Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cancer ; 124(1): 105-109, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-28940498

ABSTRACT

BACKGROUND: In a phase 1 study of pulse/continuous-dose erlotinib, no patient had disease progression in the central nervous system (CNS). This expansion cohort of the phase 1 study tested the same regimen in a cohort of individuals with epidermal growth factor receptor (EGFR)-mutant lung cancers with untreated brain metastases. METHODS: Patients had not received EGFR tyrosine kinase inhibitors or radiation for brain metastases. All received 1200 mg of erlotinib on days 1 and 2 and 50 mg on days 3 to 7 weekly. The primary endpoints were the overall and CNS response rates (according to version 1.1 of the Response Evaluation Criteria in Solid Tumors). RESULTS: Between May 2015 and August 2016, 19 patients were enrolled. Forty-two percent of the patients had target brain lesions, and the median size of the target brain lesions was 13 mm. Overall, 14 patients (74%; 95% confidence interval [CI], 51%-89%) had partial responses. The response rate in brain metastases was 75%. The overall median progression-free survival was 10 months (95% CI, 7 months to not reached). Only 3 patients (16%) had CNS progression. To date, 4 patients required CNS radiation at some time during their course. The adverse events (any grade) seen in 10% or more of the patients were rash, diarrhea, nausea, an increase in alanine aminotransferase, and fatigue. CONCLUSIONS: Pulse/continuous-dose erlotinib produced a 74% overall response rate and a 75% response rate in brain metastases in patients with EGFR-mutant lung cancers and untreated brain metastases. CNS control persisted even after progression elsewhere. Although this regimen did not improve progression-free survival or delay the emergence of EGFR T790M, it prevented progression in the brain and could be useful in situations in which CNS control is critical. Cancer 2018;124:105-9. © 2017 American Cancer Society.


Subject(s)
Adenocarcinoma/drug therapy , Brain Neoplasms/drug therapy , Erlotinib Hydrochloride/administration & dosage , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/administration & dosage , Adenocarcinoma/genetics , Adenocarcinoma/radiotherapy , Adenocarcinoma/secondary , Aged , Aged, 80 and over , Brain Neoplasms/genetics , Brain Neoplasms/radiotherapy , Brain Neoplasms/secondary , Cranial Irradiation/statistics & numerical data , Disease-Free Survival , ErbB Receptors/genetics , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Middle Aged , Mutation , Response Evaluation Criteria in Solid Tumors , Treatment Outcome , Tumor Burden
2.
J Chem Phys ; 149(20): 204701, 2018 Nov 28.
Article in English | MEDLINE | ID: mdl-30501264

ABSTRACT

We have studied the adsorption and diffusion of sulfur at the low-coverage regime of 0.25 ML on the (111), (100), (110), and (211) surfaces of Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au using density functional theory calculations. Sulfur adsorbed preferentially on three-fold or four-fold high-coordination sites over most of the studied surfaces. On the Ir(110), Pt(110), and Au(110) surfaces, sulfur is more stable on the two-fold sites. Calculations of the minimum energy diffusion pathway show that the energy barrier for the surface diffusion of sulfur depends on the orientation and nature of the metal surfaces. On the (100), sulfur shows the highest diffusion energy, ranging from 0.47 eV in Au(100) to 1.22 eV in Pd(100). In the (110) surface, the diffusion of sulfur is along the channel for Ni, Cu, Rh, Pd, and Ag, and across the channel for Ir, Pt, and Au. In the case of the (211) surfaces, the diffusion is preferentially along the terrace or step-edge sites. Our work provides data for the adsorption of sulfur on many surfaces not previously reported. The present work is a reference point for future computational studies of sulfur and sulfur-containing molecules absorbed on face center cubic metal surfaces.

SELECTION OF CITATIONS
SEARCH DETAIL