Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
Cell ; 181(4): 758-759, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32413296

ABSTRACT

The implantation of electrodes on the visual cortex of blind individuals could lead to the restoration of a rudimentary form of sight. In this issue of Cell, Beauchamp et al. use electrical stimulation of the visual cortex to create visual perception of shapes.


Subject(s)
Visual Cortex , Eye , Humans , Visual Perception , Writing
2.
Proc Natl Acad Sci U S A ; 120(9): e2210839120, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36812207

ABSTRACT

During visual search, it is important to reduce the interference of distracting objects in the scene. The neuronal responses elicited by the search target stimulus are typically enhanced. However, it is equally important to suppress the representations of distracting stimuli, especially if they are salient and capture attention. We trained monkeys to make an eye movement to a unique "pop-out" shape stimulus among an array of distracting stimuli. One of these distractors had a salient color that varied across trials and differed from the color of the other stimuli, causing it to also pop-out. The monkeys were able to select the pop-out shape target with high accuracy and actively avoided the pop-out color distractor. This behavioral pattern was reflected in the activity of neurons in area V4. Responses to the shape targets were enhanced, while the activity evoked by the pop-out color distractor was only briefly enhanced, directly followed by a sustained period of pronounced suppression. These behavioral and neuronal results demonstrate a cortical selection mechanism that rapidly inverts a pop-out signal to "pop-in" for an entire feature dimension thereby facilitating goal-directed visual search in the presence of salient distractors.


Subject(s)
Color Perception , Visual Cortex , Animals , Color Perception/physiology , Haplorhini , Attention/physiology , Eye Movements , Visual Cortex/physiology , Reaction Time/physiology , Visual Perception/physiology
3.
Nat Rev Neurosci ; 21(10): 524-534, 2020 10.
Article in English | MEDLINE | ID: mdl-32879507

ABSTRACT

The first issue of Nature Reviews Neuroscience was published 20 years ago, in 2000. To mark this anniversary, in this Viewpoint article we asked a selection of researchers from across the field who have authored pieces published in the journal in recent years for their thoughts on notable and interesting developments in neuroscience, and particularly in their areas of the field, over the past two decades. They also provide some thoughts on current lines of research and questions that excite them.


Subject(s)
Neurosciences/history , History, 21st Century , Humans
4.
PLoS Comput Biol ; 20(4): e1012030, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38683837

ABSTRACT

Many cognitive problems can be decomposed into series of subproblems that are solved sequentially by the brain. When subproblems are solved, relevant intermediate results need to be stored by neurons and propagated to the next subproblem, until the overarching goal has been completed. We will here consider visual tasks, which can be decomposed into sequences of elemental visual operations. Experimental evidence suggests that intermediate results of the elemental operations are stored in working memory as an enhancement of neural activity in the visual cortex. The focus of enhanced activity is then available for subsequent operations to act upon. The main question at stake is how the elemental operations and their sequencing can emerge in neural networks that are trained with only rewards, in a reinforcement learning setting. We here propose a new recurrent neural network architecture that can learn composite visual tasks that require the application of successive elemental operations. Specifically, we selected three tasks for which electrophysiological recordings of monkeys' visual cortex are available. To train the networks, we used RELEARNN, a biologically plausible four-factor Hebbian learning rule, which is local both in time and space. We report that networks learn elemental operations, such as contour grouping and visual search, and execute sequences of operations, solely based on the characteristics of the visual stimuli and the reward structure of a task. After training was completed, the activity of the units of the neural network elicited by behaviorally relevant image items was stronger than that elicited by irrelevant ones, just as has been observed in the visual cortex of monkeys solving the same tasks. Relevant information that needed to be exchanged between subroutines was maintained as a focus of enhanced activity and passed on to the subsequent subroutines. Our results demonstrate how a biologically plausible learning rule can train a recurrent neural network on multistep visual tasks.


Subject(s)
Models, Neurological , Neural Networks, Computer , Reinforcement, Psychology , Visual Cortex , Animals , Visual Cortex/physiology , Computational Biology , Memory, Short-Term/physiology , Neurons/physiology , Learning/physiology , Visual Perception/physiology , Macaca mulatta
5.
Nat Rev Neurosci ; 19(3): 166-180, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29449713

ABSTRACT

Humans and many other animals have an enormous capacity to learn about sensory stimuli and to master new skills. However, many of the mechanisms that enable us to learn remain to be understood. One of the greatest challenges of systems neuroscience is to explain how synaptic connections change to support maximally adaptive behaviour. Here, we provide an overview of factors that determine the change in the strength of synapses, with a focus on synaptic plasticity in sensory cortices. We review the influence of neuromodulators and feedback connections in synaptic plasticity and suggest a specific framework in which these factors can interact to improve the functioning of the entire network.


Subject(s)
Cerebral Cortex/physiology , Learning/physiology , Neuronal Plasticity , Neurons/physiology , Animals , Attention/physiology , Humans , Models, Neurological , Neural Pathways/physiology , Reward
6.
J Neurosci ; 40(12): 2458-2470, 2020 03 18.
Article in English | MEDLINE | ID: mdl-32051326

ABSTRACT

Many tasks demand that information is kept online for a few seconds before it is used to guide behavior. The information is kept in working memory as the persistent firing of neurons encoding the memorized information. The neural mechanisms responsible for persistent activity are not yet well understood. Theories attribute an important role to ionotropic glutamate receptors, and it has been suggested that NMDARs are particularly important for persistent firing because they exhibit long time constants. Ionotropic AMPARs have shorter time constants and have been suggested to play a smaller role in working memory. Here we compared the contribution of AMPARs and NMDARs to persistent firing in the dlPFC of male macaque monkeys performing a delayed saccade to a memorized spatial location. We used iontophoresis to eject small amounts of glutamate receptor antagonists, aiming to perturb, but not abolish, neuronal activity. We found that both AMPARs and NMDARs contributed to persistent activity. Blockers of the NMDARs decreased persistent firing associated with the memory of the neuron's preferred spatial location but had comparatively little effect on the representation of the antipreferred location. They therefore decreased the information conveyed by persistent firing about the memorized location. In contrast, AMPAR blockers decreased activity elicited by the memory of both the preferred and antipreferred location, with a smaller effect on the information conveyed by persistent activity. Our results provide new insights into the contribution of AMPARs and NMDARs to persistent activity during working memory tasks.SIGNIFICANCE STATEMENT Working memory enables us to hold on to information that is no longer available to the senses. It relies on the persistent activity of neurons that code for the memorized information, but the detailed mechanisms are not yet well understood. Here we investigated the role of NMDARs and AMPARs in working memory using iontophoresis of antagonists in the PFC of monkeys remembering the location of a visual stimulus for an eye movement response. AMPARs and NMDARs both contributed to persistent activity. NMDAR blockers mostly decreased persistent firing associated with the memory of the neuron's preferred spatial location, whereas AMPAR blockers caused a more general suppression. These results provide new insight into the contribution of AMPARs and NMDARs to working memory.


Subject(s)
Memory, Short-Term/physiology , Prefrontal Cortex/physiology , Receptors, AMPA/physiology , Receptors, N-Methyl-D-Aspartate/physiology , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Animals , Electrophysiological Phenomena/drug effects , Electrophysiological Phenomena/physiology , Excitatory Amino Acid Antagonists/pharmacology , Iontophoresis , Macaca mulatta , Male , Memory, Short-Term/drug effects , Neurons/physiology , Prefrontal Cortex/drug effects , Psychomotor Performance/physiology , Receptors, AMPA/antagonists & inhibitors , Receptors, Ionotropic Glutamate/drug effects , Receptors, Ionotropic Glutamate/physiology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Saccades/drug effects , Saccades/physiology , Space Perception/drug effects , Space Perception/physiology
7.
J Neurosci ; 40(48): 9250-9259, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33087475

ABSTRACT

What is selected when attention is directed to a specific location of the visual field? Theories of object-based attention have suggested that when spatial attention is directed to part of an object, attention does not simply enhance the attended location but automatically spreads to enhance all locations that comprise the object. Here, we tested this hypothesis by reconstructing the distribution of attention from primary visual cortex (V1) population neuronal activity patterns in 24 human adults (17 female) using functional magnetic resonance imaging (fMRI) and population-based receptive field (prf) mapping. We find that attention spreads from a spatially cued location to the underlying object, and enhances all spatial locations that comprise the object. Importantly, this spreading was also evident when the object was not task relevant. These data suggest that attentional selection automatically operates at an object level, facilitating the reconstruction of coherent objects from fragmented representations in early visual cortex.SIGNIFICANCE STATEMENT Object perception is an astonishing feat of the visual system. When visual information about orientation, shape, and color enters through our eyes, it has yet to be integrated into a coherent representation of an object. But which visual features constitute a single object and which features belong to the background? The brain mechanisms underpinning object perception are yet to be understood. We now demonstrate that one candidate mechanism, the successive activation of all parts of an object, occurs in early visual cortex and results in a detailed representation of the object following Gestalt principles. Furthermore, our results suggest that object selection occurs automatically, without involving voluntary control.


Subject(s)
Attention/physiology , Visual Cortex/physiology , Adult , Brain Mapping , Cues , Female , Hemodynamics/physiology , Humans , Magnetic Resonance Imaging , Male , Photic Stimulation , Reaction Time/physiology , Space Perception/physiology , Visual Cortex/diagnostic imaging , Visual Fields/physiology , Visual Perception/physiology , Young Adult
8.
J Cogn Neurosci ; 33(5): 771-783, 2021 04 01.
Article in English | MEDLINE | ID: mdl-34449840

ABSTRACT

Mice are becoming an increasingly popular model for investigating the neural substrates of visual processing and higher cognitive functions. To validate the translation of mouse visual attention and sensorimotor processing to humans, we compared their performance in the same visual task. Mice and human participants judged the orientation of a grating presented on either the right or left side in the visual field. To induce shifts of spatial attention, we varied the stimulus probability on each side. As expected, human participants showed faster RTs and a higher accuracy for the side with a higher probability, a well-established effect of visual attention. The attentional effect was only present in mice when their response was slow. Although the task demanded a judgment of grating orientation, the accuracy of the mice was strongly affected by whether the side of the stimulus corresponded to the side of the behavioral response. This stimulus-response compatibility (Simon) effect was much weaker in humans and only significant for their fastest responses. Both species exhibited a speed-accuracy trade-off in their responses, because slower responses were more accurate than faster responses. We found that mice typically respond very fast, which contributes to the stronger stimulus-response compatibility and weaker attentional effects, which were only apparent in the trials with slowest responses. Humans responded slower and had stronger attentional effects, combined with a weak influence of stimulus-response compatibility, which was only apparent in trials with fast responses. We conclude that spatial attention and stimulus-response compatibility influence the responses of humans and mice but that strategy differences between species determine the dominance of these effects.


Subject(s)
Functional Laterality , Psychomotor Performance , Animals , Humans , Mice , Reaction Time , Visual Fields
9.
Neural Comput ; 33(1): 1-40, 2021 01.
Article in English | MEDLINE | ID: mdl-33080159

ABSTRACT

Working memory is essential: it serves to guide intelligent behavior of humans and nonhuman primates when task-relevant stimuli are no longer present to the senses. Moreover, complex tasks often require that multiple working memory representations can be flexibly and independently maintained, prioritized, and updated according to changing task demands. Thus far, neural network models of working memory have been unable to offer an integrative account of how such control mechanisms can be acquired in a biologically plausible manner. Here, we present WorkMATe, a neural network architecture that models cognitive control over working memory content and learns the appropriate control operations needed to solve complex working memory tasks. Key components of the model include a gated memory circuit that is controlled by internal actions, encoding sensory information through untrained connections, and a neural circuit that matches sensory inputs to memory content. The network is trained by means of a biologically plausible reinforcement learning rule that relies on attentional feedback and reward prediction errors to guide synaptic updates. We demonstrate that the model successfully acquires policies to solve classical working memory tasks, such as delayed recognition and delayed pro-saccade/anti-saccade tasks. In addition, the model solves much more complex tasks, including the hierarchical 12-AX task or the ABAB ordered recognition task, both of which demand an agent to independently store and updated multiple items separately in memory. Furthermore, the control strategies that the model acquires for these tasks subsequently generalize to new task contexts with novel stimuli, thus bringing symbolic production rule qualities to a neural network architecture. As such, WorkMATe provides a new solution for the neural implementation of flexible memory control.


Subject(s)
Attention , Memory, Short-Term , Models, Neurological , Neural Networks, Computer , Sensory Gating , Animals , Attention/physiology , Humans , Learning/physiology , Memory, Short-Term/physiology , Reinforcement, Psychology , Sensory Gating/physiology
10.
Neuroimage ; 197: 806-817, 2019 08 15.
Article in English | MEDLINE | ID: mdl-28648888

ABSTRACT

High resolution laminar fMRI is beginning to probe responses in the different layers of cortex. What can we expect this exciting new technique to discover about cortical processing and how can we verify that it is producing an accurate picture of the underlying laminar differences in neural processing? This review will address our knowledge of laminar cortical circuitry gained from electrophysiological studies in macaque monkeys with a focus on the primary visual cortex, as this area has been most often targeted in both laminar electrophysiological and fMRI studies. We will review how recent studies are attempting to verify the accuracy of laminar fMRI by recreating the known laminar profiles of various neural tuning properties. Furthermore, we will examine how feedforward and feedback-related neural processes engage different cortical layers, producing canonical patterns of spiking and synaptic activity as estimated by the analysis of current-source density. These results provide a benchmark for recent studies aiming to examine the profiles of bottom-up and top-down processes with laminar fMRI. Finally, we will highlight particularly useful paradigms and approaches which may help us to understand processing in the different layers of the human cerebral cortex.


Subject(s)
Benchmarking , Cerebral Cortex/physiology , Magnetic Resonance Imaging/methods , Neurons/physiology , Animals , Brain Mapping/methods , Brain Mapping/standards , Humans , Magnetic Resonance Imaging/standards
SELECTION OF CITATIONS
SEARCH DETAIL