Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters

Publication year range
1.
Exp Physiol ; 109(6): 841-846, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38460126

ABSTRACT

We sought to investigate possible impaired hyperaemia during dynamic handgrip exercise (HGE) in young healthy individuals who had recovered from COVID-19. We tested the vascular function in individuals recovered from COVID-19 using a nitric oxide donor (i.e., sodium nitroprusside; SNP), which could revert a possible impaired endothelial function during HGE. Further, we tested whether individuals who recovered from COVID-19 would present exaggerated brachial vascular resistance under an adrenergic agonist (i.e., phenylephrine; PHE) stimuli during HGE. Participants were distributed into two groups: healthy controls (Control; men: n = 6, 30 ± 3 years, 26 ± 1 kg/m2; and women: n = 5, 25 ± 1 years, 25 ± 1 kg/m2) and subjects recovered from COVID-19 (post-COVID; men: n = 6, 29 ± 3 years, 25 ± 1 kg/m2; and women: n = 10, 32 ± 4 years, 22 ± 1 kg/m2). Participants in the post-COVID group tested positive (RT-PCR) 12-14 weeks before the protocol. Heart rate (HR), brachial blood pressure (BP), brachial blood flow (BBF) and vascular conductance (BVC) at rest were not different between groups. The HGE increased HR (Control: Δ9 ± 0.4 bpm; and post-COVID: Δ11 ± 0.4 bpm) and BP (Control: Δ6 ± 1 mmHg; and post-COVID: Δ12 ± 0.6 mmHg) in both groups. Likewise, BBF (Control: Δ632 ± 38 ml/min; and post-COVID: Δ620 ± 27 ml/min) and BVC (Control: Δ6.6 ± 0.4 ml/min/mmHg; and post-COVID: Δ6.1 ± 0.3 ml/min/mmHg) increased during HGE. SNP did not change HGE-induced hyperaemia but did decrease BP, which induced a reflex-related increase in HR. PHE infusion also did not change the HGE-induced hyperaemia but raised BP and reduced HR. In conclusion, exercise-induced hyperaemia is preserved in healthy young subjects 12-14 weeks after recovery from COVID-19 infection.


Subject(s)
COVID-19 , Exercise , Hand Strength , Hyperemia , Humans , COVID-19/physiopathology , Male , Female , Hand Strength/physiology , Hyperemia/physiopathology , Adult , Exercise/physiology , Vascular Resistance/physiology , Heart Rate/physiology , Nitroprusside/pharmacology , Blood Pressure/physiology , Phenylephrine/pharmacology , SARS-CoV-2 , Brachial Artery/physiopathology , Healthy Volunteers
2.
Epilepsy Behav ; 155: 109771, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642529

ABSTRACT

INTRODUCTION: Epilepsy affects around 50 million people worldwide and is associated with lower quality of life scores, an increased risk of premature death, and significant socio-economic implications. The lack of updated evidence on current epidemiology and patient characterization creates considerable uncertainty regarding the epilepsy burden in Portugal. The study aims to characterize and quantify the epilepsy patients who have been hospitalized, with medical or surgical procedures involved, and to analyze their associated comorbidities and mortality rates. METHODS: A multicenter retrospective study was conducted using hospital production data of epilepsy patients. The study included all patients diagnosed with epilepsy-related International Classification of Diseases-9/10 codes between 2015 and 2018 in 57 Portuguese National Health Service (NHS) hospitals (n = 57 institutions). Patient characterization and quantification were done for all patients with an epilepsy diagnosis, with specific analyses focusing on those whose primary diagnosis was epilepsy. Baseline, demographic, and clinical characteristics were analyzed using descriptive statistics. RESULTS: Between 2015 and 2018, a total of 80,494 hospital episodes (i.e., patient visit that generates hospitalization and procedures) were recorded, with 18 % to 19 % directly related to epilepsy. Among these epilepsy-related hospital episodes, 13.0 % led to short term hospitalizations (less than 24 h). Additionally, the average length of stay for all these epilepsy-related episodes was 8 days. A total of 49,481 patients were identified with epilepsy based on ICD-9/10 codes. The median age of patients was 64 years (min: 0; max: 104), with a distribution of 4.8 patients per 1,000 inhabitants. From the total of deaths (9,606) between 2015 and 2018, 14% were associated with patients whose primary diagnosis was epilepsy, with 545 of these being epilepsy-related deaths. Among patients with a primary diagnosis of epilepsy, the most common comorbidities were hypertension (24%) and psychiatric-related or similar comorbidities (15%), such as alcohol dependance, depressive and major depressive disorders, dementia and other convulsions. CONCLUSION: This study showed similar results to other European countries. However, due to methodological limitations, a prospective epidemiological study is needed to support this observation. Furthermore, the present study provides a comprehensive picture of hospitalized epilepsy patients in Portugal, their comorbidities, mortality, and hospital procedures.


Subject(s)
Epilepsy , Hospitalization , Humans , Portugal/epidemiology , Epilepsy/epidemiology , Epilepsy/diagnosis , Male , Female , Retrospective Studies , Middle Aged , Adult , Aged , Hospitalization/statistics & numerical data , Adolescent , Young Adult , Aged, 80 and over , Child , Comorbidity , Child, Preschool , Infant , Infant, Newborn , Length of Stay/statistics & numerical data
3.
Eur J Appl Physiol ; 123(12): 2779-2790, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37368136

ABSTRACT

We sought to investigate the effect of the α1-adrenergic receptor blockade during handgrip exercise (Grip), isolated metaboreflex activation (Metabo), and cold pressor test (CPT) on coronary circulation in young (YW) and postmenopausal women (PMW). Ten YW and 9 PMW underwent two protocols: (1) 3 min of baseline followed by 3 min of CPT and (2) 3 min of rest, 3 min of Grip followed by 3 min of Metabo. Protocols were carried out under control conditions and α1-adrenergic receptor blockade (oral prazosin 0.03 mg·kg-1). Coronary blood velocity (CBV) and vascular conductance (CCI) were lower in PMW. Grip increased CBV only in YW (YW: Δ18.0 ± 21.1% vs. PMW: Δ4.2 ± 10.1%; p < 0.05), and the blockade did not change the CBV response to Grip in YW and PMW. During the Metabo, CBV returned to resting levels in YW and was unchanged from rest in PMW, before (YW:Δ1.7 ± 8.7% vs. PMW: Δ- 1.5 ± 8.6) and under the blockade (YW: Δ4.5 ± 14.8% vs. PMW: Δ9.1 ± 29.5%). CPT did not change CBV in both groups (YW: Δ3.9 ± 8.0 vs. PMW: Δ- 4.1 ± 6.2%), following the α1-blockade, CPT increased CBV only in YW (YW: Δ11.2 ± 12.8% vs. PMW: Δ2.2 ± 7.1%; p < 0.05 for group and condition). CCI decreased during Grip, Metabo, and CPT in YW and PMW, while the blockade prevented that decrease only in YW. The α1-adrenergic receptor plays a role in the control of coronary circulation in young women, evoking stronger vasoconstriction during CPT than Grip and Metabo in YW. PMW have impaired vasomotor control in the coronary circulation, which seems not to be caused by the α1-adrenergic receptor.


Subject(s)
Postmenopause , Receptors, Adrenergic, alpha , Humans , Female , Postmenopause/physiology , Hand Strength , Coronary Circulation/physiology , Prazosin/pharmacology
4.
Eur J Appl Physiol ; 123(9): 2063-2071, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37179503

ABSTRACT

PURPOSE: We sought to investigate the sympathetic mechanism controlling coronary circulation during trigeminal nerve stimulation in healthy women. METHODS: The protocol consisted of 3 min of trigeminal nerve stimulation (TGS) with cold stimuli to the face, in two conditions: (1) control and ß-blockade (oral propranolol), and (2) control and α-blockade (oral prazosin). RESULTS: Thirty-one healthy young subjects (women: n = 13; men: n = 18) participated in the study. By design, TGS decreased heart rate (HR), and increased blood pressure (BP) and cardiac output (CO). Before the ß-blockade coronary blood velocity (CBV-Δ1.4 ± 1.3 cm s-1) increased along with the decrease of coronary vascular conductance index (CVCi-Δ-0.04 ± 0.04 cm s-1 mmHg-1) during TGS and the ß-blockade abolished the CBV increase and a further decrease of CVCi was observed with TGS (Δ-0.06 ± 0.07 cm s-1 mmHg-1). During the α-blockade condition before the blockade, the CBV increased (Δ0.93 ± 1.48 cm s-1) along with the decrease of CVCi (Δ-0.05 ± 1.12 cm s-1 mmHg-1) during TGS, after the α-blockade CBV (Δ0.98 ± cm s-1) and CVCi (Δ-0.03 ± 0.06 cm s-1 mmHg-1) response to TGS did not change. CONCLUSION: Coronary circulation increases during sympathetic stimulation even with a decrease in heart rate.


Subject(s)
Coronary Circulation , Coronary Vessels , Male , Humans , Female , Blood Pressure/physiology , Blood Flow Velocity/physiology , Coronary Circulation/physiology , Coronary Vessels/innervation , Heart Rate/physiology , Trigeminal Nerve , Sympathetic Nervous System/physiology
5.
Am J Physiol Heart Circ Physiol ; 323(5): H879-H891, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36083795

ABSTRACT

Adropin is a peptide largely secreted by the liver and known to regulate energy homeostasis; however, it also exerts cardiovascular effects. Herein, we tested the hypothesis that low circulating levels of adropin in obesity and type 2 diabetes (T2D) contribute to arterial stiffening. In support of this hypothesis, we report that obesity and T2D are associated with reduced levels of adropin (in liver and plasma) and increased arterial stiffness in mice and humans. Establishing causation, we show that mesenteric arteries from adropin knockout mice are also stiffer, relative to arteries from wild-type counterparts, thus recapitulating the stiffening phenotype observed in T2D db/db mice. Given the above, we performed a set of follow-up experiments, in which we found that 1) exposure of endothelial cells or isolated mesenteric arteries from db/db mice to adropin reduces filamentous actin (F-actin) stress fibers and stiffness, 2) adropin-induced reduction of F-actin and stiffness in endothelial cells and db/db mesenteric arteries is abrogated by inhibition of nitric oxide (NO) synthase, and 3) stimulation of smooth muscle cells or db/db mesenteric arteries with a NO mimetic reduces stiffness. Lastly, we demonstrated that in vivo treatment of db/db mice with adropin for 4 wk reduces stiffness in mesenteric arteries. Collectively, these findings indicate that adropin can regulate arterial stiffness, likely via endothelium-derived NO, and thus support the notion that "hypoadropinemia" should be considered as a putative target for the prevention and treatment of arterial stiffening in obesity and T2D.NEW & NOTEWORTHY Arterial stiffening, a characteristic feature of obesity and type 2 diabetes (T2D), contributes to the development and progression of cardiovascular diseases. Herein we establish that adropin is decreased in obese and T2D models and furthermore provide evidence that reduced adropin may directly contribute to arterial stiffening. Collectively, findings from this work support the notion that "hypoadropinemia" should be considered as a putative target for the prevention and treatment of arterial stiffening in obesity and T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Vascular Stiffness , Actins , Animals , Endothelial Cells , Humans , Mesenteric Arteries , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide , Nitric Oxide Synthase , Obesity/complications , Peptides/pharmacology , Vascular Stiffness/physiology
6.
Epilepsy Behav ; 126: 108453, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34864377

ABSTRACT

OBJECTIVE: Heart rate variability (HRV), an index of the autonomic cardiac activity, is decreased in patients with epilepsy, and a low HRV is associated with a higher risk of sudden death. Generalized tonic-clonic seizures are one of the most consistent risk factors for SUDEP, but the influence (and relative risk) of each type of seizure on cardiac function is still unknown. Our objective was to assess the impact of the type of seizure (focal to bilateral tonic-clonic seizure - FBTCS - versus non-FBTCS) on periictal HRV, in a group of patients with refractory epilepsy and both types of seizures. METHODS: We performed a 48-hour Holter recording on 121 patients consecutively admitted to our Epilepsy Monitoring Unit. We only included patients with both FBTCS and non-FBTCS on the Holter recording and selected the first seizure of each type to analyze. To evaluate HRV parameters (AVNN, SDNN, RMSSD, pNN20, LF, HF, and LF/HF), we chose 5-min epochs pre- and postictally. RESULTS: We included 14 patients, with a median age of 36 (min-max, 16-55) years and 64% were female. Thirty-six percent had cardiovascular risk factors, but no previously known cardiac disease. In the preictal period, there were no statistically significant differences in HRV parameters, between FBTCS and non-FBTCS. In the postictal period, AVNN, RMSSD, pNN20, LF, and HF were significantly lower, and LF/HF and HR were significantly higher in FBTCS. From preictal to postictal periods, FBTCS elicited a statistically significant rise in HR and LF/HF, and a statistically significant fall in AVNN, RMSSD, pNN20, and HF. Non-FBTCS only caused statistically significant changes in HR (decrease) and AVNN (increase). SIGNIFICANCE/CONCLUSION: This work emphasizes the greater effect of FBTCS in autonomic cardiac function in patients with refractory epilepsy, compared to other types of seizures, with a significant reduction in vagal tonus, which may be associated with an increased risk of SUDEP.


Subject(s)
Epilepsy , Heart Rate , Seizures , Adolescent , Adult , Electroencephalography , Epilepsy/physiopathology , Female , Heart Rate/physiology , Humans , Male , Middle Aged , Risk Assessment , Seizures/classification , Seizures/physiopathology , Sudden Unexpected Death in Epilepsy/epidemiology , Young Adult
7.
Clin Auton Res ; 32(4): 261-269, 2022 08.
Article in English | MEDLINE | ID: mdl-35870087

ABSTRACT

PURPOSE: We investigate the impact of menopause on cardiovascular adjustments to the cold pressor test (CPT) and the role of the α1-adrenergic receptor. METHODS: Ten young women (YW) and nine postmenopausal women (MW) underwent 1 min of CPT in control and α1-blockade conditions (0.03 mg‧kg-1 of oral prazosin). RESULTS: CPT increased heart rate (HR) (YW: ∆20 ± 3 bpm; MW: ∆13 ± 2 bpm) and stroke volume (SV; YW: ∆15 ± 8 ml; MW: ∆9 ± 6 ml; p = 0.01 for time) and evoked a greater increase in cardiac output (CO) in YW (YW: ∆2.1 ± 0.2 l‧m-1; MW: ∆1.3 ± 0.5 l‧m-1; p = 0.01). α1-Blockade increased baseline HR and did not change HR, SV, and CO responses to CPT. MW presented an exaggerated systolic blood pressure (BP) response (YW: ∆38 ± 9 mmHg; MW: ∆56 ± 24 mmHg; p = 0.03). The α1-blockade did not change baseline BP while blunting its response. Total vascular resistance (TVR) was similar between groups at baseline and increased during CPT only in MW (YW: ∆2.3 ± 1.4 mmHg‧L-1‧min; MW:∆6.8 ± 5.9 mmHg‧L-1‧min). Under α1-blockade, the TVR increase during CPT was attenuated in MW and abolished in YW (YW: ∆0.3 ± 1.2 mmHg‧L-1‧min and MW: ∆3.0 ± 2.0 mmHg‧L-1‧min). CPT did not change femoral vascular conductance (FVC) in either group before the blockade (YW: ∆-0.3 ± 4.0 ml‧min-1‧mmHg-1; MW: ∆-0.2 ± 0.8 ml‧min-1‧mmHg-1); however, FVC tended to increase in young women (YW: ∆1.3 ± 1.0 ml‧min-1‧mmHg-1; MW: ∆0.1 ± 1.5 ml‧min-1‧mmHg-1; p = 0.06) after the α1-blockade. CONCLUSION: In postmenopausal women, the cardiac ability to adjust to CPT is blunted and α1-adrenergic receptor stimulation is important for the increase in stroke volume. In addition, the peripheral effect of α1-adrenergic receptor stimulation seems to be increased in postmenopausal women.


Subject(s)
Cardiovascular System , Sympathetic Nervous System , Adrenergic Agents/pharmacology , Blood Pressure/physiology , Cold Temperature , Female , Heart Rate/physiology , Humans , Postmenopause , Sympathetic Nervous System/physiology
8.
J Physiol ; 599(16): 3993-4007, 2021 08.
Article in English | MEDLINE | ID: mdl-34245024

ABSTRACT

KEY POINTS: The proposed mechanism for the increased ventilation in response to hyperoxia includes a reduced brain CO2 -[H+ ] washout-induced central chemoreceptor stimulation that results from a decrease in cerebral perfusion and the weakening of the CO2 affinity for haemoglobin. Nonetheless, hyperoxia also results in excessive brain reactive oxygen species (ROS) formation/accumulation, which hypothetically increases central respiratory drive and causes hyperventilation. We then quantified ventilation, cerebral perfusion/metabolism, arterial/internal jugular vein blood gases and oxidant/antioxidant biomarkers in response to hyperoxia during intravenous infusion of saline or ascorbic acid to determine whether excessive ROS production/accumulation contributes to the hyperoxia-induced hyperventilation in humans. Ascorbic acid infusion augmented the antioxidant defence levels, blunted ROS production/accumulation and minimized both the reduction in cerebral perfusion and the increase in ventilation observed during saline infusion. Hyperoxic hyperventilation seems to be mediated by central chemoreceptor stimulation provoked by the interaction between an excessive ROS production/accumulation and reduced brain CO2 -[H+ ] washout. ABSTRACT: The hypothetical mechanism for the increase in ventilation ( V̇E ) in response to hyperoxia (HX) includes central chemoreceptor stimulation via reduced CO2 -[H+ ] washout. Nonetheless, hyperoxia disturbs redox homeostasis and raises the hypothesis that excessive brain reactive oxygen species (ROS) production/accumulation may increase the sensitivity to CO2 or even solely activate the central chemoreceptors, resulting in hyperventilation. To determine the mechanism behind the HX-evoked increase in V̇E , 10 healthy men (24 ± 4 years) underwent 10 min trials of HX under saline and ascorbic acid infusion. V̇E , arterial and right internal right jugular vein (ijv) partial pressure for oxygen (PO2 ) and CO2 (PCO2 ), pH, oxidant (8-isoprostane) and antioxidant (ascorbic acid) markers, as well as cerebral blood flow (CBF) (Duplex ultrasonography), were quantified at each hyperoxic trial. HX evoked an increase in arterial partial pressure for oxygen, followed by a hyperventilatory response, a reduction in CBF, an increase in arterial 8-isoprostane, and unchanged PijvCO2 and ijv pH. Intravenous ascorbic acid infusion augmented the arterial antioxidant marker, blunted the increase in arterial 8-isoprostane and attenuated both the reduction in CBF and the HX-induced hyperventilation. Although ascorbic acid infusion resulted in a slight increase in PijvCO2 and a substantial decrease in ijv pH, when compared with the saline bout, HX evoked a similar reduction and a paired increase in the trans-cerebral exchanges for PCO2 and pH, respectively. These findings indicate that the poikilocapnic hyperoxic hyperventilation is likely mediated via the interaction of the acidic brain interstitial fluid and an increase in central chemoreceptor sensitivity to CO2 , which, in turn, seems to be evoked by the excessive ROS production/accumulation.


Subject(s)
Hyperoxia , Adult , Carbon Dioxide , Cerebrovascular Circulation , Humans , Hyperventilation , Male , Oxygen , Reactive Oxygen Species , Young Adult
9.
Exp Physiol ; 106(12): 2400-2411, 2021 12.
Article in English | MEDLINE | ID: mdl-34719804

ABSTRACT

NEW FINDINGS: What is the central question of this study? What is the role of ß- and α-adrenergic receptors in the control of the coronary circulation during handgrip exercise and isolated muscle metaboreflex activation in humans? What is the main finding and its importance? ß-Adrenergic receptor, but not α-adrenergic receptor, blockade significantly blunted the increases in coronary blood velocity observed during handgrip. Coronary blood velocity was unchanged from baseline during isolated muscle metaboreflex activation. This highlights the important role of ß-adrenergic receptors in the coronary circulation during handgrip in humans, and the more limited involvement of the α-adrenergic receptors. ABSTRACT: We sought to investigate the role of ß- and α-adrenergic receptors in coronary circulation during static handgrip exercise and isolated muscle metaboreflex activation in humans. Seventeen healthy young men underwent two experimental sessions, consisting of 3 min of static handgrip exercise at a target force of 40% maximum voluntary force (not achieved for the full 3 min), and 3 min of metaboreflex activation (post-exercise ischaemia) in two conditions: (1) control and ß-blockade (oral propranolol), and (2) control and α-blockade (oral prazosin). In both sessions, coronary blood velocity (CBV, echocardiography) was increased during handgrip (Δ8.0 ± 7.4 cm s-1 ) but unchanged with metaboreflex activation (Δ2.5 ± 3.2 cm s-1 ) under control conditions. ß-Blockade abolished the increase in CBV during handgrip, while CBV was unchanged from control with α-blockade. Cardiac work, estimated from rate pressure product (RPP; systolic blood pressure multiplied by heart rate), increased during handgrip and metaboreflex in control conditions in both sessions. ß-Blockade reduced RPP responses to handgrip and metaboreflex, whereas α-blockade increased RPP, but the responses to handgrip and metaboreflex were unchanged. CBV and RPP were only significantly correlated during handgrip under control (r = 0.71, P < 0.01) and ß-blockade (r = 0.54, P = 0.03) conditions, and the slope of this relationship was unaltered with ß-blockade. Collectively, these findings indicate that ß-adrenergic receptors play the primary role to the increase of coronary circulation during handgrip exercise, but CBV is unchanged with metaboreflex activation, while α-adrenergic receptor stimulation seems to exert no effect in the control of the coronary circulation during handgrip exercise and isolated muscle metaboreflex activation in humans.


Subject(s)
Hand Strength , Muscle, Skeletal , Blood Pressure/physiology , Coronary Circulation , Exercise/physiology , Hand Strength/physiology , Heart Rate/physiology , Humans , Male , Muscle, Skeletal/physiology , Sympathetic Nervous System/physiology
10.
Exp Physiol ; 106(5): 1224-1234, 2021 05.
Article in English | MEDLINE | ID: mdl-33608966

ABSTRACT

NEW FINDINGS: What is the central question of this study? What are the mechanisms underlying the cardiac protective effect of aerobic training in the progression of a high fructose-induced cardiometabolic disease in Wistar rats? What is the main finding and its importance? At the onset of cardiovascular disease, aerobic training activates the p-p70S6K, ERK and IRß-PI3K-AKT pathways, without changing the miR-126 and miR-195 levels, thereby providing evidence that aerobic training modulates the insulin signalling pathway. These data contribute to the understanding of the molecular cardiac changes that are associated with physiological left ventricular hypertrophy during the development of a cardiovascular disease. ABSTRACT: During the onset of cardiovascular disease (CVD), disturbances in myocardial vascularization, cell proliferation and protein expression are observed. Aerobic training prevents CVD, but the underlying mechanisms behind left ventricle (LV) hypertrophy are not fully elucidated. The aim of this study was to investigate the mechanisms by which aerobic training protects the heart from LV hypertrophy during the onset of fructose-induced cardiometabolic disease. Male Wistar rats were allocated to four groups (n = 8/group): control sedentary (C), control training (CT), fructose sedentary (F) and fructose training (FT). The C and CT groups received drinking water, and the F and FT groups received d-fructose (10% in water). After 2 weeks, the CT and FT rats were assigned to a treadmill training protocol at moderate intensity for 8 weeks (60 min/day, 4 days/week). After 10 weeks, LV morphological remodelling, cardiomyocyte apoptosis, microRNAs and the insulin signalling pathway were investigated. The F group had systemic cardiometabolic alterations, which were normalised by aerobic training. The LV weight increased in the FT group, myocardium vascularisation decreased in the F group, and the cardiomyocyte area increased in the CT, F and FT groups. Regarding protein expression, total insulin receptor ß-subunit (IRß) decreased in the F group; phospho (p)-IRß and phosphoinositide 3-kinase (PI3K) increased in the FT group; total-AKT and p-AKT increased in all of the groups; p-p70S6 kinase (p70S6K) protein was higher in the CT group; and p-extracellular signal-regulated kinase (ERK) increased in the CT and FT groups. MiR-126, miR-195 and cardiomyocyte apoptosis did not differ among the groups. Aerobic training activates p-p70S6K and p-ERK, and during the onset of a CVD, it can activate the IRß-PI3K-AKT pathway.


Subject(s)
Cardiovascular Diseases , MicroRNAs , Physical Conditioning, Animal , Animals , Cardiovascular Diseases/metabolism , Fructose/metabolism , Male , Metabolic Networks and Pathways , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Physical Conditioning, Animal/physiology , Rats , Rats, Wistar
11.
J Physiol ; 598(16): 3343-3356, 2020 08.
Article in English | MEDLINE | ID: mdl-32463117

ABSTRACT

KEY POINTS: ATP-sensitive K+ (KATP ) channels mediate hypoxia-induced cerebral vasodilatation and hyperperfusion in animals. We tested whether KATP channels blockade affects the increase in human cerebral blood flow (CBF) and the maintenance of oxygen delivery (CDO2 ) during hypoxia. Hypoxia-induced increases in the anterior circulation and total cerebral perfusion were attenuated under KATP channels blockade affecting the relative changes of brain oxygen delivery. Therefore, in humans, KATP channels activation modulates the vascular tone in the anterior circulation of the brain, contributing to CBF and CDO2 responses to hypoxia. ABSTRACT: ATP-sensitive K+ (KATP ) channels mediate hypoxia-induced cerebral vasodilatation and hyperperfusion in animals. We tested whether KATP channels blockade affects the increase in cerebral blood flow (CBF) and the maintenance of oxygen delivery (CDO2 ) during hypoxia in humans. Nine healthy men were exposed to 5-min trials of normoxia and isocapnic hypoxia (IHX, 10% O2 ) before (BGB) and 3 h after glibenclamide ingestion (AGB). Mean arterial pressure (MAP), arterial saturation ( SaO2 ), partial pressure of oxygen ( PaO2 ) and carbon dioxide ( PaCO2 ), internal carotid artery blood flow (ICABF), vertebral artery blood flow (VABF), total (t)CBF (Doppler ultrasound) and CDO2 were quantified during the trials. IHX provoked similar reductions in SaO2 and PaO2 , while MAP was not affected by oxygen desaturation or KATP blockade. A smaller increase in ICABF (ΔBGB: 36 ± 23 vs. ΔAGB 11 ± 18%, p = 0.019) but not in VABF (∆BGB 26 ± 21 vs. ∆AGB 27 ± 27%, p = 0.893) was observed during the hypoxic trial under KATP channels blockade. Thus, IHX-induced increases in tCBF (∆BGB 32 ± 19 vs. ∆AGB 14 ± 13%, p = 0.012) and CDO2 relative changes (∆BGB 7 ± 13 vs. ∆AGB -6 ± 14%, p = 0.048) were attenuated during the AGB hypoxic trial. In a separate protocol, 6 healthy men (5 from protocol 1) underwent a 5-min exposure to normoxia and IHX before and 3 h after placebo (5 mg of cornstarch) ingestion. IHX reduced SaO2 and PaO2 , but placebo did not affect the ICABF, VABF, tCBF, or CDO2 responses. Therefore, in humans, KATP channels activation modulates vascular tone in the anterior rather than the posterior circulation of the brain, contributing to tCBF and CDO2 responses to hypoxia.


Subject(s)
Cerebrovascular Circulation , Hypoxia , Adenosine Triphosphate , Animals , Hemodynamics , Humans , Male , Oxygen
12.
Am J Physiol Regul Integr Comp Physiol ; 318(1): R182-R187, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31644318

ABSTRACT

Isocapnic hyperoxia (IH) evokes cerebral and peripheral hypoperfusion via both disturbance of redox homeostasis and reduction in nitric oxide (NO) bioavailability. However, it is not clear whether the magnitude of the vasomotor responses depends on the vessel network exposed to IH. To test the hypothesis that the magnitude of IH-induced reduction in peripheral blood flow (BF) may differ from the hypoperfusion response observed in the cerebral vascular network under oxygen-enriched conditions, nine healthy men (25 ± 3 yr, mean ± SD) underwent 10 min of IH during either saline or vitamin C (3 g) infusion, separately. Femoral artery (FA), internal carotid artery (ICA), and vertebral artery (VA) BF (Doppler ultrasound), as well as arterial oxidant (8-isoprostane), antioxidant [ascorbic acid (AA)], and NO bioavailability (nitrite) markers were simultaneously measured. IH increased 8-isoprostane levels and reduced nitrite levels; these responses were followed by a reduction in both FA BF and ICA BF, whereas VA BF did not change. Absolute and relative reductions in FA BF were greater than IH-induced changes in ICA and VA perfusion. Vitamin C infusion increased arterial AA levels and abolished the IH-induced increase in 8-isoprostane levels and reduction in nitrite levels. Whereas ICA and VA BF did not change during the vitamin C-IH trial, FA perfusion increased and reached similar levels to those observed during normoxia with saline infusion. Therefore, the magnitude of IH-induced reduction in femoral blood flow is greater than that observed in the vessel network of the brain, which might involve the determinant contribution that NO has in the regulation of peripheral vascular perfusion.


Subject(s)
Carotid Artery, Internal/physiology , Cerebrovascular Circulation/physiology , Cerebrum/blood supply , Hyperoxia , Vasomotor System/physiology , Adult , Hemodynamics , Humans , Male , Regional Blood Flow , Vertebral Artery/physiology , Young Adult
13.
J Physiol ; 597(3): 741-755, 2019 02.
Article in English | MEDLINE | ID: mdl-30506968

ABSTRACT

KEY POINTS: It is unknown whether excessive reactive oxygen species (ROS) production drives the isocapnic hyperoxia (IH)-induced decline in human cerebral blood flow (CBF) via reduced nitric oxide (NO) bioavailability and leads to disruption of the blood-brain barrier (BBB) or neural-parenchymal damage. Cerebral metabolic rate for oxygen (CMR O2 ) and transcerebral exchanges of NO end-products, oxidants, antioxidants and neural-parenchymal damage markers were simultaneously quantified under IH with intravenous saline and ascorbic acid infusion. CBF and CMRO2 were reduced during IH, responses that were followed by increased oxidative stress and reduced NO bioavailability when saline was infused. No indication of neural-parenchymal damage or disruption of the BBB was observed during IH. Antioxidant defences were increased during ascorbic acid infusion, while CBF, CMRO2 , oxidant and NO bioavailability markers remained unchanged. ROS play a role in the regulation of CBF and metabolism during IH without evidence of BBB disruption or neural-parenchymal damage. ABSTRACT: To test the hypothesis that isocapnic hyperoxia (IH) affects cerebral blood flow (CBF) and metabolism through exaggerated reactive oxygen species (ROS) production, reduced nitric oxide (NO) bioavailability, disturbances in the blood-brain barrier (BBB) and neural-parenchymal homeostasis, 10 men (24 ± 1 years) were exposed to a 10 min IH trial (100% O2 ) while receiving intravenous saline and ascorbic acid (AA, 3 g) infusion. Internal carotid artery blood flow (ICABF), vertebral artery blood flow (VABF) and total CBF (tCBF, Doppler ultrasound) were determined. Arterial and right internal jugular venous blood was sampled to quantify the cerebral metabolic rate of oxygen (CMR O2 ), transcerebral exchanges (TCE) of NO end-products (plasma nitrite), antioxidants (AA and AA plus dehydroascorbic acid (AA+DA)) and oxidant biomarkers (thiobarbituric acid-reactive substances (TBARS) and 8-isoprostane), and an index of BBB disruption and neuronal-parenchymal damage (neuron-specific enolase; NSE). IH reduced ICABF, tCBF and CMRO2 , while VABF remained unchanged. Arterial 8-isoprostane and nitrite TCE increased, indicating that CBF decline was related to ROS production and reduced NO bioavailability. AA, AA+DA and NSE TCE did not change during IH. AA infusion did not change the resting haemodynamic and metabolic parameters but raised antioxidant defences, as indicated by increased AA/AA+DA concentrations. Negative AA+DA TCE, unchanged nitrite, reductions in arterial and venous 8-isoprostane, and TBARS TCE indicated that AA infusion effectively inhibited ROS production and preserved NO bioavailability. Similarly, AA infusion prevented IH-induced decline in regional and total CBF and re-established CMRO2 . These findings indicate that ROS play a role in CBF regulation and metabolism during IH without evidence of BBB disruption or neural-parenchymal damage.


Subject(s)
Brain/metabolism , Cerebrovascular Circulation/physiology , Hyperoxia/metabolism , Reactive Oxygen Species/metabolism , Adult , Antioxidants/metabolism , Biological Availability , Biomarkers/metabolism , Humans , Male , Nitric Oxide/metabolism , Oxygen/metabolism , Young Adult
14.
Philos Trans A Math Phys Eng Sci ; 377(2140): 20180045, 2019 Mar 11.
Article in English | MEDLINE | ID: mdl-30966974

ABSTRACT

Proof plays a central role in developing, establishing and communicating mathematical knowledge. Nevertheless, it is not such a central element in school mathematics. This article discusses some issues involving mathematical proof in school, intending to characterize the understanding of mathematical proof in school, its function and the meaning and relevance attributed to the notion of simple proof. The main conclusions suggest that the idea of addressing mathematical proof at all levels of school is a recent idea that is not yet fully implemented in schools. It requires an adaptation of the understanding of proof to the age of the students, reducing the level of formality and allowing the students to experience the different functions of proof and not only the function of verification. Among the different functions of proof, the function of explanation deserves special attention due to the illumination and empowerment that it can bring to the students and their learning. The way this function of proof relates to the notion of simple proof (and the related aesthetic issues) seems relevant enough to make it, in the future, a focus of attention for the teachers who address mathematical proof in the classroom. This article is part of the theme issue 'The notion of 'simple proof' - Hilbert's 24th problem'.

15.
J Physiol ; 596(7): 1167-1179, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29462837

ABSTRACT

KEY POINTS: Hypoxaemia evokes a repertoire of homeostatic adjustments that maintain oxygen supply to organs and tissues including the brain and skeletal muscles. Because hypertensive patients have impaired endothelial-dependent vasodilatation and an increased sympathetic response to arterial oxygen desaturation, we investigated whether hypertension impairs isocapnic hypoxia-induced cerebral and skeletal muscle hyperaemia to an extent that limits oxygen supply. In middle-aged hypertensive men, vertebral and femoral artery blood flow do not increase in response to isocapnic hypoxia, limiting brain and peripheral hyperaemia and oxygen supply. Increased chemoreflex-induced sympathetic activation impairs skeletal muscle perfusion and oxygen supply, whereas an attenuation of local vasodilatory signalling in the posterior cerebrovasculature reduced brain hyperperfusion of hypertensive middle-aged men in response to isocapnic hypoxia. ABSTRACT: The present study investigated whether hypertension impairs isocapnic hypoxia (IH)-induced cerebral and skeletal muscle hyperaemia to an extent that limits oxygen supply. Oxygen saturation (oxymetry), mean arterial pressure (photoplethysmography) and muscle sympathetic nerve activity (MSNA; microneugraphy), as well as femoral artery (FA), internal carotid artery and vertebral artery (VA) blood flow (BF; Doppler ultrasound), were quantified in nine normotensive (NT) (aged 40 ± 11 years, systolic pressure 119 ± 7 mmHg and diastolic pressure 73 ± 6 mmHg) and nine hypertensive men (HT) (aged 44 ± 12 years, systolic pressure 152 ± 11 mmHg and diastolic pressure 90 ± 9 mmHg) during 5 min of normoxia (21% O2 ) and IH (10% O2 ). Total cerebral blood flow (tCBF), brain (CDO2 ) and leg (LDO2 ) oxygen delivery were estimated. IH provoked similar oxygen desaturation without changing mean arterial pressure. Internal carotid artery perfusion increased in both groups during IH. However, VA and FA BF only increased in NT. Thus, IH-induced increase in tCBF was smaller in HT. CDO2 only increased in NT and LDO2 decreased in HT. Furthermore, IH evoked a greater increase in HT MSNA. Changes in MSNA were inversely related to FA BF, LDO2 and end-tidal oxygen tension. In conclusion, hypertension disturbs regional and total cerebrovascular and peripheral responses to IH and consequently limits oxygen supply to the brain and skeletal muscle. Although increased chemoreflex-induced sympathetic activation may explain impaired peripheral perfusion, attenuated vasodilatory signalling in the posterior cerebrovasculature appears to be responsible for the small increase in tCBF when HT were exposed to IH.


Subject(s)
Cerebrovascular Circulation , Hypertension/etiology , Hypoxia/physiopathology , Oxygen/administration & dosage , Regional Blood Flow , Vasodilation , Adult , Case-Control Studies , Female , Femoral Artery/physiopathology , Hemodynamics , Humans , Hypertension/pathology , Male , Middle Aged , Oxygen Consumption , Peripheral Nerves/physiopathology , Vertebral Artery/physiopathology
16.
J Physiol ; 594(3): 715-25, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26659384

ABSTRACT

KEY POINTS: The increase in blood pressure observed during physical activities is exaggerated in patients with hypertension, exposing them to a higher cardiovascular risk. Neural signals from the skeletal muscles appear to be overactive, resulting in this abnormal response in hypertensive patients. In the present study, we tested whether the attenuation of these neural signals in hypertensive patients could normalize their abnormal increase in blood pressure during physical activity. Attenuation of the neural signals from the leg muscles with intrathecal fentanyl injection reduced the blood pressure of hypertensive men during cycling exercise to a level comparable to that of normotensive men. Skeletal muscle afferent overactivity causes the abnormal cardiovascular response to exercise and was reverted in this experimental model, appearing as potential target for treatment. Hypertensive patients present an exaggerated increase in blood pressure and an elevated cardiovascular risk during exercise. Although controversial, human studies suggest that group III and IV skeletal muscle afferents might contribute to this abnormal response. In the present study, we investigated whether attenuation of the group III and IV muscle afferent signal of hypertensive men eliminates the exaggerated increase in blood pressure occurring during exercise. Eight hypertensive men performed two sessions of 5 min of cycling exercise at 40 W. Between sessions, the subjects were provided with a lumbar intrathecal injection of fentanyl, a µ-opioid receptor agonist, aiming to attenuate the central projection of opioid-sensitive group III and IV muscle afferent nerves. The cardiovascular response to exercise of these subjects was compared with that of six normotensive men. During cycling, the hypertensive group demonstrated an exaggerated increase in blood pressure compared to the normotensive group (mean ± SEM: +17 ± 3 vs. +8 ± 1 mmHg, respectively; P < 0.05), whereas the increase in heart rate, stroke volume, cardiac output and vascular conductance was similar (P > 0.05). Fentanyl inhibited the blood pressure response to exercise in the hypertensive group (+11 ± 2 mmHg) to a level comparable to that of the normotensive group (P > 0.05). Moreover, fentanyl increased the responses of vascular conductance and stroke volume to exercise (P < 0.05), whereas the heart rate response was attenuated (P < 0.05) and the cardiac output response was maintained (P > 0.05). The results of the present study show that attenuation of the exercise pressor reflex normalizes the blood pressure response to cycling exercise in hypertensive individuals.


Subject(s)
Bicycling/physiology , Blood Pressure/physiology , Exercise/physiology , Hypertension/physiopathology , Analgesics, Opioid/pharmacology , Blood Pressure/drug effects , Cardiac Output , Fentanyl/pharmacology , Humans , Injections, Spinal , Male , Middle Aged , Muscle, Skeletal/physiology , Stroke Volume
17.
Am J Physiol Heart Circ Physiol ; 306(7): H963-71, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24531810

ABSTRACT

Mental stress induces transient endothelial dysfunction, which is an important finding for subjects at cardiometabolic risk. Thus, we tested whether aerobic exercise prevents this dysfunction among subjects with metabolic syndrome (MetS) and whether an increase in shear rate during exercise plays a role in this phenomenon. Subjects with MetS participated in two protocols. In protocol 1 (n = 16), endothelial function was assessed using brachial artery flow-mediated dilation (FMD). Subjects then underwent a mental stress test followed by either 40 min of leg cycling or rest across two randomized sessions. FMD was assessed again at 30 and 60 min after exercise or rest, with a second mental stress test in between. Mental stress reduced FMD at 30 and 60 min after the rest session (baseline: 7.7 ± 0.4%, 30 min: 5.4 ± 0.5%, and 60 min: 3.9 ± 0.5%, P < 0.05 vs. baseline), whereas exercise prevented this reduction (baseline: 7.5 ± 0.4%, 30 min: 7.2 ± 0.7%, and 60 min: 8.7 ± 0.8%, P > 0.05 vs. baseline). Protocol 2 (n = 5) was similar to protocol 1 except that the first period of mental stress was followed by either exercise in which the brachial artery shear rate was attenuated via forearm cuff inflation or exercise without a cuff. Noncuffed exercise prevented the reduction in FMD (baseline: 7.5 ± 0.7%, 30 min: 7.0 ± 0.7%, and 60 min: 8.7 ± 0.8%, P > 0.05 vs. baseline), whereas cuffed exercise failed to prevent this reduction (baseline: 7.5 ± 0.6%, 30 min: 5.4 ± 0.8%, and 60 min: 4.1 ± 0.9%, P < 0.05 vs. baseline). In conclusion, exercise prevented mental stress-induced endothelial dysfunction among subjects with MetS, and an increase in shear rate during exercise mediated this effect.


Subject(s)
Brachial Artery/physiopathology , Endothelium, Vascular/physiopathology , Exercise , Metabolic Syndrome/physiopathology , Stress, Psychological/physiopathology , Vasodilation , Adult , Bicycling , Blood Pressure , Brazil , Exercise Test , Female , Heart Rate , Humans , Male , Metabolic Syndrome/complications , Metabolic Syndrome/psychology , Stress, Mechanical , Stress, Psychological/complications , Stress, Psychological/psychology , Time Factors
18.
Foods ; 13(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38890828

ABSTRACT

Carotenoids, prominent lipid-soluble phytochemicals in the human diet, are responsible for vibrant colours in nature and play crucial roles in human health. While they are extensively studied for their antioxidant properties and contributions to vitamin A synthesis, their interactions with the intestinal microbiota (IM) remain poorly understood. In this study, beta (ß)-carotene, lutein, lycopene, a mixture of these three pigments, and the alga Osmundea pinnatifida were submitted to simulated gastrointestinal digestion (GID) and evaluated on human faecal samples. The results showed varying effects on IM metabolic dynamics, organic acid production, and microbial composition. Carotenoid exposure influenced glucose metabolism and induced the production of organic acids, notably succinic and acetic acids, compared with the control. Microbial composition analysis revealed shifts in phyla abundance, particularly increased Pseudomonadota. The α-diversity indices demonstrated higher diversity in ß-carotene and the pigments' mixture samples, while the ß-diversity analysis indicated significant dissimilarity between the control and the carotenoid sample groups. UPLC-qTOF MS analysis suggested dynamic changes in carotenoid compounds during simulated fermentation, with lutein exhibiting distinct mass ion fragmentation patterns. This comprehensive research enhances our understanding of carotenoid-IM interactions, shedding light on potential health implications and the need for tailored interventions for optimal outcomes.

19.
Sci Rep ; 14(1): 3122, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38326408

ABSTRACT

Ascorbic acid (AA) may contribute to restoring hemostatic balance after mental stress (MS) in overweight/obese adults. We aimed to determine the effects of AA administration on hemostatic responses to MS in overweight/obese men. Fourteen overweight/obesity men (27 ± 7 years; BMI: 29.7 ± 2.6 kg m-2) performed the Stroop color-word stress task for 5 min after non-simultaneous infusion of placebo (PL, 0.9% NaCl) and AA (3 g). Blood was collected at baseline, during MS, and 60 min after MS to measure: activated partial thromboplastin time, prothrombin time, and fibrinogen concentration, by coagulometer; platelet-derived microvesicles (PMV, mv/µL), by flow cytometry; nitrite (µM), by chemiluminescence. In PL session, MS led to decreases in PTs (stress, p = 0.03; 60 min, p < 0.001), PT-INR (stress, p < 0.001; 60 min, p < 0.01), aPTTs (60 min, p = 0.03), aPTT ratio (60 min, p = 0.04) and fibrinogen (60 min, p = 0.04), while increased PT activity (60 min, p = 0.01) when compared to baseline. Furthermore, AA increased PTs (60 min, p < 0.001), PT-INR (60 min, p = 0.03) and decreased PT activity (60 min, p < 0.001) and fibrinogen (stress, p = 0.04) when compared to PL. Nitrite was increased in response to stress during AA session (p < 0.001 vs PL). There was no difference in PMV. Ascorbic acid prevented the impaired hemostatic profile and improved nitrite response to stress in the overweight and obese adults.


Subject(s)
Hemostatics , Thrombophilia , Humans , Male , Adult , Overweight/complications , Ascorbic Acid/pharmacology , Ascorbic Acid/therapeutic use , Nitrites , Obesity/complications , Partial Thromboplastin Time , Prothrombin Time , Fibrinogen/analysis
20.
J Arrhythm ; 40(1): 124-130, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38333395

ABSTRACT

Background: Programmed ventricular stimulation (PVS) during electrophysiological study (EPS), is a globally accepted tool for risk stratification of sudden cardiac death (SCD) in some specific clinical situations. The aim of this study was to evaluate the prognosis of ventricular arrhythmia induction in a cohort of patients with syncope of undetermined origin (SUO). Methods: This is a historical cohort study in a population of patients with SUO referred for EPS between the years 2008-2021. In this interval, 575 patients underwent the procedure. Results: Patients with induced ventricular arrhythmias had a higher occurrence of structural heart disease (36.7% vs. 76.5%), ischemic heart disease (28.2 vs. 57.1%), heart failure (15.5% vs. 34.4%), and lower left ventricular ejection fraction (59.16% vs. 47.51%), when compared to the outcome with a negative study. PVS triggered ventricular arrhythmias in 98 patients, 62 monomorphic and 36 polymorphic. During a median follow-up of 37.6 months, 100 deaths occurred. Only the induction of sustained ventricular arrhythmias showed a significant association with the primary outcome (all-cause mortality) with a p value <.001. After the performance of EPS, 142 patients underwent cardioverter-defibrillator (ICD) implantation. At study follow-up, 30 patients had therapies by the device. Only the induction of sustained monomorphic ventricular arrhythmia showed statistically significant association with appropriate therapies by the device (p = .012). Conclusion: In patients with SUO, the induction of sustained monomorphic ventricular arrhythmia after programmed ventricular pacing is related to a worse prognosis, with a higher incidence of mortality and appropriate therapies by the ICD.

SELECTION OF CITATIONS
SEARCH DETAIL