Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 22(22)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34830110

ABSTRACT

In angiosperms, double fertilization requires pollen tubes to transport non-motile sperm to distant egg cells housed in a specialized female structure known as the pistil, mediating the ultimate fusion between male and female gametes. During this journey, the pollen tube encounters numerous physical barriers that must be mechanically circumvented, including the penetration of the stigmatic papillae, style, transmitting tract, and synergid cells as well as the ultimate fusion of sperm cells to the egg or central cell. Additionally, the pollen tube must maintain structural integrity in these compact environments, while responding to positional guidance cues that lead the pollen tube to its destination. Here, we discuss the nature of these physical barriers as well as efforts to genetically and cellularly identify the factors that allow pollen tubes to successfully, specifically, and quickly circumnavigate them.


Subject(s)
Cell Communication/physiology , Flowers/metabolism , Pollen Tube/metabolism , Pollination/physiology
2.
Plant Reprod ; 36(3): 263-272, 2023 09.
Article in English | MEDLINE | ID: mdl-37222783

ABSTRACT

During angiosperm sexual reproduction, pollen tubes must penetrate through multiple cell types in the pistil to mediate successful fertilization. Although this process is highly choreographed and requires complex chemical and mechanical signaling to guide the pollen tube to its destination, aspects of our understanding of pollen tube penetration through the pistil are incomplete. Our previous work demonstrated that disruption of the Arabidopsis thaliana O-FUCOSYLTRANSFERASE1 (OFT1) gene resulted in decreased pollen tube penetration through the stigma-style interface. Here, we demonstrate that second site mutations of Arabidopsis GALACTURONOSYLTRANSFERASE 14 (GAUT14) effectively suppress the phenotype of oft1 mutants, partially restoring silique length, seed set, pollen transmission, and pollen tube penetration deficiencies in navigating the female reproductive tract. These results suggest that disruption of pectic homogalacturonan (HG) synthesis can alleviate the penetrative defects associated with the oft1 mutant and may implicate pectic HG deposition in the process of pollen tube penetration through the stigma-style interface in Arabidopsis. These results also support a model in which OFT1 function directly or indirectly modifies structural features associated with the cell wall, with the loss of oft1 leading to an imbalance in the wall composition that can be compensated for by a reduction in pectic HG deposition.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Pollen Tube/genetics , Pollen Tube/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Pollen/genetics
3.
Pathogens ; 10(8)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34451388

ABSTRACT

Francisella tularensis is the causative agent of tularemia, a zoonotic bacterial infection that is often fatal if not diagnosed and treated promptly. Natural infection in humans is relatively rare, yet persistence in animal reservoirs, arthropod vectors, and water sources combined with a low level of clinical recognition make tularemia a serious potential threat to public health in endemic areas. F. tularensis has also garnered attention as a potential bioterror threat, as widespread dissemination could have devastating consequences on a population. A low infectious dose combined with a wide range of symptoms and a short incubation period makes timely diagnosis of tularemia difficult. Current diagnostic techniques include bacterial culture of patient samples, PCR and serological assays; however, these techniques are time consuming and require technical expertise that may not be available at the point of care. In the event of an outbreak or exposure a more efficient diagnostic platform is needed. The lipopolysaccharide (LPS) component of the bacterial outer leaflet has been identified previously by our group as a potential diagnostic target. For this study, a library of ten monoclonal antibodies specific to F. tularensis LPS were produced and confirmed to be reactive with LPS from type A and type B strains. Antibody pairs were tested in an antigen-capture enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay format to select the most sensitive pairings. The antigen-capture ELISA was then used to detect and quantify LPS in serum samples from tularemia patients for the first time to determine the viability of this molecule as a diagnostic target. In parallel, prototype lateral flow immunoassays were developed, and reactivity was assessed, demonstrating the potential utility of this assay as a rapid point-of-care test for diagnosis of tularemia.

SELECTION OF CITATIONS
SEARCH DETAIL