Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
NPJ Vaccines ; 9(1): 48, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413645

ABSTRACT

Age is associated with reduced efficacy of vaccines and linked to higher risk of severe COVID-19. Here we determined the impact of ageing on the efficacy of a SARS-CoV-2 vaccine based on a stabilised Spike glycoprotein (S-29) that had previously shown high efficacy in young animals. Thirteen to 18-month-old golden Syrian hamsters (GSH) and 22-23-month-old K18-hCAE2 mice were immunised twice with S-29 protein in AddaVaxTM adjuvant. GSH were intranasally inoculated with SARS-CoV-2 either two weeks or four months after the booster dose, while all K18-hACE2 mice were intranasally inoculated two weeks after the second immunisation. Body weight and clinical signs were recorded daily post-inoculation. Lesions and viral load were investigated in different target tissues. Immunisation induced seroconversion and production of neutralising antibodies; however, animals were only partially protected from weight loss. We observed a significant reduction in the amount of viral RNA and a faster viral protein clearance in the tissues of immunized animals. Infectious particles showed a faster decay in vaccinated animals while tissue lesion development was not altered. In GSH, the shortest interval between immunisation and inoculation reduced RNA levels in the lungs, while the longest interval was equally effective in reducing RNA in nasal turbinates; viral nucleoprotein amount decreased in both tissues. In mice, immunisation was able to improve the survival of infected animals. Despite the high protection shown in young animals, S-29 efficacy was reduced in the geriatric population. Our research highlights the importance of testing vaccine efficacy in older animals as part of preclinical vaccine evaluation.

2.
Nat Commun ; 15(1): 2349, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38514609

ABSTRACT

Safe and effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are crucial to fight against the coronavirus disease 2019 pandemic. Most vaccines are based on a mutated version of the Spike glycoprotein [K986P/V987P (S-2P)] with improved stability, yield and immunogenicity. However, S-2P is still produced at low levels. Here, we describe the V987H mutation that increases by two-fold the production of the recombinant Spike and the exposure of the receptor binding domain (RBD). S-V987H immunogenicity is similar to S-2P in mice and golden Syrian hamsters (GSH), and superior to a monomeric RBD. S-V987H immunization confer full protection against severe disease in K18-hACE2 mice and GSH upon SARS-CoV-2 challenge (D614G or B.1.351 variants). Furthermore, S-V987H immunized K18-hACE2 mice show a faster tissue viral clearance than RBD- or S-2P-vaccinated animals challenged with D614G, B.1.351 or Omicron BQ1.1 variants. Thus, S-V987H protein might be considered for future SARS-CoV-2 vaccines development.


Subject(s)
COVID-19 , Melphalan , SARS-CoV-2 , gamma-Globulins , Cricetinae , Animals , Humans , Mice , Mesocricetus , COVID-19 Vaccines , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/genetics , Immunization , Glycoproteins , Antibodies, Neutralizing , Antibodies, Viral
3.
EMBO J ; 28(4): 326-36, 2009 Feb 18.
Article in English | MEDLINE | ID: mdl-19153600

ABSTRACT

For efficient transcription, RNA PolII must overcome the presence of nucleosomes. The p38-related MAPK Hog1 is an important regulator of transcription upon osmostress in yeast and thereby it is involved in initiation and elongation. However, the role of this protein kinase in elongation has remained unclear. Here, we show that during stress there is a dramatic change in the nucleosome organization of stress-responsive loci that depends on Hog1 and the RSC chromatin remodelling complex. Upon stress, the MAPK Hog1 physically interacts with RSC to direct its association with the ORF of osmo-responsive genes. In RSC mutants, PolII accumulates on stress promoters but not in coding regions. RSC mutants also display reduced stress gene expression and enhanced sensitivity to osmostress. Cell survival under acute osmostress might thus depend on a burst of transcription that in turn could occur only with efficient nucleosome eviction. Our results suggest that the selective targeting of the RSC complex by Hog1 provides the necessary mechanistic basis for this event.


Subject(s)
Chromatin/chemistry , DNA-Directed RNA Polymerases/metabolism , MAP Kinase Signaling System , Mitogen-Activated Protein Kinases/physiology , Mutation , Saccharomyces cerevisiae Proteins/physiology , Saccharomyces cerevisiae/metabolism , Cell Survival , Chromatin/metabolism , Gene Expression Regulation, Fungal , Histones/metabolism , Mitogen-Activated Protein Kinases/metabolism , Models, Biological , Nucleosomes/metabolism , Open Reading Frames , Plasmids/metabolism , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae Proteins/metabolism , Spheroplasts/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
4.
NPJ Vaccines ; 8(1): 51, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37024469

ABSTRACT

Antigen display on the surface of Virus-Like Particles (VLPs) improves immunogenicity compared to soluble proteins. We hypothesised that immune responses can be further improved by increasing the antigen density on the surface of VLPs. In this work, we report an HIV-1 Gag-based VLP platform engineered to maximise the presence of antigen on the VLP surface. An HIV-1 gp41-derived protein (Min), including the C-terminal part of gp41 and the transmembrane domain, was fused to HIV-1 Gag. This resulted in high-density MinGag-VLPs. These VLPs demonstrated to be highly immunogenic in animal models using either a homologous (VLP) or heterologous (DNA/VLP) vaccination regimen, with the latter yielding 10-fold higher anti-Gag and anti-Min antibody titres. Despite these strong humoral responses, immunisation with MinGag-VLPs did not induce neutralising antibodies. Nevertheless, antibodies were predominantly of an IgG2b/IgG2c profile and could efficiently bind CD16-2. Furthermore, we demonstrated that MinGag-VLP vaccination could mediate a functional effect and halt the progression of a Min-expressing tumour cell line in an in vivo mouse model.

5.
Front Immunol ; 14: 1291972, 2023.
Article in English | MEDLINE | ID: mdl-38124756

ABSTRACT

Most COVID-19 vaccines are based on the SARS-CoV-2 Spike glycoprotein (S) or their subunits. However, S shows some structural instability that limits its immunogenicity and production, hampering the development of recombinant S-based vaccines. The introduction of the K986P and V987P (S-2P) mutations increases the production and immunogenicity of the recombinant S trimer, suggesting that these two parameters are related. Nevertheless, S-2P still shows some molecular instability and it is produced with low yield. Here we described a novel set of mutations identified by molecular modeling and located in the S2 region of the S-2P that increase its production up to five-fold. Besides their immunogenicity, the efficacy of two representative S-2P-based mutants, S-29 and S-21, protecting from a heterologous SARS-CoV-2 Beta variant challenge was assayed in K18-hACE2 mice (an animal model of severe SARS-CoV-2 disease) and golden Syrian hamsters (GSH) (a moderate disease model). S-21 induced higher level of WH1 and Delta variants neutralizing antibodies than S-2P in K18-hACE2 mice three days after challenge. Viral load in nasal turbinate and oropharyngeal samples were reduced in S-21 and S-29 vaccinated mice. Despite that, only the S-29 protein protected 100% of K18-hACE2 mice from severe disease. When GSH were analyzed, all immunized animals were protected from disease development irrespectively of the immunogen they received. Therefore, the higher yield of S-29, as well as its improved immunogenicity and efficacy protecting from the highly pathogenic SARS-CoV-2 Beta variant, pinpoint the S-29 mutant as an alternative to the S-2P protein for future SARS-CoV-2 vaccine development.


Subject(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animals , Humans , Mice , SARS-CoV-2/genetics , Mesocricetus , COVID-19/prevention & control , COVID-19 Vaccines
6.
Front Immunol ; 13: 860215, 2022.
Article in English | MEDLINE | ID: mdl-35572570

ABSTRACT

Background: Evidence on the determinants of the magnitude of humoral responses and neutralizing titers in individuals with mild COVID-19 is scarce. Methods: In this cohort study of mild COVID-19 patients, we assessed viral load (VL) by RT-qPCR at two/three time points during acute infection, and anti-SARS-CoV-2 antibodies by ELISA and plasma neutralizing responses using a pseudovirus assay at day 60. Results: Seventy-one individuals (65% female, median 42 years old) were recruited and grouped into high viral load (VL) >7.5 Log10 copies/mL (n=20), low, VL ≤7.5 Log10 copies/mL (n=22), or as Non-early seroconverters with a positive PCR (n=20), and healthy individuals with a negative PCR (n=9). Individuals with high or low VL showed similar titers of total neutralizing antibodies at day 60, irrespective of maximal VL or viral dynamics. Non-early seroconverters had lower antibody titers on day 60, albeit similar neutralizing activity as the groups with high or low VL. Longer symptom duration and older age were independently associated with increased humoral responses. Conclusions: In mild SARS-CoV-2-infected individuals, the duration of symptoms and age (but not VL) contribute to higher humoral responses.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Neutralizing , Antibodies, Viral , Cohort Studies , Female , Humans , Male
7.
iScience ; 25(11): 105455, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36320330

ABSTRACT

Mass vaccination campaigns reduced COVID-19 incidence and severity. Here, we evaluated the immune responses developed in SARS-CoV-2-uninfected patients with predominantly antibody-deficiencies (PAD) after three mRNA-1273 vaccine doses. PAD patients were classified based on their immunodeficiency: unclassified primary antibody-deficiency (unPAD, n = 9), common variable immunodeficiency (CVID, n = 12), combined immunodeficiency (CID, n = 1), and thymoma with immunodeficiency (TID, n = 1). unPAD patients and healthy controls (HCs, n = 10) developed similar vaccine-induced humoral responses after two doses. However, CVID patients showed reduced binding and neutralizing titers compared to HCs. Of interest, these PAD groups showed lower levels of Spike-specific IFN-γ-producing cells. CVID individuals also presented diminished CD8+T cells. CID and TID patients developed cellular but not humoral responses. Although the third vaccine dose boosted humoral responses in most PAD patients, it had limited effect on expanding cellular immunity. Vaccine-induced immune responses in PAD individuals are heterogeneous, and should be immunomonitored to define a personalized therapeutic strategies.

8.
Front Immunol ; 12: 666545, 2021.
Article in English | MEDLINE | ID: mdl-33968069

ABSTRACT

In genetically prone individuals, chronic immune activation may lead to expansion of autoreactive lymphocyte clones that can induce organ damage developing autoimmune disorders. Sjögren's Syndrome (SjS) is a systemic chronic autoimmune disease that primarily affects exocrine glands. Despite the accumulated evidences of profound B-cell alterations of humoral immunity, the repertoire and development of B-cell autoreactivity in SjS remains to be determined. We hypothesize that SjS mice will have an increased frequency of self-reactive B cells with a progressive evolution to antigen-driven oligoclonality. Here, we study the B cell repertoire of NOD.H-2h4 mice, a mouse model of spontaneous autoimmunity mimicking SjS without developing diabetes. A library of 168 hybridomas from NOD.H-2h4 mice and 186 C57BL/6J splenocytes at different ages was created. The presence of mono or polyreactive autoantibodies to several antigens was evaluated by ELISA, and their staining patterns and cellular reactivity were tested by IFA and FACS. We observed a higher frequency of autoreactivity among B-cell clones from NOD.H-2h4 mice as compared to wild-type mice. The presence of polyreactive and autoreactive IgG clones increased with mice age. Strikingly, all anti-Ro52 autoantibodies were polyreactive. No loss of polyreactivity was observed upon antibody class switching to IgG. There was a progression to oligoclonality in IgG B cells with mice aging. Our results indicate that in the NOD.H-2h4 mouse model of SjS, IgG+ B cells are mainly polyreactive and might expand following an unknown antigen-driven positive selection process.


Subject(s)
Autoimmunity , B-Lymphocytes/metabolism , Salivary Glands/pathology , Sjogren's Syndrome/immunology , Animals , Autoantibodies/immunology , Autoantigens/immunology , Disease Models, Animal , Female , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred NOD
9.
Life Sci Alliance ; 4(9)2021 09.
Article in English | MEDLINE | ID: mdl-34321327

ABSTRACT

The use of high-dose of intravenous immunoglobulins (IVIGs) as immunomodulators for the treatment of COVID-19-affected individuals has shown promising results. IVIG reduced inflammation in these patients, who progressively restored respiratory function. However, little is known about how they may modulate immune responses in COVID-19 individuals. Here, we have analyzed the levels of 41 inflammatory biomarkers in plasma samples obtained at day 0 (pretreatment initiation), 3, 7, and 14 from five hospitalized COVID-19 patients treated with a 5-d course of 400 mg/kg/d of IVIG. The plasmatic levels of several cytokines (Tumor Necrosis Factor, IL-10, IL-5, and IL-7), chemokines (macrophage inflammatory protein-1α), growth/tissue repairing factors (hepatic growth factor), complement activation (C5a), and intestinal damage such as Fatty acid-binding protein 2 and LPS-binding protein showed a progressive decreasing trend during the next 2 wk after treatment initiation. This trend was not observed in IVIG-untreated COVID-19 patients. Thus, the administration of high-dose IVIG to hospitalized COVID-19 patients may improve their clinical evolution by modulating their hyperinflammatory and immunosuppressive status.


Subject(s)
COVID-19/therapy , Immunoglobulins, Intravenous/therapeutic use , Administration, Intravenous , Adult , Aged , Biomarkers/blood , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Chemokines/blood , Cytokines/blood , Female , Humans , Immunity/immunology , Immunoglobulins/immunology , Immunoglobulins/therapeutic use , Immunoglobulins, Intravenous/immunology , Inflammation/blood , Inflammation/therapy , Inflammation/virology , Male , Middle Aged , SARS-CoV-2/isolation & purification
10.
Emerg Microbes Infect ; 10(1): 797-809, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33825619

ABSTRACT

Reinfections with SARS-CoV-2 have already been documented in humans, although its real incidence is currently unknown. Besides having a great impact on public health, this phenomenon raises the question of immunity generated by a single infection is sufficient to provide sterilizing/protective immunity to a subsequent SARS-CoV-2 re-exposure. The Golden Syrian hamster is a manageable animal model to explore immunological mechanisms able to counteract COVID-19, as it recapitulates pathological aspects of mild to moderately affected patients. Here, we report that SARS-CoV-2-inoculated hamsters resolve infection in the upper and lower respiratory tracts within seven days upon inoculation with the Cat01 (G614) SARS-CoV-2 isolate. Three weeks after the primary challenge, and despite high titres of neutralizing antibodies, half of the animals were susceptible to reinfection by both identical (Cat01, G614) and variant (WA/1, D614) SARS-CoV-2 isolates. However, upon re-inoculation, only nasal tissues were transiently infected with much lower viral replication than those observed after the first inoculation. These data indicate that a primary SARS-CoV-2 infection is not sufficient to elicit a sterilizing immunity in hamster models but protects against lung disease.


Subject(s)
COVID-19/immunology , COVID-19/virology , Host-Pathogen Interactions/immunology , Reinfection/virology , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/diagnosis , COVID-19/pathology , Cell Line , Cricetinae , Disease Models, Animal , Female , Humans , Immunity, Humoral , Immunohistochemistry , Male , Neutralization Tests , SARS-CoV-2/genetics , Viral Load , Virus Replication
11.
Transbound Emerg Dis ; 68(4): 1721-1725, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33007154

ABSTRACT

Conventional piglets were inoculated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through different routes, including intranasal, intratracheal, intramuscular and intravenous ones. Although piglets were not susceptible to SARS-CoV-2 and lacked lesions or viral RNA in tissues/swabs, seroconversion was observed in pigs inoculated parenterally (intramuscularly or intravenously).


Subject(s)
COVID-19 , Swine Diseases , Animals , COVID-19/veterinary , Disease Models, Animal , Disease Susceptibility/veterinary , RNA, Viral , SARS-CoV-2 , Swine , Swine Diseases/virology
12.
Med ; 2(3): 313-320.e4, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33554155

ABSTRACT

BACKGROUND: Understanding mid-term kinetics of immunity to SARS-CoV-2 is the cornerstone for public health control of the pandemic and vaccine development. However, current evidence is rather based on limited measurements, losing sight of the temporal pattern of these changes. METHODS: We conducted a longitudinal analysis on a prospective cohort of COVID-19 patients followed up for >6 months. Neutralizing activity was evaluated using HIV reporter pseudoviruses expressing SARS-CoV-2 S protein. IgG antibody titer was evaluated by ELISA against the S2 subunit, the receptor binding domain (RBD), and the nucleoprotein (NP). Statistical analyses were carried out using mixed-effects models. FINDINGS: We found that individuals with mild or asymptomatic infection experienced an insignificant decay in neutralizing activity, which persisted 6 months after symptom onset or diagnosis. Hospitalized individuals showed higher neutralizing titers, which decreased following a 2-phase pattern, with an initial rapid decline that significantly slowed after day 80. Despite this initial decay, neutralizing activity at 6 months remained higher among hospitalized individuals compared to mild symptomatic. The slow decline in neutralizing activity at mid-term contrasted with the steep slope of anti-RBD, S2, or NP antibody titers, all of them showing a constant decline over the follow-up period. CONCLUSIONS: Our results reinforce the hypothesis that the quality of the neutralizing immune response against SARS-CoV-2 evolves over the post-convalescent stage.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Antibodies, Viral , Humans , Prospective Studies , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
13.
Sci Rep ; 11(1): 2608, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33510275

ABSTRACT

The protective effect of neutralizing antibodies in SARS-CoV-2 infected individuals is not yet well defined. To address this issue, we have analyzed the kinetics of neutralizing antibody responses and their association with disease severity. Between March and May 2020, the prospective KING study enrolled 72 COVID-19+ participants grouped according to disease severity. SARS-CoV-2 infection was diagnosed by serological and virological tests. Plasma neutralizing responses were assessed against replicative virus and pseudoviral particles. Multiple regression and non-parametric tests were used to analyze dependence of parameters. The magnitude of neutralizing titers significantly increased with disease severity. Hospitalized individuals developed higher titers compared to mild-symptomatic and asymptomatic individuals, which together showed titers below the detection limit in 50% of cases. Longitudinal analysis confirmed the strong differences in neutralizing titers between non-hospitalized and hospitalized participants and showed rapid kinetics of appearance of neutralizing antibodies (50% and 80% of maximal activity reached after 11 and 17 days after symptoms onset, respectively) in hospitalized patients. No significant impact of age, gender or treatment on the neutralizing titers was observed in this limited cohort. These data identify a clear association of humoral immunity with disease severity and point to immune mechanisms other than antibodies as relevant players in COVID-19 protection.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Adaptive Immunity/immunology , Adult , Antibodies, Neutralizing/blood , COVID-19/blood , Cohort Studies , Female , Humans , Immunity, Humoral/immunology , Immunoglobulin G/blood , Male , Middle Aged , Prospective Studies , Severity of Illness Index , Spain/epidemiology
14.
Open Forum Infect Dis ; 8(7): ofab329, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34337095

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfections have been reported; however, most cases are milder than the primary infection. We report the first case of a life-threatening critical presentation of a SARS-CoV-2 reinfection. METHODS: A 62-year-old man from Palamós (Spain) suffered a first mild coronavirus disease 2019 (COVID-19) episode in March 2020, confirmed by 2 independent SARS-CoV-2 nasopharyngeal polymerase chain reaction (PCR) assays and a normal radiograph. He recovered completely and tested negative on 2 consecutive PCRs. In August 2020, the patient developed a second SARS-CoV-2 infection with life-threatening bilateral pneumonia and Acute respiratory distress syndrome criteria, requiring COVID-19-specific treatment (remdesivir + dexamethasone) plus high-flow oxygen therapy. Nasopharyngeal swabs from the second episode were obtained for virus quantification by real-time PCR, for virus outgrowth and sequencing. In addition, plasma and peripheral blood mononuclear cells during the hospitalization period were used to determine SARS-CoV-2-specific humoral and T-cell responses. RESULTS: Genomic analysis of SARS-CoV-2 showed that the virus had probably originated shortly before symptom onset. When the reinfection occurred, the subject showed a weak immune response, with marginal humoral and specific T-cell responses against SARS-CoV-2. All antibody isotypes tested as well as SARS-CoV-2 neutralizing antibodies increased sharply after day 8 postsymptoms. A slight increase of T-cell responses was observed at day 19 after symptom onset. CONCLUSIONS: The reinfection was firmly documented and occurred in the absence of robust preexisting humoral and cellular immunity. SARS-CoV-2 immunity in some subjects is unprotective and/or short-lived; therefore, SARS-CoV-2 vaccine schedules inducing long-term immunity will be required to bring the pandemic under control.

15.
Front Immunol ; 11: 614319, 2020.
Article in English | MEDLINE | ID: mdl-33519823

ABSTRACT

Primary HIV infection (PHI) and subsequent chronic infection alter B-cell compartment. However, longitudinal analysis defining the dynamics of B-cell alterations are still limited. We longitudinally studied B-cell subsets in individuals followed for 1 year after PHI (n = 40). Treated and untreated chronic HIV infected (n = 56) and HIV-uninfected individuals (n = 58) were recruited as reference groups at the Manhiça District in Mozambique. B cells were analyzed by multicolor flow-cytometry. Anti-HIV humoral response and plasma cytokines were assessed by ELISA or Luminex-based technology. A generalized activation of B cells induced by HIV occurs early after infection and is characterized by increases in Activated and Tissue-like memory cells, decreases in IgM-IgD- (switched) and IgM-only B cells. These alterations remain mostly stable until chronic infection and are reverted in part by ART. In contrast, other parameters followed particular dynamics: PD-1 expression in memory cells decreases progressively during the first year of infection, Transitional B cells expand at month 3-4 after infection, and Marginal zone-like B cells show a late depletion. Plasmablasts expand 2 months after infection linked to plasma viral load and anti-p24 IgG3 responses. Most of well-defined changes induced by HIV in B-cell activation and memory subsets are readily observed after PHI, lasting until ART initiation. However, subsequent changes occur after sustained viral infection. These data indicate that HIV infection impacts B cells in several waves over time, and highlight that early treatment would result in beneficial effects on the B-cell compartment.


Subject(s)
B-Lymphocytes/immunology , HIV Infections/immunology , HIV-1/immunology , Adult , Anti-Retroviral Agents/therapeutic use , B-Lymphocyte Subsets/immunology , Chronic Disease , Cohort Studies , Cytokines/blood , Flow Cytometry , HIV Infections/drug therapy , HIV Infections/pathology , HIV Infections/virology , Humans , Immunity, Humoral , Immunoglobulin D/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Longitudinal Studies , Lymphocyte Activation , Mozambique/epidemiology , Programmed Cell Death 1 Receptor/metabolism , Prospective Studies , Viral Load
16.
AIDS ; 32(2): 149-160, 2018 Jan 14.
Article in English | MEDLINE | ID: mdl-29112067

ABSTRACT

OBJECTIVE: To characterize the effect of the HIV-1 infection and antiretroviral treatment (ART) in the human memory B (MEB)-cell compartment. DESIGN: A cross-sectional study was designed to analyze MEB cells of HIV-1 ART treated and ART-naive study participants, and uninfected individuals. METHODS: Frequency and absolute counts of MEB cell subsets in blood were determined by multicolor flow cytometry. Spontaneous cell death and B-cell proliferative capacity was evaluated in vitro by cell culture and flow cytometry. Splenic function was determined by pitted erythrocytes quantification in HIV-1 ART-treated study participants. RESULTS: HIV-1 ART-treated individuals did not show functional hyposplenism despite the lack of recovery IgMIgDCD27 marginal zone-like B cells. Moreover, two germinal center-dependent MEB cells subsets were also dysregulated in HIV-1 individuals: IgMIgDCD27 (IgM only) cells were increased, whereas the switched subset (IgMIgD) was reduced in viremic individuals. Althought ART restored the numbers of these populations; the switched MEB cells were enriched in CD27 cells, which showed the highest susceptibility to spontaneous cell death ex vivo. In addition, B cells from viremic individuals showed a poor response to B-cell receptor and toll-like receptor 9 stimulation that was circumvented when both stimuli were used simultaneously. CONCLUSION: B cells from HIV-1 study participants show a poor stimulation capacity, that may be bypassed by the proper combination of stimuli, and a dysregulated MEB cell pool that suggest an affectation of the germinal center reaction, only partially normalized by ART. Interestingly, hyposplenism does not explain the lack of recovery of the marginal zone-like B cells in ART-treated HIV-1 individuals.


Subject(s)
B-Lymphocytes/immunology , HIV Infections/pathology , Immunologic Memory , Lymphocyte Activation , Lymphocyte Subsets/immunology , Adult , Anti-Retroviral Agents/therapeutic use , Cell Culture Techniques , Cell Death , Cell Proliferation , Cross-Sectional Studies , Female , Flow Cytometry , HIV Infections/drug therapy , Humans , Male , Spleen/immunology
17.
Sci Rep ; 7: 40800, 2017 01 13.
Article in English | MEDLINE | ID: mdl-28084464

ABSTRACT

The HIV-1 gp41 Membrane Proximal External Region (MPER) is recognized by broadly neutralizing antibodies and represents a promising vaccine target. However, MPER immunogenicity and antibody activity are influenced by membrane lipids. To evaluate lipid modulation of MPER immunogenicity, we generated a 1-Palmitoyl-2-oleoylphosphatidylcholine (POPC)-based proteoliposome collection containing combinations of phosphatidylserine (PS), GM3 ganglioside, cholesterol (CHOL), sphingomyelin (SM) and the TLR4 agonist monophosphoryl lipid A (MPLA). A recombinant gp41-derived miniprotein (gp41-MinTT) exposing the MPER and a tetanus toxoid (TT) peptide that favors MHC-II presentation, was successfully incorporated into lipid mixtures (>85%). Immunization of mice with soluble gp41-MinTT exclusively induced responses against the TT peptide, while POPC proteoliposomes generated potent anti-gp41 IgG responses using lower protein doses. The combined addition of PS and GM3 or CHOL/SM to POPC liposomes greatly increased gp41 immunogenicity, which was further enhanced by the addition of MPLA. Responses generated by all proteoliposomes targeted the N-terminal moiety of MPER overlapping the 2F5 neutralizing epitope. Our data show that lipids impact both, the epitope targeted and the magnitude of the response to membrane-dependent antigens, helping to improve MPER-based lipid carriers. Moreover, the identification of immunodominant epitopes allows for the redesign of immunogens targeting MPER neutralizing determinants.


Subject(s)
Epitopes/immunology , HIV Envelope Protein gp41/immunology , Membrane Lipids/metabolism , Animals , Epitopes/chemistry , Female , HIV Envelope Protein gp41/chemistry , Immunogenicity, Vaccine , Membrane Lipids/chemistry , Mice , Mice, Inbred C57BL , Peptides/chemistry , Peptides/immunology , Tetanus Toxoid/chemistry , Tetanus Toxoid/immunology
18.
FEBS Lett ; 579(7): 1670-4, 2005 Mar 14.
Article in English | MEDLINE | ID: mdl-15757659

ABSTRACT

Lithium impairs the appearance of the characteristic morphology of brown adipocytes and downregulates the expression of marker genes of brown adipocyte differentiation. These effects are dose-dependent and are more pronounced when exposure of preadipocytes to lithium is initiated at early stages of differentiation. Although lithium reduces the expression of genes common to both white and brown adipocytes [fatty acid binding protein aP2 (aP2/FABP) or peroxisome proliferating activated receptor gamma], genes expressed differentially in brown adipocytes, i.e., uncoupling protein 1, PPAR gamma coactivator-1alpha, and peroxisome proliferating activated receptor alpha, are particularly sensitive to lithium treatment-dependent downregulation. Brown adipocytes appear as preferential targets of the inhibitory action of lithium on adipocyte differentiation.


Subject(s)
Adipocytes/drug effects , Adipose Tissue, Brown/cytology , Lithium/pharmacology , Adipocytes/cytology , Adipose Tissue, Brown/drug effects , Animals , Biomarkers/analysis , Biomarkers/metabolism , Carrier Proteins/genetics , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cells, Cultured , Down-Regulation , Gene Expression/drug effects , Ion Channels , Membrane Proteins/genetics , Mice , Mitochondrial Proteins , Norepinephrine/pharmacology , RNA, Messenger/analysis , RNA, Messenger/metabolism , Tretinoin/pharmacology , Uncoupling Protein 1
19.
PLoS One ; 10(3): e0120648, 2015.
Article in English | MEDLINE | ID: mdl-25803681

ABSTRACT

Antibodies with the ability to block the interaction of HIV-1 envelope glycoprotein (Env) gp120 with CD4, including those overlapping the CD4 binding site (CD4bs antibodies), can protect from infection by HIV-1, and their elicitation may be an interesting goal for any vaccination strategy. To identify gp120/CD4 blocking antibodies in plasma samples from HIV-1 infected individuals we have developed a competitive flow cytometry-based functional assay. In a cohort of treatment-naïve chronically infected patients, we showed that gp120/CD4 blocking antibodies were frequently elicited (detected in 97% plasma samples) and correlated with binding to trimeric HIV-1 envelope glycoproteins. However, no correlation was observed between functional CD4 binding blockade data and titer of CD4bs antibodies determined by ELISA using resurfaced gp120 proteins. Consistently, plasma samples lacking CD4bs antibodies were able to block the interaction between gp120 and its receptor, indicating that antibodies recognizing other epitopes, such as PGT126 and PG16, can also play the same role. Antibodies blocking CD4 binding increased over time and correlated positively with the capacity of plasma samples to neutralize the laboratory-adapted NL4.3 and BaL virus isolates, suggesting their potential contribution to the neutralizing workforce of plasma in vivo. Determining whether this response can be boosted to achieve broadly neutralizing antibodies may provide valuable information for the design of new strategies aimed to improve the anti-HIV-1 humoral response and to develop a successful HIV-1 vaccine.


Subject(s)
Antibodies, Blocking/immunology , CD4 Antigens/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp120/immunology , HIV Infections/immunology , HIV-1/immunology , Antibodies, Blocking/blood , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Chronic Disease , HIV Antibodies/blood , HIV Infections/blood , Humans
SELECTION OF CITATIONS
SEARCH DETAIL