Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Phys Chem A ; 127(23): 4957-4963, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37262396

ABSTRACT

We report results from experiments with the quinoline-O2 complex, which was photodissociated using light near 312 nm. Photodissociation resulted in formation of the lowest excited state of oxygen, O2 a 1Δg, which we detected using resonance enhanced multiphoton ionization and velocity map ion imaging. The O2+ ion image allowed for a determination of the center-of-mass translational energy distribution, P(ET), following complex dissociation. We also report results of electronic structure calculations for the quinoline singlet ground state and lowest energy triplet state. From the CCSD/aug-cc-pVDZ//(U)MP2/cc-pVDZ calculations, we determined the lowest energy triplet state to have ππ* electronic character and to be 2.69 eV above the ground state. We also used electronic structure calculations to determine the geometry and binding energy for several quinoline-O2 complexes. The calculations indicated that the most strongly bound complex has a well depth of about 0.11 eV and places the O2 moiety above and approximately parallel to the quinoline ring system. By comparing the experimental P(ET) with the energy for the singlet ground state and the lowest energy triplet state, we concluded that the quinoline product was formed in the lowest energy triplet state. Finally, we found the experimental P(ET) to be in agreement with a Prior translational energy distribution, which suggests a statistical dissociation for the complex.

2.
J Chem Phys ; 159(13)2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37791625

ABSTRACT

We report the experimental resonance enhanced multiphoton ionization spectrum of isoquinoline between 315 and 310 nm, along with correlated electronic structure calculations on the ground and excited states of this species. This spectral region spans the origin transitions to a π-π* excited state, which previous work has suggested to be vibronically coupled with a lower lying singlet n-π* state. Our computational results corroborate previous density functional theory calculations that predict the vertical excitation energy for the n-π* state to be higher than the π-π* state; however, we find an increase in the C-N-C angle brings the n-π* state below the energy of the π-π* state. The calculations find two out-of-plane vibrational modes of the n-π* state, which may be brought into near resonance with the π-π* state as the C-N-C bond angle increases. Therefore, the C-N-C bond angle may be important in activating vibronic coupling between the states. We fit the experimental rotational contour with a genetic algorithm to determine the excited state rotational constants and orientation of the transition dipole moment. The fits show a mostly in-plane polarized transition, and the projection of the transition dipole moment in the a-b plane is about 84° away from the a axis. These results are consistent with the prediction of our electronic structure calculations for the transition dipole moment of the π-π* excited state.

3.
J Phys Chem A ; 126(34): 5729-5737, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35994689

ABSTRACT

We have recorded the resonance-enhanced multiphoton ionization spectrum for NO (A) products from photodissociation of the N2-NO complex. We made measurements at excitation energies ranging from 28 to 758 cm-1 above the threshold to produce NO (A) + N2 (X) products, and the resulting spectra reveal the NO (A) rotational states formed during dissociation, allowing us to determine the rotational state distribution. At the lowest available energies, 28 and 50 cm-1 above threshold, we observed contributions from NO (A) rotational states that exceed the available energy and must originate from excitation due to hotbands of the complex. At all higher energies, we did not observe any energetically disallowed NO (A) rotational states, and for all available energies above 259 cm-1 the observed rotational transitions do not extend to the maximum allowed by energy conservation. Furthermore, the observed distributions were typically biased toward low rotational states, in contrast with expectations from vibrational predissociation. From the rotational state distributions, we determined the average fraction of energy partitioned into NO (A) rotation, fNO rot, ave, to be 0.088 at the highest available energy, and this fraction increased as the available energy decreased. By combining the average NO (A) rotational energy along with the average center-of-mass translational energy from our previous work, we determined the average rotational energy for the undetected N2 (X) photoproduct. The results showed that the N2 fragment has a higher average rotational energy relative to the NO fragment. Finally, we found that the NO (A) rotational state distribution was colder than expected for a statistical dissociation.

4.
J Phys Chem A ; 126(8): 1386-1392, 2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35179379

ABSTRACT

We have used velocity map ion imaging to measure the angular anisotropy of the NO (A) products from the photodissociation of the N2-NO complex. Our experiment ranged from 108 to 758 cm-1 above the threshold energy to form NO (A) + N2 (X) products, and these measurements reveal, for the first time, a strong angular anisotropy from photodissociation. At 108 cm-1 above the photodissociation threshold, we observed NO (A) photoproducts recoil preferentially perpendicular to the laser polarization axis with an average anisotropy parameter, ß = -0.25; however, as the available energy was increased, the anisotropy increased, and at 758 cm-1 above the threshold energy, we found an average ß = +0.28. The observed changes in the angular anisotropy of the NO (A) photoproduct are qualitatively similar to those observed for the photodissociation of the Ar-NO complex and likely result from changes in the region of the excited state potential energy surface accessed during the electronic excitation. At the lowest available energy, we also noted a large contribution from hotband excitation; however, this contribution decreased as the available energy increased. The outsized contribution at the lowest available energy may result from hotbands having better Franck-Condon overlap with the excited electronic state near threshold. Finally, we contrast the experimental center of mass translational energy distribution with a statistical energy distribution determined from phase space theory. The experimental and statistical distributions show pronounced disagreement, particularly at low kinetic energies, with the experimental one showing less dissociation resulting in high rotational levels of the fragments.

SELECTION OF CITATIONS
SEARCH DETAIL