ABSTRACT
BACKGROUND: Autoimmune disorders, including Systemic Lupus Erythematosus (SLE), are associated with increased incidence of hematological malignancies. The matricellular protein osteopontin (OPN) has been linked to SLE pathogenesis, as SLE patients show increased serum levels of OPN and often polymorphisms in its gene. Although widely studied for its pro-tumorigenic role in different solid tumours, the role of OPN in autoimmunity-driven lymphomagenesis has not been investigated yet. METHODS: To test the role of OPN in the SLE-associated lymphomagenesis, the SLE-like prone Faslpr/lpr mutation was transferred onto an OPN-deficient background. Spleen from Faslpr/lpr and OPN-/-Faslpr/lpr mice, as well as purified B cells, were analysed by histopathology, flow cytometry, Western Blot, immunohistochemistry, immunofluorescence and gene expression profile to define lymphoma characteristics and investigate the molecular mechanisms behind the observed phenotype. OPN cellular localization in primary splenic B cells and mouse and human DLBCL cell lines was assessed by confocal microscopy. Finally, gain of function experiments, by stable over-expression of the secreted (sOPN) and intracellular OPN (iOPN) in OPN-/-Faslpr/lpr -derived DLBCL cell lines, were performed for further validation experiments. RESULTS: Despite reduced autoimmunity signs, OPN-/-Faslpr/lpr mice developed splenic lymphomas with higher incidence than Faslpr/lpr counterparts. In situ and ex vivo analysis featured such tumours as activated type of diffuse large B cell lymphoma (ABC-DLBCL), expressing BCL2 and c-MYC, but not BCL6, with activated STAT3 signaling. OPN-/-Faslpr/lpr B lymphocytes showed an enhanced TLR9-MYD88 signaling pathway, either at baseline or after stimulation with CpG oligonucleotides, which mimic dsDNA circulating in autoimmune conditions. B cells from Faslpr/lpr mice were found to express the intracellular form of OPN. Accordingly, gene transfer-mediated re-expression of iOPN, but not of its secreted isoform, into ABC-DLBCL cell lines established from OPN-/-Faslpr/lpr mice, prevented CpG-mediated activation of STAT3, suggesting that the intracellular form of OPN may represent a brake to TLR9 signaling pathway activation. CONCLUSION: These data indicate that, in the setting of SLE-like syndrome in which double strand-DNA chronically circulates and activates TLRs, B cell intracellular OPN exerts a protective role in autoimmunity-driven DLBCL development, mainly acting as a brake in the TLR9-MYD88-STAT3 signaling pathway.
Subject(s)
Autoimmune Diseases , Lupus Erythematosus, Systemic , Lymphoma , Humans , Mice , Animals , Mice, Inbred MRL lpr , Mice, Inbred C57BL , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/pathology , Signal Transduction , Adaptor Proteins, Signal Transducing/metabolism , Lymphoma/genetics , Toll-Like Receptor 9/metabolism , STAT3 Transcription Factor/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolismABSTRACT
BACKGROUND: Intra-tumour heterogeneity in lymphoid malignancies encompasses selection of genetic events and epigenetic regulation of transcriptional programs. Clonal-related neoplastic cell populations are unsteadily subjected to immune editing and metabolic adaptations within different tissue microenvironments. How tissue-specific mesenchymal cells impact on the diversification of aggressive lymphoma clones is still unknown. METHODS: Combining in situ quantitative immunophenotypical analyses and RNA sequencing we investigated the intra-tumour heterogeneity and the specific mesenchymal modifications that are associated with A20 diffuse large B-cell lymphoma (DLBCL) cells seeding of different tissue microenvironments. Furthermore, we characterized features of lymphoma-associated stromatogenesis in human DLBCL samples using Digital Spatial Profiling, and established their relationship with prognostically relevant variables, such as MYC. FINDINGS: We found that the tissue microenvironment casts a relevant influence over A20 transcriptional landscape also impacting on Myc and DNA damage response programs. Extending the investigation to mice deficient for the matricellular protein SPARC, a stromal prognostic factor in human DLBCL, we demonstrated a different immune imprint on A20 cells according to stromal Sparc proficiency. Through Digital Spatial Profiling of 87 immune and stromal genes on human nodal DLBCL regions characterized by different mesenchymal composition, we demonstrate intra-lesional heterogeneity arising from diversified mesenchymal contextures and impacting on the stromal and immune milieu. INTERPRETATION: Our study provides experimental evidence that stromal microenvironment generates topological determinants of intra-tumour heterogeneity in DLBCL involving key transcriptional pathways such as Myc expression, damage response programs and immune checkpoints. FUNDING: This study has been supported by the Italian Foundation for Cancer Research (AIRC) (grants 15999 and 22145 to C. Tripodo) and by the University of Palermo.
Subject(s)
Biomarkers, Tumor , Genetic Heterogeneity , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Stromal Cells/metabolism , Tumor Microenvironment/genetics , Animals , Cell Line, Tumor , Computational Biology/methods , Disease Models, Animal , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Humans , Immunophenotyping , In Situ Hybridization , Mice , Models, Biological , Phenotype , Prognosis , Sequence Analysis, RNA , Stromal Cells/pathology , TranscriptomeABSTRACT
Quercetin, a bioflavonoid contained in several vegetables daily consumed, has been studied for long time for its antiinflammatory and anticancer properties. Quercetin interacts with multiple cancer-related pathways such as PI3K/AKT, Wnt/ß-catenin and STAT3. These pathways are hyperactivated in primary effusion lymphoma (PEL), an aggressive B cell lymphoma whose pathogenesis is strictly linked to the oncogenic virus Kaposis' Sarcoma-associated Herpesvirus (KSHV). In this study, we found that quercetin inhibited PI3K/AKT/mTOR and STAT3 pathways in PEL cells, and as a consequence, it down-regulated the expression of the prosurvival cellular proteins such as c-FLIP, cyclin D1 and cMyc. It also reduced the release of IL-6 and IL-10 cytokines, leading to PEL cell death. Moreover, quercetin induced a prosurvival autophagy in these cells and increased the cytotoxic effect of bortezomib, a proteasomal inhibitor, against them. Interestingly, quercetin decreased also the expression of latent and lytic KSHV proteins involved in PEL tumorigenesis and up-regulated the surface expression of HLA-DR and calreticulin, rendering the dying cells more likely detectable by the immune system. The results obtained in this study indicate that quercetin, which does not exert any cytotoxicity against normal B cells, may represent a good candidate for the treatment of this aggressive B cell lymphoma, especially in combination with autophagy inhibitors or with bortezomib.
Subject(s)
Antineoplastic Agents, Phytogenic/metabolism , Apoptosis , Autophagy , Down-Regulation , Lymphoma, Primary Effusion/metabolism , Quercetin/metabolism , Signal Transduction , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents, Phytogenic/adverse effects , Apoptosis/drug effects , Autophagy/drug effects , B-Lymphocytes/cytology , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Bortezomib/agonists , Bortezomib/pharmacology , Cell Line, Tumor , Cells, Cultured , Down-Regulation/drug effects , Drug Agonism , Humans , Interleukins/antagonists & inhibitors , Interleukins/metabolism , Lymphoma, Primary Effusion/drug therapy , Lymphoma, Primary Effusion/immunology , Lymphoma, Primary Effusion/pathology , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Phosphoinositide-3 Kinase Inhibitors , Proteasome Inhibitors/chemistry , Proteasome Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Quercetin/adverse effects , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolismABSTRACT
Burkitt's lymphoma is an aggressive B cell lymphoma whose pathogenesis involves mainly c-Myc translocation and hyperexpression, in addition to antigen-independent BCR signaling and, in some cases, EBV infection. As result of BCR signaling activation, the PI3K/AKT/mTOR pathway results constitutively activated also in the absence of EBV, promoting cell survival and counterbalancing the pro-apoptotic function that c-Myc may also exert. In this study we found that quercetin, a bioflavonoid widely distributed in plant kingdom, reduced c-Myc expression and inhibited the PI3K/AKT/mTOR activity in BL, leading to an apoptotic cell death. We observed a higher cytotoxic effect against the EBV-negative BL cells in comparison with the positive ones, suggesting that this oncogenic gammaherpesvirus confers an additional resistance to the quercetin treatment. Besides cell survival, PI3K/AKT/mTOR pathway also regulates autophagy: we found that quercetin induced a complete autophagic flux in BL cells, that contributes to c-Myc reduction in some of these cells. Indeed, autophagy inhibition by chloroquine partially restored c-Myc expression in EBV-positive (Akata) and EBV-negative (2A8) cells that harbor c-Myc mutation. Interestingly, chloroquine did not affect the quercetin-mediated reduction of c-Myc expression in Ramos cells, that have no c-Myc mutation in the coding region, although autophagy was induced. These results suggest that mutant c-Myc could be partially degraded through autophagy in BL cells, as previously reported for other mutant oncogenic proteins.