Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Immunity ; 53(2): 429-441.e8, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32814029

ABSTRACT

A minor haplotype of the 10q26 locus conveys the strongest genetic risk for age-related macular degeneration (AMD). Here, we examined the mechanisms underlying this susceptibility. We found that monocytes from homozygous carriers of the 10q26 AMD-risk haplotype expressed high amounts of the serine peptidase HTRA1, and HTRA1 located to mononuclear phagocytes (MPs) in eyes of non-carriers with AMD. HTRA1 induced the persistence of monocytes in the subretinal space and exacerbated pathogenic inflammation by hydrolyzing thrombospondin 1 (TSP1), which separated the two CD47-binding sites within TSP1 that are necessary for efficient CD47 activation. This HTRA1-induced inhibition of CD47 signaling induced the expression of pro-inflammatory osteopontin (OPN). OPN expression increased in early monocyte-derived macrophages in 10q26 risk carriers. In models of subretinal inflammation and AMD, OPN deletion or pharmacological inhibition reversed HTRA1-induced pathogenic MP persistence. Our findings argue for the therapeutic potential of CD47 agonists and OPN inhibitors for the treatment of AMD.


Subject(s)
CD47 Antigen/metabolism , Chromosomes, Human, Pair 10/genetics , High-Temperature Requirement A Serine Peptidase 1/metabolism , Macular Degeneration/genetics , Osteopontin/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Binding Sites/physiology , COS Cells , Cell Line , Chlorocebus aethiops , Eye/pathology , Genetic Predisposition to Disease/genetics , High-Temperature Requirement A Serine Peptidase 1/genetics , Humans , Macrophages/immunology , Macrophages/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/metabolism , Signal Transduction/genetics
2.
Hum Mol Genet ; 32(4): 659-676, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36130212

ABSTRACT

The large DMD gene encodes a group of dystrophin proteins in brain and retina, produced from multiple promoters and alternative splicing events. Dystrophins are core components of different scaffolding complexes in distinct cell types. Their absence may thus alter several cellular pathways, which might explain the heterogeneous genotype-phenotype relationships underlying central comorbidities in Duchenne muscular dystrophy (DMD). However, the cell-specific expression of dystrophins and associated proteins (DAPs) is still largely unknown. The present study provides a first RNA-Seq-based reference showing tissue- and cell-specific differential expression of dystrophins, splice variants and DAPs in mouse brain and retina. We report that a cell type may express several dystrophin complexes, perhaps due to expression in separate cell subdomains and/or subpopulations, some of which with differential expression at different maturation stages. We also identified new splicing events in addition to the common exon-skipping events. These include a new exon within intron 51 (E51b) in frame with the flanking exons in retina, as well as inclusions of intronic sequences with stop codons leading to the presence of transcripts with elongated exons 40 and/or 41 (E40e, E41e) in both retina and brain. PCR validations revealed that the new exons may affect several dystrophins. Moreover, immunoblot experiments using a combination of specific antibodies and dystrophin-deficient mice unveiled that the transcripts with stop codons are translated into truncated proteins lacking their C-terminus, which we called N-Dp427 and N-Dp260. This study thus uncovers a range of new findings underlying the complex neurobiology of DMD.


Subject(s)
Dystrophin , Muscular Dystrophy, Duchenne , Mice , Animals , Dystrophin/genetics , Dystrophin/metabolism , Transcriptome/genetics , Codon, Terminator/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Retina/metabolism , Brain/metabolism
3.
Glia ; 69(7): 1679-1693, 2021 07.
Article in English | MEDLINE | ID: mdl-33683746

ABSTRACT

Muller glial cells (MGCs) are responsible for the homeostatic and metabolic support of the retina. Despite the importance of MGCs in retinal disorders, reliable and accessible human cell sources to be used to model MGC-associated diseases are lacking. Although primary human MGCs (pMGCs) can be purified from post-mortem retinal tissues, the donor scarcity limits their use. To overcome this problem, we developed a protocol to generate and bank human induced pluripotent stem cell-derived MGCs (hiMGCs). Using a transcriptome analysis, we showed that the three genetically independent hiMGCs generated were homogeneous and showed phenotypic characteristics and transcriptomic profile of pMGCs. These cells expressed key MGC markers, including Vimentin, CLU, DKK3, SOX9, SOX2, S100A16, ITGB1, and CD44 and could be cultured up to passage 8. Under our culture conditions, hiMGCs and pMGCs expressed low transcript levels of RLPB1, AQP4, KCNJ1, KCJN10, and SLC1A3. Using a disease modeling approach, we showed that hiMGCs could be used to model the features of diabetic retinopathy (DR)-associated dyslipidemia. Indeed, palmitate, a major free fatty acid with elevated plasma levels in diabetic patients, induced the expression of inflammatory cytokines found in the ocular fluid of DR patients such as CXCL8 (IL-8) and ANGPTL4. Moreover, the analysis of palmitate-treated hiMGC secretome showed an upregulation of proangiogenic factors strongly related to DR, including ANG2, Endoglin, IL-1ß, CXCL8, MMP-9, PDGF-AA, and VEGF. Thus, hiMGCs could be an alternative to pMGCs and an extremely valuable tool to help to understand and model glial cell involvement in retinal disorders, including DR.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Induced Pluripotent Stem Cells , Diabetes Mellitus/metabolism , Ependymoglial Cells/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Neuroglia/metabolism , Retina
4.
Neurobiol Dis ; 152: 105288, 2021 05.
Article in English | MEDLINE | ID: mdl-33556541

ABSTRACT

The mdx52 mouse model of Duchenne muscular dystrophy (DMD) is lacking exon 52 of the DMD gene that is located in a hotspot mutation region causing cognitive deficits and retinal anomalies in DMD patients. This deletion leads to the loss of the dystrophin proteins, Dp427, Dp260 and Dp140, while Dp71 is preserved. The flash electroretinogram (ERG) in mdx52 mice was previously characterized by delayed dark-adapted b-waves. A detailed description of functional ERG changes and visual performances in mdx52 mice is, however, lacking. Here an extensive full-field ERG repertoire was applied in mdx52 mice and WT littermates to analyze retinal physiology in scotopic, mesopic and photopic conditions in response to flash, sawtooth and/or sinusoidal stimuli. Behavioral contrast sensitivity was assessed using quantitative optomotor response (OMR) to sinusoidally modulated luminance gratings at 100% or 50% contrast. The mdx52 mice exhibited reduced amplitudes and delayed implicit times in dark-adapted ERG flash responses, particularly in their b-wave and oscillatory potentials, and diminished amplitudes of light-adapted flash ERGs. ERG responses to sawtooth stimuli were also diminished and delayed for both mesopic and photopic conditions in mdx52 mice and the first harmonic amplitudes to photopic sine-wave stimuli were smaller at all temporal frequencies. OMR indices were comparable between genotypes at 100% contrast but significantly reduced in mdx52 mice at 50% contrast. The complex ERG alterations and disturbed contrast vision in mdx52 mice include features observed in DMD patients and suggest altered photoreceptor-to-bipolar cell transmission possibly affecting contrast sensitivity. The mdx52 mouse is a relevant model to appraise the roles of retinal dystrophins and for preclinical studies related to DMD.


Subject(s)
Muscular Dystrophy, Duchenne/physiopathology , Visual Perception/physiology , Animals , Electroretinography , Mice , Mice, Inbred mdx , Synaptic Transmission/physiology
5.
Hum Mol Genet ; 27(20): 3555-3567, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30084954

ABSTRACT

In the mammalian retina, rod and cone photoreceptors transmit the visual information to bipolar neurons through highly specialized ribbon synapses. We have limited understanding of regulatory pathways that guide morphogenesis and organization of photoreceptor presynaptic architecture in the developing retina. While neural retina leucine zipper (NRL) transcription factor determines rod cell fate and function, cone-rod homeobox (CRX) controls the expression of both rod- and cone-specific genes and is critical for terminal differentiation of photoreceptors. A comprehensive immunohistochemical evaluation of Crx-/- (null), CrxRip/+ and CrxRip/Rip (models of dominant congenital blindness) mouse retinas revealed abnormal photoreceptor synapses, with atypical ribbon shape, number and length. Integrated analysis of retinal transcriptomes of Crx-mutants with CRX- and NRL-ChIP-Seq data identified a subset of differentially expressed CRX target genes that encode presynaptic proteins associated with the cytomatrix active zone (CAZ) and synaptic vesicles. Immunohistochemistry of Crx-mutant retina validated aberrant expression of REEP6, PSD95, MPP4, UNC119, UNC13, RGS7 and RGS11, with some reduction in Ribeye and no significant change in immunostaining of RIMS1, RIMS2, Bassoon and Pikachurin. Our studies demonstrate that CRX controls the establishment of CAZ and anchoring of ribbons, but not the formation of ribbon itself, in photoreceptor presynaptic terminals.


Subject(s)
Cell Differentiation , Eye Proteins/genetics , Homeodomain Proteins/metabolism , Leber Congenital Amaurosis/metabolism , Retina/metabolism , Signal Transduction , Trans-Activators/metabolism , Animals , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Leber Congenital Amaurosis/genetics , Leber Congenital Amaurosis/physiopathology , Mice , Mice, Transgenic , Nerve Tissue Proteins/genetics , Presynaptic Terminals , Retina/physiopathology , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/physiology , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/physiology , Trans-Activators/genetics
6.
J Neurosci ; 36(9): 2827-42, 2016 Mar 02.
Article in English | MEDLINE | ID: mdl-26937019

ABSTRACT

Microglia, the principal resident immune cell of the CNS, exert significant influence on neurons during development and in pathological situations. However, if and how microglia contribute to normal neuronal function in the mature uninjured CNS is not well understood. We used the model of the adult mouse retina, a part of the CNS amenable to structural and functional analysis, to investigate the constitutive role of microglia by depleting microglia from the retina in a sustained manner using genetic methods. We discovered that microglia are not acutely required for the maintenance of adult retinal architecture, the survival of retinal neurons, or the laminar organization of their dendritic and axonal compartments. However, sustained microglial depletion results in the degeneration of photoreceptor synapses in the outer plexiform layer, leading to a progressive functional deterioration in retinal light responses. Our results demonstrate that microglia are constitutively required for the maintenance of synaptic structure in the adult retina and for synaptic transmission underlying normal visual function. Our findings on constitutive microglial function are relevant in understanding microglial contributions to pathology and in the consideration of therapeutic interventions that reduce or perturb constitutive microglial function. SIGNIFICANCE STATEMENT: Microglia, the principal resident immune cell population in the CNS, has been implicated in diseases in the brain and retina. However, how they contribute to the everyday function of the CNS is unclear. Using the model of the adult mouse retina, we examined the constitutive role of microglia by depleting microglia from the retina. We found that in the absence of microglia, retinal neurons did not undergo overt cell death or become structurally disorganized in their processes. However, connections between neurons called synapses begin to break down, leading to a decreased ability of the retina to transmit light responses. Our results indicate that retinal microglia contribute constitutively to the maintenance of synapses underlying healthy vision.


Subject(s)
Microglia/physiology , Neurons/physiology , Retina/cytology , Synapses/physiology , Animals , Cell Death/genetics , Disease Models, Animal , Dopamine Plasma Membrane Transport Proteins/metabolism , Eye Proteins/metabolism , Female , Gene Expression/genetics , Gene Expression Regulation/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Tissue Proteins/metabolism , Nystagmus, Optokinetic/genetics , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Receptors, Interleukin-8A/genetics , Receptors, Interleukin-8A/metabolism , Synapses/genetics , Vision Disorders/genetics , Vision Disorders/pathology , Vision Disorders/physiopathology , Visual Pathways/physiology
7.
Dev Dyn ; 245(7): 727-38, 2016 07.
Article in English | MEDLINE | ID: mdl-26661417

ABSTRACT

Retinal dystrophies are a major cause of blindness for which there are currently no curative treatments. Transplantation of stem cell-derived neuronal progenitors to replace lost cells has been widely investigated as a therapeutic option. Another promising strategy would be to trigger self-repair mechanisms in patients, through the recruitment of endogenous cells with stemness properties. Accumulating evidence in the past 15 year0s has revealed that several retinal cell types possess neurogenic potential, thus opening new avenues for regenerative medicine. Among them, Müller glial cells have been shown to be able to undergo a reprogramming process to re-acquire a stem/progenitor state, allowing them to proliferate and generate new neurons for repair following retinal damages. Although Müller cell-dependent spontaneous regeneration is remarkable in some species such as the fish, it is extremely limited and ineffective in mammals. Understanding the cellular events and molecular mechanisms underlying Müller cell activities in species endowed with regenerative capacities could provide knowledge to unlock the restricted potential of their mammalian counterparts. In this context, the present review provides an overview of Müller cell responses to injury across vertebrate model systems and summarizes recent advances in this rapidly evolving field. Developmental Dynamics 245:727-738, 2016. © 2015 The Authors. Developmental Dynamics published by Wiley Periodicals, Inc.


Subject(s)
Ependymoglial Cells/cytology , Ependymoglial Cells/physiology , Retina/cytology , Animals , Ependymoglial Cells/metabolism , Humans , Regeneration/genetics , Regeneration/physiology , Retina/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Stem Cells/physiology
8.
J Neurosci ; 34(4): 1530-41, 2014 Jan 22.
Article in English | MEDLINE | ID: mdl-24453340

ABSTRACT

Retinal progenitor proliferation and differentiation are tightly controlled by extrinsic cues and distinctive combinations of transcription factors leading to the generation of retinal cell type diversity. In this context, we have characterized Bcl-2-associated transcription factor (Bclaf1) during rodent retinogenesis. Bclaf1 expression is restricted to early-born cell types, such as ganglion, amacrine, and horizontal cells. Analysis of developing retinas in Bclaf1-deficient mice revealed a reduction in the numbers of retinal ganglion cells, amacrine cells and horizontal cells and an increase in the numbers of cone photoreceptor precursors. Silencing of Bclaf1expression by in vitro electroporation of shRNA in embryonic retina confirmed that Bclaf1 serves to promote amacrine and horizontal cell differentiation. Misexpression of Bclaf1 in late retinal progenitors was not sufficient to directly induce the generation of amacrine and horizontal cells. Domain deletion analysis indicated that the N-terminal domain of Bclaf1 containing an arginine-serine-rich and a bZip domain is required for its effects on retinal cell differentiation. In addition, analysis revealed that Bclaf1 function occurs independently of its interaction with endogenous Bcl-2-related proteins. Altogether, our data demonstrates that Bclaf1expression in postmitotic early-born cells facilitates the differentiation of early retinal precursors into retinal ganglion cells, amacrine cells, and horizontal cells rather than into cone photoreceptors.


Subject(s)
Cell Differentiation/physiology , Neural Stem Cells/cytology , Neurogenesis/physiology , Repressor Proteins/metabolism , Retinal Neurons/cytology , Retinal Neurons/metabolism , Animals , Blotting, Western , Fluorescent Antibody Technique , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , Neural Stem Cells/metabolism , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
9.
Cell Death Discov ; 10(1): 48, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38272861

ABSTRACT

Glaucoma is a multifactorial neurodegenerative disease characterized by the progressive and irreversible degeneration of the optic nerve and retinal ganglion cells. Despite medical advances aiming at slowing degeneration, around 40% of treated glaucomatous patients will undergo vision loss. It is thus of utmost importance to have a better understanding of the disease and to investigate more deeply its early causes. The transcriptional coactivator YAP, an important regulator of eye homeostasis, has recently drawn attention in the glaucoma research field. Here we show that Yap conditional knockout mice (Yap cKO), in which the deletion of Yap is induced in both Müller glia (i.e. the only retinal YAP-expressing cells) and the non-pigmented epithelial cells of the ciliary body, exhibit a breakdown of the aqueous-blood barrier, accompanied by a progressive collapse of the ciliary body. A similar phenotype is observed in human samples that we obtained from patients presenting with uveitis. In addition, aged Yap cKO mice harbor glaucoma-like features, including deregulation of key homeostatic Müller-derived proteins, retinal vascular defects, optic nerve degeneration and retinal ganglion cell death. Finally, transcriptomic analysis of Yap cKO retinas pointed to early-deregulated genes involved in extracellular matrix organization potentially underlying the onset and/or progression of the observed phenotype. Together, our findings reveal the essential role of YAP in preserving the integrity of the ciliary body and retinal ganglion cells, thereby preventing the onset of uveitic glaucoma-like features.

10.
Mol Neurobiol ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38802640

ABSTRACT

Dystrophin Dp71 is the major product of the Duchenne muscular dystrophy (DMD) gene in the brain, and its loss in DMD patients and mouse models leads to cognitive impairments. Dp71 is expressed as a range of proteins generated by alternative splicing of exons 71 to 74 and 78, classified in the main Dp71d and Dp71f groups that contain specific C-terminal ends. However, it is unknown whether each isoform has a specific role in distinct cell types, brain regions, and/or stages of brain development. In the present study, we characterized the expression of Dp71 isoforms during fetal (E10.5, E15.5) and postnatal (P1, P7, P14, P21 and P60) mouse and rat brain development. We finely quantified the expression of several Dp71 transcripts by RT-PCR and cloning assays in samples from whole-brain and distinct brain structures. The following Dp71 transcripts were detected: Dp71d, Dp71d∆71, Dp71d∆74, Dp71d∆71,74, Dp71d∆71-74, Dp71f, Dp71f∆71, Dp71f∆74, Dp71f∆71,74, and Dp71fΔ71-74. We found that the Dp71f isoform is the main transcript expressed at E10.5 (> 80%), while its expression is then progressively reduced and replaced by the expression of isoforms of the Dp71d group from E15.5 to postnatal and adult ages. This major finding was confirmed by third-generation nanopore sequencing. In addition, we found that the level of expression of specific Dp71 isoforms varies as a function of postnatal stages and brain structure. Our results suggest that Dp71 isoforms have different and complementary roles during embryonic and postnatal brain development, likely taking part in a variety of maturation processes in distinct cell types.

11.
J Neurosci ; 32(2): 528-41, 2012 Jan 11.
Article in English | MEDLINE | ID: mdl-22238088

ABSTRACT

Cone photoreceptors are the primary initiator of visual transduction in the human retina. Dysfunction or death of rod photoreceptors precedes cone loss in many retinal and macular degenerative diseases, suggesting a rod-dependent trophic support for cone survival. Rod differentiation and homeostasis are dependent on the basic motif leucine zipper transcription factor neural retina leucine zipper (NRL). The loss of Nrl (Nrl(-/-)) in mice results in a retina with predominantly S-opsin-containing cones that exhibit molecular and functional characteristics of wild-type cones. Here, we report that Nrl(-/-) retina undergoes a rapid but transient period of degeneration in early adulthood, with cone apoptosis, retinal detachment, alterations in retinal vessel structure, and activation and translocation of retinal microglia. However, cone degeneration stabilizes by 4 months of age, resulting in a thinner but intact outer nuclear layer with residual cones expressing S- and M-opsins and a preserved photopic electroretinogram. At this stage, microglia translocate back to the inner retina and reacquire a quiescent morphology. Gene profiling analysis during the period of transient degeneration reveals misregulation of genes related to stress response and inflammation, implying their involvement in cone death. The Nrl(-/-) mouse illustrates the long-term viability of cones in the absence of rods and retinal pigment epithelium defects in a rodless retina. We propose that Nrl(-/-) retina may serve as a model for elucidating mechanisms of cone homeostasis and degeneration that would be relevant to understanding diseases of the cone-dominant human macula.


Subject(s)
Apoptosis/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Eye Proteins/genetics , Retina/abnormalities , Retina/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retinal Degeneration/physiopathology , Animals , Basic-Leucine Zipper Transcription Factors/deficiency , Disease Models, Animal , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Retinal Cone Photoreceptor Cells/pathology , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Retinal Detachment/genetics , Retinal Detachment/pathology , Retinal Detachment/physiopathology
12.
Hum Mol Genet ; 20(21): 4102-15, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21813656

ABSTRACT

The orphan nuclear receptor NR2E3 is a direct transcriptional target of NRL, the key basic motif leucine zipper transcription factor that dictates rod versus cone photoreceptor cell fate in the mammalian retina. The lack of NR2E3 function in humans and in retinal degeneration rd7 mutant mouse leads to increased S-cones accompanied by rod degeneration, whereas ectopic expression of Nr2e3 in the cone-only Nrl(-/-) retina generates rod-like cells that do not exhibit any visual function. Using GFP to tag the newborn rods and by 5-bromo-2'-deoxyuridine birthdating, we demonstrate that early-born post-mitotic photoreceptor precursors in the rd7 retina express cone-specific genes. Transgenic mouse studies in the rd7 background show that Nr2e3 when expressed under the control of Crx promoter can restore rod photoreceptor function and suppress cone gene expression. Furthermore, Nr2e3 expression in photoreceptor precursors committed to be rods (driven by the Nrl promoter) could completely rescue the retinal phenotype of the rd7 mice. We conclude that excess of S-cones in the rd7 retina originate from photoreceptor precursors with a 'default' fate and not from proliferation of cones and that Nr2e3 is required to suppress the expression of S-cone genes during normal rod differentiation. These studies further support the 'transcriptional dominance' model of photoreceptor cell fate determination and provide insights into the pathogenesis of retinal disease phenotypes caused by NR2E3 mutations.


Subject(s)
Orphan Nuclear Receptors/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/pathology , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Stem Cells/metabolism , Stem Cells/pathology , Animals , Flow Cytometry , Gene Expression Regulation , Green Fluorescent Proteins/metabolism , Mice , Mice, Mutant Strains , Models, Biological , Opsins/metabolism , Organ Specificity/genetics , Phenotype , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/pathology
13.
Commun Biol ; 6(1): 762, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37479765

ABSTRACT

Retinal progenitor cells (RPCs) are the source of all retinal cell types during retinogenesis. Until now, the isolation and expansion of RPCs has been at the expense of their multipotency. Here, we report simple methods and media for the generation, expansion, and cryopreservation of human induced pluripotent stem-cell derived-RPCs (hiRPCs). Thawed and passed hiRPCs maintained biochemical and transcriptional RPC phenotypes and their ability to differentiate into all retinal cell types. Specific conditions allowed the generation of large cultures of photoreceptor precursors enriched up to 90% within a few weeks and without a purification step. Combined RNA-seq analysis between hiRPCs and retinal organoids identified genes involved in developmental or degenerative retinal diseases. Thus, hiRPC lines could provide a valuable source of retinal cells for cell-based therapies or drug discovery and could be an advanced cellular tool to better understand retinal dystrophies.


Subject(s)
Induced Pluripotent Stem Cells , Retinal Diseases , Humans , Retina , Retinal Diseases/genetics , Neurons
14.
Prog Retin Eye Res ; 93: 101155, 2023 03.
Article in English | MEDLINE | ID: mdl-36669906

ABSTRACT

Myopia is the most common eye disorder, caused by heterogeneous genetic and environmental factors. Rare progressive and stationary inherited retinal disorders are often associated with high myopia. Genes implicated in myopia encode proteins involved in a variety of biological processes including eye morphogenesis, extracellular matrix organization, visual perception, circadian rhythms, and retinal signaling. Differentially expressed genes (DEGs) identified in animal models mimicking myopia are helpful in suggesting candidate genes implicated in human myopia. Complete congenital stationary night blindness (cCSNB) in humans and animal models represents an ON-bipolar cell signal transmission defect and is also associated with high myopia. Thus, it represents also an interesting model to identify myopia-related genes, as well as disease mechanisms. While the origin of night blindness is molecularly well established, further research is needed to elucidate the mechanisms of myopia development in subjects with cCSNB. Using whole transcriptome analysis on three different mouse models of cCSNB (in Gpr179-/-, Lrit3-/- and Grm6-/-), we identified novel actors of the retinal signaling cascade, which are also novel candidate genes for myopia. Meta-analysis of our transcriptomic data with published transcriptomic databases and genome-wide association studies from myopia cases led us to propose new biological/cellular processes/mechanisms potentially at the origin of myopia in cCSNB subjects. The results provide a foundation to guide the development of pharmacological myopia therapies.


Subject(s)
Eye Diseases, Hereditary , Genetic Diseases, X-Linked , Myopia , Night Blindness , Animals , Mice , Humans , Night Blindness/genetics , Genome-Wide Association Study , Electroretinography/methods , Mutation , Eye Diseases, Hereditary/genetics , Eye Diseases, Hereditary/metabolism , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/metabolism , Myopia/genetics , Membrane Proteins/genetics
15.
Cells ; 11(18)2022 09 16.
Article in English | MEDLINE | ID: mdl-36139472

ABSTRACT

Glycogen synthase kinase 3 (GSK3) is a key regulator of many cellular signaling processes and performs a wide range of biological functions in the nervous system. Due to its central role in numerous cellular processes involved in cell degeneration, a rising number of studies have highlighted the interest in developing therapeutics targeting GSK3 to treat neurodegenerative diseases. Although recent works strongly suggest that inhibiting GSK3 might also be a promising therapeutic approach for retinal degenerative diseases, its full potential is still under-evaluated. In this review, we summarize the literature on the role of GSK3 on the main cellular functions reported as deregulated during retinal degeneration, such as glucose homeostasis which is critical for photoreceptor survival, or oxidative stress, a major component of retinal degeneration. We also discuss the interest in targeting GSK3 for its beneficial effects on inflammation, for reducing neovascularization that occurs in some retinal dystrophies, or for cell-based therapy by enhancing Müller glia cell proliferation in diseased retina. Together, although GSK3 inhibitors hold promise as therapeutic agents, we highlight the complexity of targeting such a multitasked kinase and the need to increase our knowledge of the impact of reducing GSK3 activity on these multiple cellular pathways and biological processes.


Subject(s)
Retinal Degeneration , Ependymoglial Cells , Glucose/pharmacology , Glycogen Synthase Kinase 3/pharmacology , Humans , Retina , Retinal Degeneration/drug therapy
16.
NPJ Regen Med ; 7(1): 39, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35974011

ABSTRACT

Mutations in the ubiquitously expressed pre-mRNA processing factor (PRPF) 31 gene, one of the most common causes of dominant form of Retinitis Pigmentosa (RP), lead to a retina-specific phenotype. It is uncertain which retinal cell types are affected and animal models do not clearly present the RP phenotype observed in PRPF31 patients. Retinal organoids and retinal pigment epithelial (RPE) cells derived from human-induced pluripotent stem cells (iPSCs) provide potential opportunities for studying human PRPF31-related RP. We demonstrate here that RPE cells carrying PRPF31 mutations present important morphological and functional changes and that PRPF31-mutated retinal organoids recapitulate the human RP phenotype, with a rod photoreceptor cell death followed by a loss of cones. The low level of PRPF31 expression may explain the defective phenotypes of PRPF31-mutated RPE and photoreceptor cells, which were not observed in cells derived from asymptomatic patients or after correction of the pathogenic mutation by CRISPR/Cas9. Transcriptome profiles revealed differentially expressed and mis-spliced genes belonging to pathways in line with the observed defective phenotypes. The rescue of RPE and photoreceptor defective phenotypes by PRPF31 gene augmentation provide the proof of concept for future therapeutic strategies.

17.
J Biol Chem ; 285(33): 25637-44, 2010 Aug 13.
Article in English | MEDLINE | ID: mdl-20551322

ABSTRACT

Development of rod photoreceptors in the mammalian retina is critically dependent on the basic motif-leucine zipper transcription factor NRL (neural retina leucine zipper). In the absence of NRL, photoreceptor precursors in mouse retina produce only cones that primarily express S-opsin. Conversely, ectopic expression of NRL in post-mitotic precursors leads to a rod-only retina. To explore the role of signaling molecules in modulating NRL function, we identified putative sites of post-translational modification in the NRL protein by in silico analysis. Here, we demonstrate the sumoylation of NRL in vivo and in vitro, with two small ubiquitin-like modifier (SUMO) molecules attached to the Lys-20 residue. NRL-K20R and NRL-K20R/K24R sumoylation mutants show reduced transcriptional activation of Nr2e3 and rhodopsin promoters (two direct targets of NRL) in reporter assays when compared with wild-type NRL. Consistent with this, in vivo electroporation of the NRL-K20R/K24R mutant into newborn Nrl(-/-) mouse retina leads to reduced Nr2e3 activation and only a partial rescue of the Nrl(-/-) phenotype in contrast to the wild-type NRL that is able to convert cones to rod photoreceptors. Although PIAS3 (protein inhibitor of activated STAT3), an E3-SUMO ligase implicated in photoreceptor differentiation, can be immunoprecipitated with NRL, there appears to be redundancy in E3 ligases, and PIAS3 does not seem to be essential for NRL sumoylation. Our studies suggest an important role of sumoylation in fine-tuning the activity of NRL and thereby incorporating yet another layer of control in gene regulatory networks involved in photoreceptor development and homeostasis.


Subject(s)
Basic-Leucine Zipper Transcription Factors/physiology , Photoreceptor Cells/cytology , Photoreceptor Cells/metabolism , SUMO-1 Protein/metabolism , Amino Acid Sequence , Animals , Basic-Leucine Zipper Transcription Factors/chemistry , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Line , Eye Proteins/chemistry , Eye Proteins/genetics , Eye Proteins/metabolism , Eye Proteins/physiology , Humans , Immunoblotting , Immunoprecipitation , Mice , Mice, Mutant Strains , Molecular Chaperones/metabolism , Molecular Sequence Data , Orphan Nuclear Receptors/genetics , Promoter Regions, Genetic/genetics , Protein Inhibitors of Activated STAT/metabolism , Rhodopsin/genetics , Sequence Homology, Amino Acid
18.
Mol Vis ; 17: 3034-54, 2011.
Article in English | MEDLINE | ID: mdl-22162623

ABSTRACT

PURPOSE: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to compare NGS-derived retinal transcriptome profiling (RNA-seq) to microarray and quantitative reverse transcription polymerase chain reaction (qRT-PCR) methods and to evaluate protocols for optimal high-throughput data analysis. METHODS: Retinal mRNA profiles of 21-day-old wild-type (WT) and neural retina leucine zipper knockout (Nrl(-/-)) mice were generated by deep sequencing, in triplicate, using Illumina GAIIx. The sequence reads that passed quality filters were analyzed at the transcript isoform level with two methods: Burrows-Wheeler Aligner (BWA) followed by ANOVA (ANOVA) and TopHat followed by Cufflinks. qRT-PCR validation was performed using TaqMan and SYBR Green assays. RESULTS: Using an optimized data analysis workflow, we mapped about 30 million sequence reads per sample to the mouse genome (build mm9) and identified 16,014 transcripts in the retinas of WT and Nrl(-/-) mice with BWA workflow and 34,115 transcripts with TopHat workflow. RNA-seq data confirmed stable expression of 25 known housekeeping genes, and 12 of these were validated with qRT-PCR. RNA-seq data had a linear relationship with qRT-PCR for more than four orders of magnitude and a goodness of fit (R(2)) of 0.8798. Approximately 10% of the transcripts showed differential expression between the WT and Nrl(-/-) retina, with a fold change ≥1.5 and p value <0.05. Altered expression of 25 genes was confirmed with qRT-PCR, demonstrating the high degree of sensitivity of the RNA-seq method. Hierarchical clustering of differentially expressed genes uncovered several as yet uncharacterized genes that may contribute to retinal function. Data analysis with BWA and TopHat workflows revealed a significant overlap yet provided complementary insights in transcriptome profiling. CONCLUSIONS: Our study represents the first detailed analysis of retinal transcriptomes, with biologic replicates, generated by RNA-seq technology. The optimized data analysis workflows reported here should provide a framework for comparative investigations of expression profiles. Our results show that NGS offers a comprehensive and more accurate quantitative and qualitative evaluation of mRNA content within a cell or tissue. We conclude that RNA-seq based transcriptome characterization would expedite genetic network analyses and permit the dissection of complex biologic functions.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Oligonucleotide Array Sequence Analysis/methods , RNA, Messenger/genetics , Retina/metabolism , Sequence Analysis, RNA/methods , Transcriptome/genetics , Animals , Basic-Leucine Zipper Transcription Factors/deficiency , Basic-Leucine Zipper Transcription Factors/genetics , Comparative Genomic Hybridization , Eye Proteins/genetics , Gene Expression Profiling , Gene Regulatory Networks , Genome , Mice , Mice, Knockout , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transcription, Genetic
19.
eNeuro ; 8(5)2021.
Article in English | MEDLINE | ID: mdl-34518365

ABSTRACT

Glycogen synthase kinase 3 (GSK3) proteins (GSK3α and GSK3ß) are key mediators of signaling pathways, with crucial roles in coordinating fundamental biological processes during neural development. Here we show that the complete loss of GSK3 signaling in mouse retinal progenitors leads to microphthalmia with broad morphologic defects. A single wild-type allele of either Gsk3α or Gsk3ß is able to rescue this phenotype. In this genetic context, all cell types are present in a functional retina. However, we unexpectedly detected a large number of cells in the inner nuclear layer expressing retinal ganglion cell (RGC)-specific markers (called displaced RGCs, dRGCs) when at least one allele of Gsk3α is expressed. The excess of dRGCs leads to an increased number of axons projecting into the ipsilateral medial terminal nucleus, an area of the brain belonging to the non-image-forming visual circuit and poorly targeted by RGCs in wild-type retina. Transcriptome analysis and optomotor response assay suggest that at least a subset of dRGCs in Gsk3 mutant mice are direction-selective RGCs. Our study thus uncovers a unique role of GSK3 in controlling the production of ganglion cells in the inner nuclear layer, which correspond to dRGCs, a rare and poorly characterized retinal cell type.


Subject(s)
Glycogen Synthase Kinase 3 , Retinal Ganglion Cells , Animals , Axons , Glycogen Synthase Kinase 3/genetics , Mice , Retina
20.
JCI Insight ; 6(19)2021 10 08.
Article in English | MEDLINE | ID: mdl-34437304

ABSTRACT

BACKGROUNDThis study systematically investigated circulating and retinal tissue lipid determinants of human diabetic retinopathy (DR) to identify underlying lipid alterations associated with severity of DR.METHODSRetinal tissues were retrieved from postmortem human eyes, including 19 individuals without diabetes, 20 with diabetes but without DR, and 20 with diabetes and DR, for lipidomic study. In a parallel study, serum samples from 28 American Indians with type 2 diabetes from the Gila River Indian Community, including 12 without DR, 7 with mild nonproliferative DR (NPDR), and 9 with moderate NPDR, were selected. A mass-spectrometry-based lipidomic platform was used to measure serum and tissue lipids.RESULTSIn the postmortem retinas, we found a graded decrease of long-chain acylcarnitines and longer-chain fatty acid ester of hydroxyl fatty acids, diacylglycerols, triacylglycerols, phosphatidylcholines, and ceramide(NS) in central retina from individuals with no diabetes to those with diabetes with DR. The American Indians' sera also exhibited a graded decrease in circulating long-chain acylcarnitines and a graded increase in the intermediate-length saturated and monounsaturated triacylglycerols from no DR to moderate NPDR.CONCLUSIONThese findings suggest diminished synthesis of complex lipids and impaired mitochondrial ß-oxidation of fatty acids in retinal DR, with parallel changes in circulating lipids.TRIAL REGISTRATIONClinicalTrials.gov NCT00340678.FUNDINGThis work was supported by NIH grants R24 DK082841, K08DK106523, R03DK121941, P30DK089503, P30DK081943, P30DK020572, P30 EY007003; The Thomas Beatson Foundation; and JDRF Center for Excellence (5-COE-2019-861-S-B).


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Diabetic Retinopathy/metabolism , Lipidomics , Retina/metabolism , Adult , Black or African American , Aged , Arizona , Carnitine/analogs & derivatives , Carnitine/metabolism , Case-Control Studies , Ceramides/metabolism , Diabetes Mellitus, Type 2/complications , Diabetic Retinopathy/etiology , Diglycerides/metabolism , Disease Progression , Esters/metabolism , Female , Hispanic or Latino , Humans , Male , Mass Spectrometry , Middle Aged , Mitochondria/metabolism , Phosphatidylcholines/metabolism , Triglycerides/metabolism , White People , American Indian or Alaska Native
SELECTION OF CITATIONS
SEARCH DETAIL