder- and substance-use-related phenotypes. Significant positive genetic associations emerged between AUD and AN (rg = 0.18; false discovery rate q = 0.0006), cannabis initiation and AN (rg = 0.23; q < 0.0001), and cannabis initiation and AN with binge eating (rg = 0.27; q = 0.0016). Conversely, significant negative genetic correlations were observed between three nondiagnostic smoking phenotypes (smoking initiation, current smoking, and cigarettes per day) and AN without binge eating (rgs = -0.19 to -0.23; qs < 0.04). The genetic correlation between AUD and AN was no longer significant after co-varying for major depressive disorder loci. The patterns of association between eating disorder- and substance-use-related phenotypes highlights the potentially complex and substance-specific relationships among these behaviors.


Subject(s)
Feeding and Eating Disorders/genetics , Substance-Related Disorders/genetics , Alcoholism/genetics , Depressive Disorder, Major/genetics , Genome-Wide Association Study , Humans , Linkage Disequilibrium , Phenotype , Polymorphism, Single Nucleotide , Risk Factors , Schizophrenia/genetics , Tobacco Use Disorder/genetics
15.
Am J Med Genet B Neuropsychiatr Genet ; 183(6): 309-330, 2020 09.
Article in English | MEDLINE | ID: mdl-32681593

ABSTRACT

It is imperative to understand the specific and shared etiologies of major depression and cardio-metabolic disease, as both traits are frequently comorbid and each represents a major burden to society. This study examined whether there is a genetic association between major depression and cardio-metabolic traits and if this association is stratified by age at onset for major depression. Polygenic risk scores analysis and linkage disequilibrium score regression was performed to examine whether differences in shared genetic etiology exist between depression case control status (N cases = 40,940, N controls = 67,532), earlier (N = 15,844), and later onset depression (N = 15,800) with body mass index, coronary artery disease, stroke, and type 2 diabetes in 11 data sets from the Psychiatric Genomics Consortium, Generation Scotland, and UK Biobank. All cardio-metabolic polygenic risk scores were associated with depression status. Significant genetic correlations were found between depression and body mass index, coronary artery disease, and type 2 diabetes. Higher polygenic risk for body mass index, coronary artery disease, and type 2 diabetes was associated with both early and later onset depression, while higher polygenic risk for stroke was associated with later onset depression only. Significant genetic correlations were found between body mass index and later onset depression, and between coronary artery disease and both early and late onset depression. The phenotypic associations between major depression and cardio-metabolic traits may partly reflect their overlapping genetic etiology irrespective of the age depression first presents.


Subject(s)
Depressive Disorder, Major/genetics , Metabolic Syndrome/genetics , Age Factors , Age of Onset , Body Mass Index , Cardiometabolic Risk Factors , Case-Control Studies , Comorbidity , Coronary Artery Disease/genetics , Databases, Genetic , Depression/genetics , Depression/physiopathology , Depressive Disorder, Major/physiopathology , Diabetes Mellitus, Type 2/genetics , Female , Genetic Association Studies/methods , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Genotype , Humans , Linkage Disequilibrium/genetics , Male , Metabolic Syndrome/physiopathology , Multifactorial Inheritance/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Stroke/genetics
16.
Am J Hum Genet ; 98(5): 857-868, 2016 05 05.
Article in English | MEDLINE | ID: mdl-27087321

ABSTRACT

One goal of human genetics is to understand the genetic basis of disease, a challenge for diseases of complex inheritance because risk alleles are few relative to the vast set of benign variants. Risk variants are often sought by association studies in which allele frequencies in case subjects are contrasted with those from population-based samples used as control subjects. In an ideal world we would know population-level allele frequencies, releasing researchers to focus on case subjects. We argue this ideal is possible, at least theoretically, and we outline a path to achieving it in reality. If such a resource were to exist, it would yield ample savings and would facilitate the effective use of data repositories by removing administrative and technical barriers. We call this concept the Universal Control Repository Network (UNICORN), a means to perform association analyses without necessitating direct access to individual-level control data. Our approach to UNICORN uses existing genetic resources and various statistical tools to analyze these data, including hierarchical clustering with spectral analysis of ancestry; and empirical Bayesian analysis along with Gaussian spatial processes to estimate ancestry-specific allele frequencies. We demonstrate our approach using tens of thousands of control subjects from studies of Crohn disease, showing how it controls false positives, provides power similar to that achieved when all control data are directly accessible, and enhances power when control data are limiting or even imperfectly matched ancestrally. These results highlight how UNICORN can enable reliable, powerful, and convenient genetic association analyses without access to the individual-level data.


Subject(s)
Disease/genetics , Genetic Predisposition to Disease , Genetics, Population , Heredity/genetics , Bayes Theorem , Case-Control Studies , Gene Frequency , Genetic Linkage , Genotype , Humans , Polymorphism, Single Nucleotide/genetics , Software
17.
Mol Psychiatry ; 23(11): 2238-2250, 2018 11.
Article in English | MEDLINE | ID: mdl-29520036

ABSTRACT

Insomnia is a worldwide problem with substantial deleterious health effects. Twin studies have shown a heritable basis for various sleep-related traits, including insomnia, but robust genetic risk variants have just recently begun to be identified. We conducted genome-wide association studies (GWAS) of soldiers in the Army Study To Assess Risk and Resilience in Servicemembers (STARRS). GWAS were carried out separately for each ancestral group (EUR, AFR, LAT) using logistic regression for each of the STARRS component studies (including 3,237 cases and 14,414 controls), and then meta-analysis was conducted across studies and ancestral groups. Heritability (SNP-based) for lifetime insomnia disorder was significant (h2g = 0.115, p = 1.78 × 10-4 in EUR). A meta-analysis including three ancestral groups and three study cohorts revealed a genome-wide significant locus on Chr 7 (q11.22) (top SNP rs186736700, OR = 0.607, p = 4.88 × 10-9) and a genome-wide significant gene-based association (p = 7.61 × 10-7) in EUR for RFX3 on Chr 9. Polygenic risk for sleeplessness/insomnia severity in UK Biobank was significantly positively associated with likelihood of insomnia disorder in STARRS. Genetic contributions to insomnia disorder in STARRS were significantly positively correlated with major depressive disorder (rg = 0.44, se = 0.22, p = 0.047) and type 2 diabetes (rg = 0.43, se = 0.20, p = 0.037), and negatively with morningness chronotype (rg = -0.34, se = 0.17, p = 0.039) and subjective well being (rg = -0.59, se = 0.23, p = 0.009) in external datasets. Insomnia associated loci may contribute to the genetic risk underlying a range of health conditions including psychiatric disorders and metabolic disease.


Subject(s)
Sleep Initiation and Maintenance Disorders/genetics , Adult , Black or African American/genetics , Cohort Studies , Depressive Disorder, Major/genetics , Diabetes Mellitus, Type 2/genetics , Female , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Hispanic or Latino/genetics , Humans , Male , Military Personnel/psychology , Multifactorial Inheritance/genetics , Polymorphism, Single Nucleotide/genetics , Risk Factors , Sleep Initiation and Maintenance Disorders/physiopathology , White People/genetics , Young Adult
18.
Am J Med Genet B Neuropsychiatr Genet ; 180(5): 310-319, 2019 07.
Article in English | MEDLINE | ID: mdl-31081985

ABSTRACT

Though a growing body of preclinical and translational research is illuminating a biological basis for resilience to stress, little is known about the genetic basis of psychological resilience in humans. We conducted genome-wide association studies (GWASs) of self-assessed (by questionnaire) and outcome-based (incident mental disorders from predeployment to postdeployment) resilience among European (EUR) ancestry soldiers in the Army study to assess risk and resilience in servicemembers. Self-assessed resilience (N = 11,492) was found to have significant common-variant heritability (h2 = 0.162, se = 0.050, p = 5.37 × 10-4 ), and to be significantly negatively genetically correlated with neuroticism (rg = -0.388, p = .0092). GWAS results from the EUR soldiers revealed a genome-wide significant locus on an intergenic region on Chr 4 upstream from doublecortin-like kinase 2 (DCLK2) (four single nucleotide polymorphisms (SNPs) in LD; top SNP: rs4260523 [p = 5.65 × 10-9 ] is an eQTL in frontal cortex), a member of the doublecortin family of kinases that promote survival and regeneration of injured neurons. A second gene, kelch-like family member 36 (KLHL36) was detected at gene-wise genome-wide significance [p = 1.89 × 10-6 ]. A polygenic risk score derived from the self-assessed resilience GWAS was not significantly associated with outcome-based resilience. In very preliminary results, genome-wide significant association with outcome-based resilience was found for one locus (top SNP: rs12580015 [p = 2.37 × 10-8 ]) on Chr 12 downstream from solute carrier family 15 member 5 (SLC15A5) in subjects (N = 581) exposed to the highest level of deployment stress. The further study of genetic determinants of resilience has the potential to illuminate the molecular bases of stress-related psychopathology and point to new avenues for therapeutic intervention.


Subject(s)
Adaptation, Psychological/physiology , Military Personnel/psychology , Resilience, Psychological , Stress Disorders, Post-Traumatic/genetics , Adult , Anxiety Disorders/genetics , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Multifactorial Inheritance/genetics , United States , White People/genetics
19.
Am J Med Genet B Neuropsychiatr Genet ; 180(6): 439-447, 2019 09.
Article in English | MEDLINE | ID: mdl-30708398

ABSTRACT

Major depressive disorder (MDD) is clinically heterogeneous with prevalence rates twice as high in women as in men. There are many possible sources of heterogeneity in MDD most of which are not measured in a sufficiently comparable way across study samples. Here, we assess genetic heterogeneity based on two fundamental measures, between-cohort and between-sex heterogeneity. First, we used genome-wide association study (GWAS) summary statistics to investigate between-cohort genetic heterogeneity using the 29 research cohorts of the Psychiatric Genomics Consortium (PGC; N cases = 16,823, N controls = 25,632) and found that some of the cohort heterogeneity can be attributed to ascertainment differences (such as recruitment of cases from hospital vs. community sources). Second, we evaluated between-sex genetic heterogeneity using GWAS summary statistics from the PGC, Kaiser Permanente GERA, UK Biobank, and the Danish iPSYCH studies but did not find convincing evidence for genetic differences between the sexes. We conclude that there is no evidence that the heterogeneity between MDD data sets and between sexes reflects genetic heterogeneity. Larger sample sizes with detailed phenotypic records and genomic data remain the key to overcome heterogeneity inherent in assessment of MDD.


Subject(s)
Depressive Disorder, Major/epidemiology , Depressive Disorder, Major/genetics , Adult , Case-Control Studies , Cohort Effect , Cohort Studies , Databases, Genetic , Depressive Disorder, Major/physiopathology , Female , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Humans , Male , Middle Aged , Multifactorial Inheritance/genetics , Polymorphism, Single Nucleotide/genetics , Prevalence , Risk Factors , Sex Factors
20.
Hum Mol Genet ; 25(6): 1247-54, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26755824

ABSTRACT

Over 100 associated genetic loci have been robustly associated with schizophrenia. Gene prioritization and pathway analysis have focused on a priori hypotheses and thus may have been unduly influenced by prior assumptions and missed important causal genes and pathways. Using a data-driven approach, we show that genes in associated loci: (1) are highly expressed in cortical brain areas; (2) are enriched for ion channel pathways (false discovery rates <0.05); and (3) contain 62 genes that are functionally related to each other and hence represent promising candidates for experimental follow up. We validate the relevance of the prioritized genes by showing that they are enriched for rare disruptive variants and de novo variants from schizophrenia sequencing studies (odds ratio 1.67, P = 0.039), and are enriched for genes encoding members of mouse and human postsynaptic density proteomes (odds ratio 4.56, P = 5.00 × 10(-4); odds ratio 2.60, P = 0.049).The authors wish it to be known that, in their opinion, the first 2 authors should be regarded as joint First Author.


Subject(s)
Ion Channels/genetics , Schizophrenia/genetics , Chromosome Mapping , Genetic Association Studies , Genetic Loci , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL