Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
J Environ Manage ; 332: 117414, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36731420

ABSTRACT

Alternaria spores are a common component of the bioaerosol. Many Alternaria species are plant pathogens, and their conidia are catalogued as important aeroallergens. Several aerobiological studies showing a strong relationship between concentrations of airborne spore and meteorological parameters have consequently been developed. However, the Alternaria airborne load variation has not been thoroughly investigated because it is difficult to assess their sources, as they are a very common and widely established phytopathogen. The objective of this study is to estimate the impact of vegetation and land uses as potential sources on airborne spore load and to know their influence, particularly, in cases of long-medium distance transport. The daily airborne spore concentration was studied over a 5-year period in León and Valladolid, two localities of Castilla y León (Spain), with differences in their bioclimatic and land use aspects. Moreover, the land use analysis carried out within a 30 km radius of each monitoring station was combined with air mass data in order to search for potential emission sources. The results showed a great spatial variation between the two areas, which are relatively close to each other. The fact that the spore concentrations recorded in Valladolid were higher than those in León was owing to prevailing winds originating from large areas covered by cereal crops, especially during the harvest period. However, the prevailing winds in León came from areas dominated by forest and shrubland, which explains the low airborne spore load, since the main Alternaria sources were the grasslands located next to the trap. Furthermore, the risk days in this location presented an unusual wind direction. This study reveals the importance of land cover and wind speed and direction data for establishing potential airborne routes of spore transport in order to improve the Alternaria forecasting models. The importance of conducting Alternaria aerobiological studies at a local level is also highlighted.


Subject(s)
Alternaria , Wind , Environmental Monitoring , Air Microbiology , Spores, Fungal , Seasons
2.
Phys Chem Chem Phys ; 23(13): 7919-7925, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33347525

ABSTRACT

The dissociation process of hydrogen molecules on W(110) was studied using density functional theory and classical molecular dynamics. We have calculated the dissociation probability for molecules with energies below 300 meV and analyzed the dynamics of the adsorption process. Our results show that the fate of each trajectory is determined at distances relatively far from the surface, at roughly 2-2.5 Å. This distance varies slightly with the initial kinetic energy of the molecule. Part of our simulations include van der Waals dispersion effects in the interaction between molecule and surface. We present a comparison between these results and other theoretical and experimental results previously published. The inclusion of the van der Waals term provokes an increase in the far-distance attraction that is compensated by a stronger repulsion at short distances. The combination of both effects appreciably decreases the value of the dissociation probability. The successful comparison of our results with experimental information confirms that the methodology employed can be considered as a rich and accurate instrument to study the dissociation of hydrogen on surfaces.

3.
Phys Chem Chem Phys ; 22(39): 22805-22814, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33021270

ABSTRACT

The classical trajectory method in a quantum spirit assigns statistical weights to classical paths on the basis of two semiclassical corrections: Gaussian binning and the adiabaticity correction. This approach was recently applied to the heterogeneous gas-surface reaction between H2 in its internal ground state and Pd(111) surface e.g. [A. Rodríguez-Fernández et al., J. Phys. Chem. Lett., 2019, 10, 7629]. Its predictions of the sticking and state-resolved reflection probabilities were found to be in surprisingly good agreement with those of exact quantum time-dependent calculations where standard quasi-classical trajectory calculations failed. We show in this work that the quality of the previous calculations is maintained or even improved when H2 is rotationally excited.

4.
Sci Total Environ ; 917: 170597, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38307265

ABSTRACT

Fungal spores, commonly found in the atmosphere, can trigger important respiratory disorders. The glycoprotein Alt a 1 is the major allergen present in conidia of the genus Alternaria and has a high clinical relevance for people sensitized to fungi. Exposure to this allergen has been traditionally assessed by aerobiological spore counts, although this does not always offer an accurate estimate of airborne allergen load. This study aims to pinpoint the key factors that explain the presence and variation of Alt a 1 concentration in the atmosphere in order to establish exposure risk periods and improve forecasting models. Alternaria spores were sampled using a Hirst-type volumetric sampler over a five-year period. The allergenic fraction from the bioaerosol was collected using a low-volume cyclone sampler and Alt a 1 quantified by Enzyme-Linked ImmunoSorbent Assay. A cluster analysis was executed in order to group days with similar environmental features and then analyze days with the presence of the allergen in each of them. Subsequently, a quadratic discriminant analysis was performed to evaluate if the selected variables can predict days with high Alt a 1 load. The results indicate that higher temperatures and absolute humidity favor the presence of Alt a 1 in the atmosphere, while time of precipitation is related to days without allergen. Moreover, using the selected parameters, the quadratic discriminant analysis to predict days with allergen showed an accuracy rate between 67 % and 85 %. The mismatch between daily airborne concentration of Alternaria spores and allergen load can be explained by the greater contribution of medium-to-long distance transport of the allergen from the major emission sources as compared with spores. Results highlight the importance of conducting aeroallergen quantification studies together with spore counts to improve the forecasting models of allergy risk, especially for fungal spores.


Subject(s)
Air Pollutants , Hypersensitivity , Humans , Spores, Fungal , Air Pollutants/analysis , Allergens/analysis , Alternaria , Air Microbiology
5.
Biomedicines ; 10(2)2022 Feb 05.
Article in English | MEDLINE | ID: mdl-35203594

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder for which there is currently no effective treatment. Despite advances in the molecular pathology of the characteristic histopathological markers of the disease (tau protein and ß-amyloid), their translation to the clinic has not provided the expected results. Increasing evidences have demonstrated the presence of aggregates of TDP-43 (TAR DNA binding protein 43) in the postmortem brains of patients diagnosed with AD. The present research is focused on of the study of the pathological role of TDP-43 in AD. For this purpose, immortalized lymphocytes samples from patients diagnosed with different severity of sporadic AD were used and the TDP-43 pathology was analyzed against controls, looking for differences in their fragmentation, phosphorylation and cellular location using Western blot and immunocytochemical techniques. The results revealed an increase in TDP-43 fragmentation, as well as increased phosphorylation and aberrant localization of TDP-43 in the cytosolic compartment of lymphocytes of patients diagnosed with severe AD. Moreover, a fragment of approximately 25 KD was found in the extracellular medium of cells derived from severe AD individuals that seem to have prion-like characteristics. We conclude that TDP-43 plays a key role in AD pathogenesis and its cell to cell propagation.

6.
Sci Total Environ ; 827: 154370, 2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35276149

ABSTRACT

Airborne pollen concentration varies depending on several factors, such as local plant biodiversity, geography and climatology. These particles are involved in triggering pollinosis in a share of worldwide human population, and adequate monitoring is, therefore, important. However, the pollen traps in aerobiological monitoring networks are usually installed in cities, and the features of the whole territory are not taken into account. The aim of this study was to analyze what environmental parameters are more suitable as regards setting up monitoring stations throughout a territory in order to obtain an aerobiological network that can represent environmental diversity. The analysis was carried out in 13 locations in Castilla y León over an 8 year period. This is a favorable territory in which to conduct this type of study owing to its climatic features, orography and biodiversity. The ten most abundant pollen types in the region were analyzed, and a clustering analysis was calculated with different distances so as to obtain homogeneous groups of stations. Moreover, the clusters obtained were analyzed in combination with altitudinal and different bioclimatic parameters, which derived from temperature and precipitation. The result here shows that the Castilla y León aerobiological network RACYL represents most of the environmental variability of the territory. Furthermore, it can be divided into two clusters and five sub-clusters for which the start of the main pollen season is different. This corresponds with the division of the territory as regards bioclimatic conditions. The most important bioclimatic parameters were the seasonality of the precipitation and the maximum temperature of the warmest month, although orography must also be taken into account. All of these help discover the optimal places in which to install traps and could reduce the number of monitoring stations. This study additionally provides data for unmonitored areas with similar bioclimatic conditions to those monitored.


Subject(s)
Allergens , Environmental Monitoring , Allergens/analysis , Cities , Humans , Pollen/chemistry , Seasons , Spain
7.
Nat Commun ; 13(1): 3913, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35798748

ABSTRACT

Cognitive function relies on a balanced interplay between excitatory and inhibitory neurons (INs), but the impact of estradiol on IN function is not fully understood. Here, we characterize the regulation of hippocampal INs by aromatase, the enzyme responsible for estradiol synthesis, using a combination of molecular, genetic, functional and behavioral tools. The results show that CA1 parvalbumin-expressing INs (PV-INs) contribute to brain estradiol synthesis. Brain aromatase regulates synaptic inhibition through a mechanism that involves modification of perineuronal nets enwrapping PV-INs. In the female brain, aromatase modulates PV-INs activity, the dynamics of network oscillations and hippocampal-dependent memory. Aromatase regulation of PV-INs and inhibitory synapses is determined by the gonads and independent of sex chromosomes. These results suggest PV-INs are mediators of estrogenic regulation of behaviorally-relevant activity.


Subject(s)
Aromatase , Parvalbumins , Animals , Aromatase/genetics , Estradiol/pharmacology , Female , Hippocampus/physiology , Interneurons/physiology , Male , Mice , Parvalbumins/genetics , Parvalbumins/metabolism , Synapses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL