Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 267
Filter
Add more filters

Publication year range
1.
Neuroimage ; 288: 120531, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38331333

ABSTRACT

Gait is an excellent indicator of physical, emotional, and mental health. Previous studies have shown that gait impairments in ageing are common, but the neural basis of these impairments are unclear. Existing methodologies are suboptimal and novel paradigms capable of capturing neural activation related to real walking are needed. In this study, we used a hybrid PET/MR system and measured glucose metabolism related to both walking and standing with a dual-injection paradigm in a single study session. For this study, 15 healthy older adults (10 females, age range: 60.5-70.7 years) with normal cognition were recruited from the community. Each participant received an intravenous injection of [18F]-2-fluoro-2-deoxyglucose (FDG) before engaging in two distinct tasks, a static postural control task (standing) and a walking task. After each task, participants were imaged. To discern independent neural functions related to walking compared to standing, we applied a bespoke dose correction to remove the residual 18F signal of the first scan (PETSTAND) from the second scan (PETWALK) and proportional scaling to the global mean, cerebellum, or white matter (WM). Whole-brain differences in walking-elicited neural activity measured with FDG-PET were assessed using a one-sample t-test. In this study, we show that a dual-injection paradigm in healthy older adults is feasible with biologically valid findings. Our results with a dose correction and scaling to the global mean showed that walking, compared to standing, increased glucose consumption in the cuneus (Z = 7.03), the temporal gyrus (Z = 6.91) and the orbital frontal cortex (Z = 6.71). Subcortically, we observed increased glucose metabolism in the supraspinal locomotor network including the thalamus (Z = 6.55), cerebellar vermis and the brainstem (pedunculopontine/mesencephalic locomotor region). Exploratory analyses using proportional scaling to the cerebellum and WM returned similar findings. Here, we have established the feasibility and tolerability of a novel method capable of capturing neural activations related to actual walking and extended previous knowledge including the recruitment of brain regions involved in sensory processing. Our paradigm could be used to explore pathological alterations in various gait disorders.


Subject(s)
Fluorodeoxyglucose F18 , Neuroanatomy , Female , Humans , Aged , Middle Aged , Gait/physiology , Walking/physiology , Positron-Emission Tomography/methods , Glucose/metabolism
2.
Mov Disord ; 39(2): 433-438, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38140767

ABSTRACT

BACKGROUND: Clinical trials of disease-modifying therapies in PD require valid and responsive primary outcome measures that are relevant to patients. OBJECTIVES: The objective is to select a patient-centered primary outcome measure for disease-modification trials over three or more years. METHODS: Experts in Parkinson's disease (PD), statistics, and health economics and patient and public involvement and engagement (PPIE) representatives reviewed and discussed potential outcome measures. A larger PPIE group provided input on their key considerations for such an endpoint. Feasibility, clinimetric properties, and relevance to patients were assessed and synthesized. RESULTS: Although initial considerations favored the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) Part III in Off, feasibility, PPIE input, and clinimetric properties supported the MDS-UPDRS Part II. However, PPIE input also highlighted the importance of nonmotor symptoms, especially in the longer term, leading to the selection of the MDS-UPDRS Parts I + II sum score. CONCLUSIONS: The MDS-UPDRS Parts I + II sum score was chosen as the primary outcome for large 3-year disease-modification trials. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/therapy , Parkinson Disease/diagnosis , Severity of Illness Index , Mental Status and Dementia Tests , Societies, Medical
3.
Mov Disord ; 39(2): 328-338, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38151859

ABSTRACT

BACKGROUND: Real-world monitoring using wearable sensors has enormous potential for assessing disease severity and symptoms among persons with Parkinson's disease (PD). Many distinct features can be extracted, reflecting multiple mobility domains. However, it is unclear which digital measures are related to PD severity and are sensitive to disease progression. OBJECTIVES: The aim was to identify real-world mobility measures that reflect PD severity and show discriminant ability and sensitivity to disease progression, compared to the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) scale. METHODS: Multicenter real-world continuous (24/7) digital mobility data from 587 persons with PD and 68 matched healthy controls were collected using an accelerometer adhered to the lower back. Machine learning feature selection and regression algorithms evaluated associations of the digital measures using the MDS-UPDRS (I-III). Binary logistic regression assessed discriminatory value using controls, and longitudinal observational data from a subgroup (n = 33) evaluated sensitivity to change over time. RESULTS: Digital measures were only moderately correlated with the MDS-UPDRS (part II-r = 0.60 and parts I and III-r = 0.50). Most associated measures reflected activity quantity and distribution patterns. A model with 14 digital measures accurately distinguished recently diagnosed persons with PD from healthy controls (81.1%, area under the curve: 0.87); digital measures showed larger effect sizes (Cohen's d: [0.19-0.66]), for change over time than any of the MDS-UPDRS parts (Cohen's d: [0.04-0.12]). CONCLUSIONS: Real-world mobility measures are moderately associated with clinical assessments, suggesting that they capture different aspects of motor capacity and function. Digital mobility measures are sensitive to early-stage disease and to disease progression, to a larger degree than conventional clinical assessments, demonstrating their utility, primarily for clinical trials but ultimately also for clinical care. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/complications , Mental Status and Dementia Tests , Logistic Models , Severity of Illness Index , Disease Progression
4.
Brain ; 146(3): 1053-1064, 2023 03 01.
Article in English | MEDLINE | ID: mdl-35485491

ABSTRACT

Free-water imaging can predict and monitor dopamine system degeneration in people with Parkinson's disease. It can also enhance the sensitivity of traditional diffusion tensor imaging (DTI) metrics for indexing neurodegeneration. However, these tools are yet to be applied to investigate cholinergic system degeneration in Parkinson's disease, which involves both the pedunculopontine nucleus and cholinergic basal forebrain. Free-water imaging, free-water-corrected DTI and volumetry were used to extract structural metrics from the cholinergic basal forebrain and pedunculopontine nucleus in 99 people with Parkinson's disease and 46 age-matched controls. Cognitive ability was tracked over 4.5 years. Pearson's partial correlations revealed that free-water-corrected DTI metrics in the pedunculopontine nucleus were associated with performance on cognitive tasks that required participants to make rapid choices (behavioural flexibility). Volumetric, free-water content and DTI metrics in the cholinergic basal forebrain were elevated in a sub-group of people with Parkinson's disease with evidence of cognitive impairment, and linear mixed modelling revealed that these metrics were differently associated with current and future changes to cognition. Free water and free-water-corrected DTI can index cholinergic degeneration that could enable stratification of patients in clinical trials of cholinergic interventions for cognitive decline. In addition, degeneration of the pedunculopontine nucleus impairs behavioural flexibility in Parkinson's disease, which may explain this region's role in increased risk of falls.


Subject(s)
Basal Forebrain , Parkinson Disease , Pedunculopontine Tegmental Nucleus , Humans , Parkinson Disease/complications , Diffusion Tensor Imaging , Basal Forebrain/diagnostic imaging , Cholinergic Agents , Water , Cholinergic Neurons
5.
J Neuroeng Rehabil ; 21(1): 94, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840208

ABSTRACT

BACKGROUND: Many individuals with neurodegenerative (NDD) and immune-mediated inflammatory disorders (IMID) experience debilitating fatigue. Currently, assessments of fatigue rely on patient reported outcomes (PROs), which are subjective and prone to recall biases. Wearable devices, however, provide objective and reliable estimates of gait, an essential component of health, and may present objective evidence of fatigue. This study explored the relationships between gait characteristics derived from an inertial measurement unit (IMU) and patient-reported fatigue in the IDEA-FAST feasibility study. METHODS: Participants with IMIDs and NDDs (Parkinson's disease (PD), Huntington's disease (HD), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), primary Sjogren's syndrome (PSS), and inflammatory bowel disease (IBD)) wore a lower-back IMU continuously for up to 10 days at home. Concurrently, participants completed PROs (physical fatigue (PF) and mental fatigue (MF)) up to four times a day. Macro (volume, variability, pattern, and acceleration vector magnitude) and micro (pace, rhythm, variability, asymmetry, and postural control) gait characteristics were extracted from the accelerometer data. The associations of these measures with the PROs were evaluated using a generalised linear mixed-effects model (GLMM) and binary classification with machine learning. RESULTS: Data were recorded from 72 participants: PD = 13, HD = 9, RA = 12, SLE = 9, PSS = 14, IBD = 15. For the GLMM, the variability of the non-walking bouts length (in seconds) with PF returned the highest conditional R2, 0.165, and with MF the highest marginal R2, 0.0018. For the machine learning classifiers, the highest accuracy of the current analysis was returned by the micro gait characteristics with an intrasubject cross validation method and MF as 56.90% (precision = 43.9%, recall = 51.4%). Overall, the acceleration vector magnitude, bout length variation, postural control, and gait rhythm were the most interesting characteristics for future analysis. CONCLUSIONS: Counterintuitively, the outcomes indicate that there is a weak relationship between typical gait measures and abnormal fatigue. However, factors such as the COVID-19 pandemic may have impacted gait behaviours. Therefore, further investigations with a larger cohort are required to fully understand the relationship between gait and abnormal fatigue.


Subject(s)
Fatigue , Feasibility Studies , Gait , Mental Fatigue , Neurodegenerative Diseases , Walking , Humans , Male , Female , Middle Aged , Fatigue/diagnosis , Fatigue/physiopathology , Fatigue/etiology , Walking/physiology , Aged , Mental Fatigue/physiopathology , Mental Fatigue/diagnosis , Neurodegenerative Diseases/complications , Neurodegenerative Diseases/physiopathology , Neurodegenerative Diseases/diagnosis , Gait/physiology , Wearable Electronic Devices , Immune System Diseases/complications , Immune System Diseases/diagnosis , Adult , Accelerometry/instrumentation , Accelerometry/methods
6.
BMC Neurol ; 23(1): 58, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36737716

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is the fastest growing neurological condition worldwide. Recent theories suggest that symptoms of PD may arise due to spread of Lewy-body pathology where the process begins in the gut and propagate transynaptically via the vagus nerve to the central nervous system. In PD, gait impairments are common motor manifestations that are progressive and can appear early in the disease course. As therapies to mitigate gait impairments are limited, novel interventions targeting these and their consequences, i.e., reducing the risk of falls, are urgently needed. Non-invasive vagus nerve stimulation (nVNS) is a neuromodulation technique targeting the vagus nerve. We recently showed in a small pilot trial that a single dose of nVNS improved (decreased) discrete gait variability characteristics in those receiving active stimulation relative to those receiving sham stimulation. Further multi-dose, multi-session studies are needed to assess the safety and tolerability of the stimulation and if improvement in gait is sustained over time. DESIGN: This will be an investigator-initiated, single-site, proof-of-concept, double-blind sham-controlled randomised pilot trial in 40 people with PD. Participants will be randomly assigned on a 1:1 ratio to receive either active or sham transcutaneous cervical VNS. All participants will undergo comprehensive cognitive, autonomic and gait assessments during three sessions over 24 weeks, in addition to remote monitoring of ambulatory activity and falls, and exploratory analyses of cholinergic peripheral plasma markers. The primary outcome measure is the safety and tolerability of multi-dose nVNS in PD. Secondary outcomes include improvements in gait, cognition and autonomic function that will be summarised using descriptive statistics. DISCUSSION: This study will report on the proportion of eligible and enrolled patients, rates of eligibility and reasons for ineligibility. Adverse events will be recorded informing on the safety and device tolerability in PD. This study will additionally provide us with information for sample size calculations for future studies and evidence whether improvement in gait control is enhanced when nVNS is delivered repeatedly and sustained over time. TRIAL REGISTRATION: This trial is prospectively registered at www.isrctn.com/ISRCTN19394828 . Registered August 23, 2021.


Subject(s)
Parkinson Disease , Vagus Nerve Stimulation , Humans , Treatment Outcome , Parkinson Disease/therapy , Vagus Nerve Stimulation/adverse effects , Vagus Nerve Stimulation/methods , Gait , Disease Progression , Double-Blind Method , Randomized Controlled Trials as Topic
7.
Age Ageing ; 52(1)2023 01 08.
Article in English | MEDLINE | ID: mdl-36729471

ABSTRACT

BACKGROUND: walking is crucial for an active and healthy ageing, but the perspectives of individuals living with walking impairment are still poorly understood. OBJECTIVES: to identify and synthesise evidence describing walking as experienced by adults living with mobility-impairing health conditions and to propose an empirical conceptual framework of walking experience. METHODS: we performed a systematic review and meta-ethnography of qualitative evidence, searching seven electronic databases for records that explored personal experiences of walking in individuals living with conditions of diverse aetiology. Conditions included Parkinson's disease, multiple sclerosis, chronic obstructive pulmonary disease, hip fracture, heart failure, frailty and sarcopenia. Data were extracted, critically appraised using the NICE quality checklist and synthesised using standardised best practices. RESULTS: from 2,552 unique records, 117 were eligible. Walking experience was similar across conditions and described by seven themes: (i) becoming aware of the personal walking experience, (ii) the walking experience as a link between individuals' activities and sense of self, (iii) the physical walking experience, (iv) the mental and emotional walking experience, (v) the social walking experience, (vi) the context of the walking experience and (vii) behavioural and attitudinal adaptations resulting from the walking experience. We propose a novel conceptual framework that visually represents the walking experience, informed by the interplay between these themes. CONCLUSION: a multi-faceted and dynamic experience of walking was common across health conditions. Our conceptual framework of the walking experience provides a novel theoretical structure for patient-centred clinical practice, research and public health.


Subject(s)
Anthropology, Cultural , Walking , Humans , Qualitative Research , Anthropology, Cultural/methods
8.
J Med Internet Res ; 25: e44352, 2023 05 18.
Article in English | MEDLINE | ID: mdl-37200065

ABSTRACT

BACKGROUND: Participating in habitual physical activity (HPA) can support people with dementia and mild cognitive impairment (MCI) to maintain functional independence. Digital technology can continuously measure HPA objectively, capturing nuanced measures relating to its volume, intensity, pattern, and variability. OBJECTIVE: To understand HPA participation in people with cognitive impairment, this systematic review aims to (1) identify digital methods and protocols; (2) identify metrics used to assess HPA; (3) describe differences in HPA between people with dementia, MCI, and controls; and (4) make recommendations for measuring and reporting HPA in people with cognitive impairment. METHODS: Key search terms were input into 6 databases: Scopus, Web of Science, Psych Articles, PsychInfo, MEDLINE, and Embase. Articles were included if they included community dwellers with dementia or MCI, reported HPA metrics derived from digital technology, were published in English, and were peer reviewed. Articles were excluded if they considered populations without dementia or MCI diagnoses, were based in aged care settings, did not concern digitally derived HPA metrics, or were only concerned with physical activity interventions. Key outcomes extracted included the methods and metrics used to assess HPA and differences in HPA outcomes across the cognitive spectrum. Data were synthesized narratively. An adapted version of the National Institute of Health Quality Assessment Tool for Observational Cohort and Cross-sectional Studies was used to assess the quality of articles. Due to significant heterogeneity, a meta-analysis was not feasible. RESULTS: A total of 3394 titles were identified, with 33 articles included following the systematic review. The quality assessment suggested that studies were moderate-to-good quality. Accelerometers worn on the wrist or lower back were the most prevalent methods, while metrics relating to volume (eg, daily steps) were most common for measuring HPA. People with dementia had lower volumes, intensities, and variability with different daytime patterns of HPA than controls. Findings in people with MCI varied, but they demonstrated different patterns of HPA compared to controls. CONCLUSIONS: This review highlights limitations in the current literature, including lack of standardization in methods, protocols, and metrics; limited information on validity and acceptability of methods; lack of longitudinal research; and limited associations between HPA metrics and clinically meaningful outcomes. Limitations of this review include the exclusion of functional physical activity metrics (eg, sitting/standing) and non-English articles. Recommendations from this review include suggestions for measuring and reporting HPA in people with cognitive impairment and for future research including validation of methods, development of a core set of clinically meaningful HPA outcomes, and further investigation of socioecological factors that may influence HPA participation. TRIAL REGISTRATION: PROSPERO CRD42020216744; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=216744 .


Subject(s)
Cognitive Dysfunction , Dementia , Humans , Aged , Digital Technology , Cross-Sectional Studies , Cognitive Dysfunction/diagnosis , Reference Standards , Dementia/diagnosis
9.
J Med Internet Res ; 25: e44206, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37889531

ABSTRACT

Although the value of patient and public involvement and engagement (PPIE) activities in the development of new interventions and tools is well known, little guidance exists on how to perform these activities in a meaningful way. This is particularly true within large research consortia that target multiple objectives, include multiple patient groups, and work across many countries. Without clear guidance, there is a risk that PPIE may not capture patient opinions and needs correctly, thereby reducing the usefulness and effectiveness of new tools. Mobilise-D is an example of a large research consortium that aims to develop new digital outcome measures for real-world walking in 4 patient cohorts. Mobility is an important indicator of physical health. As such, there is potential clinical value in being able to accurately measure a person's mobility in their daily life environment to help researchers and clinicians better track changes and patterns in a person's daily life and activities. To achieve this, there is a need to create new ways of measuring walking. Recent advancements in digital technology help researchers meet this need. However, before any new measure can be used, researchers, health care professionals, and regulators need to know that the digital method is accurate and both accepted by and produces meaningful outcomes for patients and clinicians. Therefore, this paper outlines how PPIE structures were developed in the Mobilise-D consortium, providing details about the steps taken to implement PPIE, the experiences PPIE contributors had within this process, the lessons learned from the experiences, and recommendations for others who may want to do similar work in the future. The work outlined in this paper provided the Mobilise-D consortium with a foundation from which future PPIE tasks can be created and managed with clearly defined collaboration between researchers and patient representatives across Europe. This paper provides guidance on the work required to set up PPIE structures within a large consortium to promote and support the creation of meaningful and efficient PPIE related to the development of digital mobility outcomes.


Subject(s)
Digital Technology , Patient Participation , Humans , Patients , Outcome Assessment, Health Care , Europe
10.
J Neuroeng Rehabil ; 20(1): 78, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37316858

ABSTRACT

BACKGROUND: Although digital mobility outcomes (DMOs) can be readily calculated from real-world data collected with wearable devices and ad-hoc algorithms, technical validation is still required. The aim of this paper is to comparatively assess and validate DMOs estimated using real-world gait data from six different cohorts, focusing on gait sequence detection, foot initial contact detection (ICD), cadence (CAD) and stride length (SL) estimates. METHODS: Twenty healthy older adults, 20 people with Parkinson's disease, 20 with multiple sclerosis, 19 with proximal femoral fracture, 17 with chronic obstructive pulmonary disease and 12 with congestive heart failure were monitored for 2.5 h in the real-world, using a single wearable device worn on the lower back. A reference system combining inertial modules with distance sensors and pressure insoles was used for comparison of DMOs from the single wearable device. We assessed and validated three algorithms for gait sequence detection, four for ICD, three for CAD and four for SL by concurrently comparing their performances (e.g., accuracy, specificity, sensitivity, absolute and relative errors). Additionally, the effects of walking bout (WB) speed and duration on algorithm performance were investigated. RESULTS: We identified two cohort-specific top performing algorithms for gait sequence detection and CAD, and a single best for ICD and SL. Best gait sequence detection algorithms showed good performances (sensitivity > 0.73, positive predictive values > 0.75, specificity > 0.95, accuracy > 0.94). ICD and CAD algorithms presented excellent results, with sensitivity > 0.79, positive predictive values > 0.89 and relative errors < 11% for ICD and < 8.5% for CAD. The best identified SL algorithm showed lower performances than other DMOs (absolute error < 0.21 m). Lower performances across all DMOs were found for the cohort with most severe gait impairments (proximal femoral fracture). Algorithms' performances were lower for short walking bouts; slower gait speeds (< 0.5 m/s) resulted in reduced performance of the CAD and SL algorithms. CONCLUSIONS: Overall, the identified algorithms enabled a robust estimation of key DMOs. Our findings showed that the choice of algorithm for estimation of gait sequence detection and CAD should be cohort-specific (e.g., slow walkers and with gait impairments). Short walking bout length and slow walking speed worsened algorithms' performances. Trial registration ISRCTN - 12246987.


Subject(s)
Digital Technology , Proximal Femoral Fractures , Humans , Aged , Gait , Walking , Walking Speed , Physical Therapy Modalities
11.
Sensors (Basel) ; 23(15)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37571703

ABSTRACT

Gait speed declines with age and slower walking speeds are associated with poor health outcomes. Understanding why we do not walk faster as we age, despite being able to, has implications for rehabilitation. Changes in regional oxygenated haemoglobin (HbO2) across the frontal lobe were monitored using functional near infrared spectroscopy in 17 young and 18 older adults while they walked on a treadmill for 5 min, alternating between 30 s of walking at a preferred and fast (120% preferred) speed. Gait was quantified using a triaxial accelerometer (lower back). Differences between task (preferred/fast) and group (young/old) and associations between regional HbO2 and gait were evaluated. Paired tests indicated increased HbO2 in the supplementary motor area (right) and primary motor cortex (left and right) in older adults when walking fast (p < 0.006). HbO2 did not significantly change in the young when walking fast, despite both groups modulating gait. When evaluating the effect of age (linear mixed effects model), greater increases in HbO2 were observed for older adults when walking fast (prefrontal cortex, premotor cortex, supplementary motor area and primary motor cortex) compared to young adults. In older adults, increased step length and reduced step length variability were associated with larger increases in HbO2 across multiple regions when walking fast. Walking fast required increased activation of motor regions in older adults, which may serve as a therapeutic target for rehabilitation. Widespread increases in HbO2 across the frontal cortex highlight that walking fast represents a resource-intensive task as we age.


Subject(s)
Motor Cortex , Walking Speed , Aged , Humans , Young Adult , Gait/physiology , Oxyhemoglobins , Spectroscopy, Near-Infrared/methods , Walking/physiology , Walking Speed/physiology
12.
Sensors (Basel) ; 23(21)2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37960674

ABSTRACT

Accurate and reliable measurement of real-world walking activity is clinically relevant, particularly for people with mobility difficulties. Insights on walking can help understand mobility function, disease progression, and fall risks. People living in long-term residential care environments have heterogeneous and often pathological walking patterns, making it difficult for conventional algorithms paired with wearable sensors to detect their walking activity. We designed two walking bout detection algorithms for people living in long-term residential care. Both algorithms used thresholds on the magnitude of acceleration from a 3-axis accelerometer on the lower back to classify data as "walking" or "non-walking". One algorithm had generic thresholds, whereas the other used personalized thresholds. To validate and evaluate the algorithms, we compared the classifications of walking/non-walking from our algorithms to the real-time research assistant annotated labels and the classification output from an algorithm validated on a healthy population. Both the generic and personalized algorithms had acceptable accuracy (0.83 and 0.82, respectively). The personalized algorithm showed the highest specificity (0.84) of all tested algorithms, meaning it was the best suited to determine input data for gait characteristic extraction. The developed algorithms were almost 60% quicker than the previously developed algorithms, suggesting they are adaptable for real-time processing.


Subject(s)
Gait , Walking , Humans , Algorithms , Acceleration , Accelerometry
13.
Mov Disord ; 37(6): 1222-1234, 2022 06.
Article in English | MEDLINE | ID: mdl-35285068

ABSTRACT

BACKGROUND: Gait impairments are characteristic motor manifestations and significant predictors of poor quality of life in Parkinson's disease (PD). Neuroimaging biomarkers for gait impairments in PD could facilitate effective interventions to improve these symptoms and are highly warranted. OBJECTIVE: The aim of this study was to identify neural networks of discrete gait impairments in PD. METHODS: Fifty-five participants with early-stage PD and 20 age-matched healthy volunteers underwent quantitative gait assessment deriving 12 discrete spatiotemporal gait characteristics and [18 F]-2-fluoro-2-deoxyglucose-positron emission tomography measuring resting cerebral glucose metabolism. A multivariate spatial covariance approach was used to identify metabolic brain networks that were related to discrete gait characteristics in PD. RESULTS: In PD, we identified two metabolic gait-related covariance networks. The first correlated with mean step velocity and mean step length (pace gait network), which involved relatively increased and decreased metabolism in frontal cortices, including the dorsolateral prefrontal and orbital frontal, insula, supplementary motor area, ventrolateral thalamus, cerebellum, and cuneus. The second correlated with swing time variability and step time variability (temporal variability gait network), which included relatively increased and decreased metabolism in sensorimotor, superior parietal cortex, basal ganglia, insula, hippocampus, red nucleus, and mediodorsal thalamus. Expression of both networks was significantly elevated in participants with PD relative to healthy volunteers and were not related to levodopa dosage or motor severity. CONCLUSIONS: We have identified two novel gait-related brain networks of altered glucose metabolism at rest. These gait networks could serve as a potential neuroimaging biomarker of gait impairments in PD and facilitate development of therapeutic strategies for these disabling symptoms. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Gait , Glucose , Humans , Levodopa/therapeutic use , Magnetic Resonance Imaging/methods , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Parkinson Disease/drug therapy , Quality of Life
14.
J Geriatr Psychiatry Neurol ; 35(4): 613-621, 2022 07.
Article in English | MEDLINE | ID: mdl-34235999

ABSTRACT

BACKGROUND: Pain in Parkinson's is problematic but under treated in clinical practice. Healthcare professionals must understand the impact of pain in Parkinson's and patient preferences for management. OBJECTIVE: To understand the impact of pain in Parkinson's and to understand current management and preferences for pain management. METHODS: We conducted a national survey with 115 people with Parkinson's (PwP) and 10 carers. Both closed and open questions were used. The questions focused on how pain affected the individual, healthcare professional involvement in supporting pain management, current pain management strategies and views on future pain management interventions. We used descriptive statistics to summarize closed responses and thematic analysis to summarize open question responses. RESULTS: 70% of participants reported pain impacted their daily life. Pain had a multifactorial impact on participants, affecting movement, mood and quality of life. Improved pain management was viewed to have the potential to address each of these challenges. Pain affected a number of different sites, with low back pain and multiple sites being most frequently reported. Exercise was the most frequently noted strategy (38%) recommended by healthcare professionals for pain management. PwP would value involvement from healthcare professionals for future pain management, but also would like to self-manage the condition. Medication was not suggested as a first line strategy. CONCLUSIONS: Despite reporting engagement in some strategies to manage pain, pain still has a wide-ranging impact on the daily life of PwP. Results from this survey highlight the need to better support PwP to manage the impact of pain.


Subject(s)
Caregivers , Parkinson Disease , Humans , Pain , Parkinson Disease/complications , Parkinson Disease/therapy , Quality of Life , Surveys and Questionnaires
15.
Age Ageing ; 51(2)2022 02 02.
Article in English | MEDLINE | ID: mdl-35150587

ABSTRACT

Sarcopenia is a generalised skeletal muscle disorder characterised by reduced muscle strength and mass and associated with a range of negative health outcomes. Currently, resistance exercise (RE) is recommended as the first-line treatment for counteracting the deleterious consequences of sarcopenia in older adults. However, whilst there is considerable evidence demonstrating that RE is an effective intervention for improving muscle strength and function in healthy older adults, much less is known about its benefits in older people living with sarcopenia. Furthermore, evidence for its optimal prescription and delivery is very limited and any potential benefits of RE are unlikely to be realised in the absence of an appropriate exercise dose. We provide a summary of the underlying principles of effective RE prescription (specificity, overload and progression) and discuss the main variables (training frequency, exercise selection, exercise intensity, exercise volume and rest periods) that can be manipulated when designing RE programmes. Following this, we propose that an RE programme that consists of two exercise sessions per week and involves a combination of upper- and lower-body exercises performed with a relatively high degree of effort for 1-3 sets of 6-12 repetitions is appropriate as a treatment for sarcopenia. The principles of RE prescription outlined here and the proposed RE programme presented in this paper provide a useful resource for clinicians and exercise practitioners treating older adults with sarcopenia and will also be of value to researchers for standardising approaches to RE interventions in future sarcopenia studies.


Subject(s)
Resistance Training , Sarcopenia , Aged , Humans , Muscle Strength/physiology , Muscle, Skeletal , Prescriptions , Sarcopenia/therapy
16.
Age Ageing ; 51(1)2022 01 06.
Article in English | MEDLINE | ID: mdl-35077553

ABSTRACT

BACKGROUND: Mobility is defined as the ability to independently move around the environment and is a key contributor to quality of life, especially in older age. The aim of this study was to evaluate the use of mobility as a decisive outcome for the marketing authorisation of drugs by the European Medicines Agency (EMA). METHODS: Fifteen therapeutic areas which commonly lead to relevant mobility impairments and alter the quantity and/or the quality of walking were selected: two systemic neurological diseases, four conditions primarily affecting exercise capacity, seven musculoskeletal diseases and two conditions representing sensory impairments. European Public Assessment Reports (EPARs) published by the EMA until September 2020 were examined for mobility endpoints included in their 'main studies'. Clinical study registries and primary scientific publications for these studies were also reviewed. RESULTS: Four hundred and eighty-four EPARs yielded 186 relevant documents with 402 'main studies'. The EPARs reported 153 primary and 584 secondary endpoints which considered mobility; 70 different assessment tools (38 patient-reported outcomes, 13 clinician-reported outcomes, 8 performance outcomes and 13 composite endpoints) were used. Only 15.7% of those tools distinctly informed on patients' mobility status. Out of 402, 105 (26.1%) of the 'main studies' did not have any mobility assessment. Furthermore, none of these studies included a digital mobility outcome. CONCLUSIONS: For conditions with a high impact on mobility, mobility assessment was given little consideration in the marketing authorisation of drugs by the EMA. Where mobility impairment was considered to be a relevant outcome, questionnaires or composite scores susceptible to reporting biases were predominantly used.


Subject(s)
Drug Approval , Pharmaceutical Preparations , Aged , Humans , Marketing , Quality of Life
17.
J Neuroeng Rehabil ; 19(1): 141, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36522646

ABSTRACT

BACKGROUND: Measuring mobility in daily life entails dealing with confounding factors arising from multiple sources, including pathological characteristics, patient specific walking strategies, environment/context, and purpose of the task. The primary aim of this study is to propose and validate a protocol for simulating real-world gait accounting for all these factors within a single set of observations, while ensuring minimisation of participant burden and safety. METHODS: The protocol included eight motor tasks at varying speed, incline/steps, surface, path shape, cognitive demand, and included postures that may abruptly alter the participants' strategy of walking. It was deployed in a convenience sample of 108 participants recruited from six cohorts that included older healthy adults (HA) and participants with potentially altered mobility due to Parkinson's disease (PD), multiple sclerosis (MS), proximal femoral fracture (PFF), chronic obstructive pulmonary disease (COPD) or congestive heart failure (CHF). A novelty introduced in the protocol was the tiered approach to increase difficulty both within the same task (e.g., by allowing use of aids or armrests) and across tasks. RESULTS: The protocol proved to be safe and feasible (all participants could complete it and no adverse events were recorded) and the addition of the more complex tasks allowed a much greater spread in walking speeds to be achieved compared to standard straight walking trials. Furthermore, it allowed a representation of a variety of daily life relevant mobility aspects and can therefore be used for the validation of monitoring devices used in real life. CONCLUSIONS: The protocol allowed for measuring gait in a variety of pathological conditions suggests that it can also be used to detect changes in gait due to, for example, the onset or progression of a disease, or due to therapy. TRIAL REGISTRATION: ISRCTN-12246987.


Subject(s)
Gait , Parkinson Disease , Adult , Humans , Walking , Walking Speed , Research Design
18.
Sensors (Basel) ; 22(3)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35161617

ABSTRACT

Participating in habitual physical activity (HPA) may slow onset of dependency and disability for people with Parkinson's disease (PwP). While cognitive and physical determinants of HPA are well understood, psychosocial influences are not. This pilot study aimed to identify psychosocial factors associated with HPA to guide future intervention development. Sixty-four PwP participated in this study; forty had carer informants. PwP participants wore a tri-axial accelerometer on the lower back continuously for seven days at two timepoints (18 months apart), measuring volume, pattern and variability of HPA. Linear mixed effects analysis identified relationships between demographic, clinical and psychosocial data and HPA from baseline to 18 months. Key results in PwP with carers indicated that carer anxiety and depression were associated with increased HPA volume (p < 0.01), while poorer carer self-care was associated with reduced volume of HPA over 18 months (p < 0.01). Greater carer strain was associated with taking longer walking bouts after 18 months (p < 0.01). Greater carer depression was associated with lower variability of HPA cross-sectionally (p = 0.009). This pilot study provides preliminary novel evidence that psychosocial outcomes from PwP's carers may impact HPA in Parkinson's disease. Interventions to improve HPA could target both PwP and carers and consider approaches that also support psychosocial wellbeing.


Subject(s)
Caregivers , Parkinson Disease , Exercise , Humans , Pilot Projects , Quality of Life
19.
Mov Disord ; 36(1): 76-82, 2021 01.
Article in English | MEDLINE | ID: mdl-33191498

ABSTRACT

Many disease symptoms restrict the quality of life of the affected. This usually occurs indirectly, at least in most neurological diseases. Here, impaired daily function is interposed between the symptoms and the reduced quality of life. This is reflected in the International Classification of Function, Disability and Health model published by the World Health Organization in 2001. This correlation between symptom, daily function, and quality of life makes it clear that to evaluate the success of a therapy and develop new therapies, daily function must also be evaluated as accurately as possible. However, daily function is a complex construct and therefore difficult to quantify. To date, daily function has been measured primarily by capacity (clinical assessments) and perception (surveys and patient-reported outcomes) assessment approaches. Now, daily function can be captured in a new dimension, that is, performance, through new digital technologies that can be used in the home environment of patients. This viewpoint discusses the differences and interdependencies of capacity, perception, and performance assessment types using the example of Parkinson's disease. Options regarding how future study protocols should be designed to get the most comprehensive and validated picture of daily function in patients are presented. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Disabled Persons , Parkinson Disease , Activities of Daily Living , Humans , Perception , Quality of Life , Surveys and Questionnaires
20.
Mov Disord ; 36(3): 611-621, 2021 03.
Article in English | MEDLINE | ID: mdl-33382126

ABSTRACT

BACKGROUND: Gait disturbance is an early, disabling feature of Parkinson's disease (PD) that is typically refractory to dopaminergic medication. The cortical cholinergic system, originating in the nucleus basalis of Meynert of the basal forebrain, has been implicated. However, it is not known if degeneration in this region relates to a worsening of disease-specific gait impairment. OBJECTIVE: To evaluate associations between sub-regional cholinergic basal forebrain volumes and longitudinal progression of gait impairment in PD. METHODS: 99 PD participants and 47 control participants completed gait assessments via an instrumented walkway during 2 minutes of continuous walking, at baseline and for up to 3 years, from which 16 spatiotemporal characteristics were derived. Sub-regional cholinergic basal forebrain volumes were measured at baseline via MRI and a regional map derived from post-mortem histology. Univariate analyses evaluated cross-sectional associations between sub-regional volumes and gait. Linear mixed-effects models assessed whether volumes predicted longitudinal gait changes. RESULTS: There were no cross-sectional, age-independent relationships between sub-regional volumes and gait. However, nucleus basalis of Meynert volumes predicted longitudinal gait changes unique to PD. Specifically, smaller nucleus basalis of Meynert volume predicted increasing step time variability (P = 0.019) and shortening swing time (P = 0.015); smaller posterior nucleus portions predicted shortening step length (P = 0.007) and increasing step time variability (P = 0.041). CONCLUSIONS: This is the first study to demonstrate that degeneration of the cortical cholinergic system predicts longitudinal progression of gait impairments in PD. Measures of this degeneration may therefore provide a novel biomarker for identifying future mobility loss and falls. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Basal Forebrain , Parkinson Disease , Basal Forebrain/diagnostic imaging , Cholinergic Agents , Cross-Sectional Studies , Gait , Humans , Parkinson Disease/complications
SELECTION OF CITATIONS
SEARCH DETAIL