Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Int J Mol Sci ; 21(15)2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32718059

ABSTRACT

DNA mismatch repair-deficient colorectal cancers (CRCs) accumulate numerous frameshift mutations at repetitive sequences recognized as microsatellite instability (MSI). When coding mononucleotide repeats (cMNRs) are affected, tumors accumulate frameshift mutations and premature termination codons (PTC) potentially leading to truncated proteins. Nonsense-mediated RNA decay (NMD) can degrade PTC-containing transcripts and protect from such faulty proteins. As it also regulates normal transcripts and cellular physiology, we tested whether NMD genes themselves are targets of MSI frameshift mutations. A high frequency of cMNR frameshift mutations in the UPF3A gene was found in MSI CRC cell lines (67.7%), MSI colorectal adenomas (55%) and carcinomas (63%). In normal colonic crypts, UPF3A expression was restricted to single chromogranin A-positive cells. SILAC-based proteomic analysis of KM12 CRC cells revealed UPF3A-dependent down-regulation of several enzymes involved in cholesterol biosynthesis. Furthermore, reconstituted UPF3A expression caused alterations of 85 phosphosites in 52 phosphoproteins. Most of them (38/52, 73%) reside in nuclear phosphoproteins involved in regulation of gene expression and RNA splicing. Since UPF3A mutations can modulate the (phospho)proteomic signature and expression of enzymes involved in cholesterol metabolism in CRC cells, UPF3A may influence other processes than NMD and loss of UPF3A expression might provide a growth advantage to MSI CRC cells.


Subject(s)
Colorectal Neoplasms , Frameshift Mutation , Genomic Instability , Microsatellite Repeats , Neoplasm Proteins , Nonsense Mediated mRNA Decay , Phosphoproteins , RNA-Binding Proteins , Cell Line, Tumor , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Gene Expression Profiling , Humans , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Proteomics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
2.
Glycobiology ; 19(7): 726-34, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19293232

ABSTRACT

Tumors that display a high level of microsatellite instability (MSI-H) accumulate somatic frameshift mutations in several genes. The compensation of this loss of function by transfection represents a suitable approach to tie respective gene deficiency to alterations in cellular characteristics. In view of the emerging significance of cell surface glycans as biochemical signals for presentation/activity of various receptors/integrins and for susceptibility to adhesion/growth-regulatory tissue lectins, we examined the glycophenotype in the MSI-H colon cancer cell line HCT116 for activin type 2 receptor (ACVR2), absent in melanoma 2 (AIM2), and transforming growth factor beta-type 2 receptor (TGFBR2) known to be associated with MSI colorectal carcinogenesis. A panel of probes specific for functional carbohydrate epitopes including human lectins was used to trace changes in cell surface levels, thereby initiating glycan analysis related to MSI. In particular, the presence of core substitutions and branching in N-glycans, the sialylation status of N- and O-glycans, and the presence of Le(a/x)-epitopes were profiled. Transient transfection affected the glycophenotype, depending on the nature of the gene and the probe. The TGFBR2 presence reduced binding of probes specific for a core substitution and increased branch length in N-glycosylation, even reaching a P-value of 0.0016. ACVR2/AIM2 influenced core 1 mucin-type O-glycosylation differentially, upregulation by ACVR2, and downregulation by AIM2. These alterations of cell surface glycosylation by gene products that are not directly associated with the machinery for glycan generation direct attention to pursue analysis of glycosylation in MSI tumor cells on the level of target glycoproteins and open the way for functional studies.


Subject(s)
Activin Receptors, Type II/metabolism , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Microsatellite Instability , Nuclear Proteins/metabolism , Polysaccharides/analysis , Protein Serine-Threonine Kinases/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Activin Receptors, Type II/genetics , DNA-Binding Proteins , Glycosylation , HCT116 Cells , Humans , Lectins/metabolism , Nuclear Proteins/genetics , Polymerase Chain Reaction , Protein Serine-Threonine Kinases/genetics , RNA, Messenger/genetics , Receptor, Transforming Growth Factor-beta Type II , Receptors, Transforming Growth Factor beta/genetics
3.
Cancer Res ; 69(1): 292-9, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-19118014

ABSTRACT

Glycosyl epitopes have been identified as tumor-specific markers in colorectal tumors and various lines of evidence indicate the significance of altered synthesis, transport, and secretion of glycoproteins in tumorigenesis. However, aberrant glycosylation has been largely ignored in microsatellite unstable (MSI-H) colorectal tumors. Therefore, we analyzed mutation frequencies of genes of the cellular glycosylation machinery in MSI-H tumors, focusing on frameshift mutations in coding MNRs (cMNRs). Among 28 candidate genes, LMAN1/ERGIC53, a mannose-specific lectin mediating endoplasmatic reticulum (ER)-to-Golgi transit of glycosylated proteins, showed high mutation frequency in MSI-H colorectal cancer cell lines (52%; 12 of 23), carcinomas (45%; 72 of 161), and adenomas (40%; 8 of 20). Biallelic mutations were observed in 17% (4 of 23) of MSI-H colorectal cancer cell lines. LMAN1 was found to be transcribed but truncated protein remained undetectable in these LMAN1-mutant cell lines. Immunohistochemical and molecular analysis of LMAN1-mutated carcinomas and adenomas revealed regional loss of LMAN1 expression due to biallelic LMAN1 cMNR frameshift mutations. In LMAN1-deficient colorectal cancer cell lines, secretion of the LMAN1 client protein alpha-1-antitrypsin (A1AT), an inhibitor of angiogenesis and tumor growth, was significantly impaired but could be restored upon LMAN1 re-expression. These results suggest that LMAN1 mutational inactivation is a frequent and early event potentially contributing to MSI-H tumorigenesis.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Mannose-Binding Lectins/genetics , Membrane Proteins/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/metabolism , Frameshift Mutation , Gene Expression , Humans , Mannose-Binding Lectins/biosynthesis , Membrane Proteins/biosynthesis , Microsatellite Instability , RNA, Messenger/genetics , alpha 1-Antitrypsin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL