Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Chemistry ; 27(17): 5399-5403, 2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33524171

ABSTRACT

Ultrafast optical control of intramolecular charge flow was demonstrated, which paves the way for photocurrent modulation and switching with a highly wavelength-selective ON/OFF ratio. The system that was explored is a fac-[Re(CO)3 (TTF-DPPZ)Cl] complex, where TTF-DPPZ=4',5'-bis(propylthio)tetrathiafulvenyl[i]dipyrido[3,2-a:2',3'-c]phenazine. DFT calculations and AC-Stark spectroscopy confirmed the presence of two distinct optically active charge-transfer processes, namely a metal-to-ligand charge transfer (MLCT) and an intra-ligand charge transfer (ILCT). Ultrafast transient absorption measurements showed that the ILCT state decays in the ps regime. Upon excitation to the MLCT state, only a long-lived 3 MLCT state was observed after 80 ps. Remarkably, however, the bleaching of the ILCT absorption band remained as a result of the effective inhibition of the HOMO-LUMO transition.

2.
J Chem Ecol ; 47(8-9): 732-739, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34347234

ABSTRACT

The pine brown tail moth, Euproctis terminalis (Walker 1855), is a periodic pest in pine plantations in South Africa. The larvae feed on pine needles and can cause severe defoliation when population densities are high. Population densities fluctuate temporally and spatially, complicating the prediction of potential growth loss and tree mortality. The aim of this study was to identify the sex pheromone of the pine brown tail moth to provide stakeholders with a tool for monitoring it. Gas chromatography-electroantennogram detection and gas chromatography/mass spectrometry analyses of female pheromone gland extracts identified the major component as (Z,Z,Z,Z)-7,13,16,19-docosatetraen-1-ol isobutyrate. Traps baited with (Z,Z,Z,Z)-7,13,16,19-docosatetraen-1-ol isobutyrate caught more males than unbaited traps. A delta trap was shown to be a superior design compared to a bucket funnel trap. This pheromone can now be used for monitoring E. terminalis in pine plantations.


Subject(s)
Moths/physiology , Sex Attractants/analysis , Animals , DNA/chemistry , Electron Transport Complex IV/genetics , Female , Gas Chromatography-Mass Spectrometry , Isobutyrates/analysis , Isobutyrates/pharmacology , Larva/growth & development , Male , Moths/chemistry , Moths/growth & development , Pinus/parasitology , Sequence Analysis, DNA , Sex Attractants/pharmacology , Sexual Behavior, Animal/drug effects
3.
Anal Bioanal Chem ; 412(23): 5759-5777, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32681223

ABSTRACT

Volatile organic compounds (VOCs) and semi-VOCs detected on the human skin surface are of great interest to researchers in the fields of metabolomics, diagnostics, and skin microbiota and in the study of anthropophilic vector mosquitoes. Mosquitoes use chemical cues to find their host, and humans can be ranked for attractiveness to mosquitoes based on their skin chemical profile. Additionally, mosquitoes show a preference to bite certain regions on the human host. In this study, the chemical differences in the skin surface profiles of 20 human volunteers were compared based on inter-human attractiveness to mosquitoes, as well as inter- and intra-human mosquito biting site preference. A passive, non-invasive approach was followed to sample the wrist and ankle skin surface region. An in-house developed polydimethylsiloxane (PDMS) passive sampler was used to concentrate skin VOCs and semi-VOCs prior to thermal desorption directly in the GC inlet with comprehensive gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOFMS). Compounds from a broad range of chemical classes were detected and identified as contributing to the differences in the surface skin chemical profiles. 5-Ethyl-1,2,3,4-tetrahydronaphthalene, 1,1'-oxybisoctane, 2-(dodecyloxy)ethanol, α,α-dimethylbenzene methanol, methyl salicylate, 2,6,10,14-tetramethylhexadecane, 1,2-benzenedicarboxylic acid, bis(2-methylpropyl) ester, 4-methylbenzaldehyde, 2,6-diisopropylnaphthalene, n-hexadecanoic acid, and γ-oxobenzenebutanoic acid ethyl ester were closely associated with individuals who perceived themselves as attractive for mosquitoes. Additionally, biological lead compounds as potential attractants or repellants in vector control strategies were tentatively identified. Results augment current knowledge on human skin chemical profiles and show the potential of using a non-invasive sampling approach to investigate anthropophilic mosquito-host interactions. Graphical abstract.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Malaria/transmission , Mosquito Control , Mosquito Vectors , Skin/chemistry , Host-Parasite Interactions , Humans , Malaria/parasitology , Volatile Organic Compounds/analysis
4.
J Phys Chem A ; 124(51): 10687-10693, 2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33320003

ABSTRACT

We investigated the anti-Kasha photochemistry and anti-Kasha emission of d8-metal donor-acceptor dithiolene with femtosecond UV-vis transient absorption spectroscopy and molecular modeling. Experimentally, we found a lifetime of 1.4 ps for higher excited states, which is exceptionally long when compared to typical values for internal conversion (IC) (10 s of fs or less). Consequently, a substantial emission originates from the second excited state. Molecular modeling suggests this to be a consequence of the spatially separated molecular orbitals of the first and second excited states, which gives a charge transfer character to the IC. More surprisingly, we found that the inherent flexibility of the molecule allows the metal complex to access different configurations depending on the photoexcited state. We believe that this unique manifestation of anti-Kasha photoinduced conformational isomerization is facilitated by the exceptionally long lifetime of the second excited state.

5.
J Sep Sci ; 43(22): 4202-4215, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32902131

ABSTRACT

Variation in inter-human attractiveness to mosquitoes, and the preference of mosquitoes to bite certain regions on the human host, are possible avenues for identifying lead compounds as potential mosquito attractants or repellents. We report a practical, non-invasive method for the separation and detection of skin surface chemical compounds and comparison of skin chemical profiles between the ankle and wrist skin surface area sampled over a 5-day period of a human volunteer using comprehensive gas chromatography coupled to time-of-flight mass spectrometry. An in-house made polydimethylsiloxane passive mini-sampler, worn as an anklet or a bracelet, was used to concentrate skin volatiles and semi-volatiles prior to thermal desorption directly in the gas chromatography. A novel method for the addition of an internal standard to sorptive samplers was introduced through solvent modification. This approach enabled a more reliable comparison of human skin surface chemical profiles. Compounds that were closely associated with the wrist included 6-methyl-1-heptanol, 3-(4-isopropylphenyl)-2-methylpropionaldehyde, 2-phenoxyethyl isobutyrate, and 2,4,6-trimethyl-pyridine. Conversely, compounds only detected on the ankle region included 2-butoxyethanol phosphate, 2-heptanone, and p-menthan-8-ol. In addition to known human skin compounds we report two compounds, carvone and (E)-2-decenal, not previously reported. Limits of detection ranged from 1 pg (carvone) to 362 pg (indole).


Subject(s)
Host-Parasite Interactions , Insect Bites and Stings , Skin/chemistry , Volatile Organic Compounds/analysis , Adsorption , Animals , Culicidae , Gas Chromatography-Mass Spectrometry , Humans , Particle Size , Surface Properties
6.
Environ Monit Assess ; 189(8): 418, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28752240

ABSTRACT

The occurrence of selected brominated flame retardants, including nine polybrominated diphenyl ether (PBDE) congeners, hexabromocyclododecane (HBCDD) and tetrabromobisphenol A (TBBPA) in leachate samples from eight landfill sites in South Africa, were investigated. In addition, the possible influences of dissolved organic carbon on their levels were also evaluated. Filtered leachate samples were subjected to solid-phase extraction to isolate the various target compounds. PBDEs with six bromine substituents and above, as well as α-HBCDD, ß-HBCDD and TBBPA, were generally found below the detection limit. However, the mean value of the total lower PBDE congeners ranged between 0.04 and 0.48 µg L-1, and the concentrations of γ-HBCDD ranged from not detectable (ND) to 0.05 µg L-1. No significant correlation was observed between the target compounds and dissolved organic carbon, although weak to moderate correlations were mostly observed for the lower PBDEs.


Subject(s)
Environmental Monitoring , Flame Retardants/analysis , Halogenated Diphenyl Ethers/analysis , Hydrocarbons, Brominated/analysis , Polybrominated Biphenyls , Solid Phase Extraction , South Africa , Water Pollutants, Chemical/analysis
7.
Chemphyschem ; 16(5): 943-8, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25652263

ABSTRACT

Dye-sensitized solar cells based on a mesoporous ZnO substrate were sensitized with the indoline derivatives DN91, DN216 and DN285. The chromophore is the same for each of these dyes. They differ from each other in the length of an alkyl chain, which provides a second anchor to the ZnO surface and prolongs cell lifetime. Ultrafast transient absorption measurements reveal a correlation between the length of the alkyl chain and the fastest electron-injection process. The depopulation of the excited state and the associated emergence of the oxidized molecules are dominant spectral features in the transient absorption of the dyes with shorter alkyl chains. A slower picosecond-scale decay proceeds at constant rate for all three derivatives and is assigned to electron transfer into the trap states of ZnO. All assignments are in good agreement with a higher quantum efficiency of charge injection leading to higher short-circuit currents J(sc) for dyes with shorter alkyl chains.

8.
Glob Chall ; 8(1): 2300263, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38223891

ABSTRACT

Ninety percent of the large interior, rural part of Africa is not an abundant user of fossil fuels and is not connected to an electricity grid. This limits habitability and leads to significant migration to larger cities in attempts to improve economic and social welfare, which happens at the cost of its rich cultural diversity by inevitable adaption and mixing of societies. A direct transition from a firewood to an off-grid renewable electricity age can mitigate this detrimental development. This perspective discusses the interdisciplinary requirements linking cultural, sociological, economic, and technical aspects for a transition to modern life without loss of valuable traditions. Photovoltaic power and wind energy can provide local affordable electricity in off-grid locations. Intermediate storage for day-night cycles is catered for by novel types of batteries. Purifying and recycling water, refrigerating food and medicine, and benefitting from contact with the world via electronic media permit a tremendous increase in living conditions and significantly lower the pressure of migration into cities. Access to energy is a fundamental requirement for the preservation of the rich cultural diversity with family and tribal bindings, local languages, traditions, and religions, and allows for a more moderate transition to a modern society.

9.
J Mass Spectrom ; 59(1): e4992, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38108549

ABSTRACT

High-resolution mass spectrometry and ion mobility spectrometry provide additional confidence in biological marker discovery and elucidation by adding additional peak capacity through physiochemical separation orthogonal to chromatography. Sophisticated analytical techniques have proved valuable in the identification of human skin surface chemicals used by vector mosquitoes to find their human host. Polydimethylsiloxane (PDMS) was used as a non-invasive passive wearable sampler to concentrate skin surface non-volatile and semi-volatile compounds prior to solvent desorption directly in an LC vial, thereby simplifying the link between extraction and analysis. Ultra-performance liquid chromatography with ion mobility spectrometry coupled with high-resolution mass spectrometry (UPLC-IMS-HRMS) was used for compound separation and detection. A comparison of the skin chemical profiles between the ankle and wrist skin surface region sampled over a 5-day period for a human volunteer was done. Twenty-three biomarkers were tentatively identified with the aid of a collision cross-section (CCS) prediction tool, seven associated with the ankle skin surface region and 16 closely associated with the wrist skin surface. Ten amino acids were detected and unequivocally identified on the human skin surface for the first time. Furthermore, 22 previously unreported skin surface compounds were tentatively identified on the human skin surface using accurate mass, CCS values and fragmentation patterns. Method limits of detection for the passive skin sampling method ranged from 8.7 (sulfadimethoxine) to 95 ng (taurine). This approach enabled the detection and identification of as-yet unknown human skin surface compounds and provided corresponding CCS values.


Subject(s)
Culicidae , Mosquito Vectors , Animals , Humans , Skin , Amino Acids , Ion Mobility Spectrometry
10.
Heliyon ; 10(9): e30068, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38707327

ABSTRACT

Before the introduction of Bactrocera dorsalis (Hendel) to sub-Saharan Africa, Ceratitis cosyra (Walker) was economically the most important pest in mango farming. Its native natural enemy, the solitary parasitoid Psyttalia cosyrae (Wilkinson), played a crucial role in C. cosyra bio-control, later complemented by the exotic parasitoids Diachasmimorpha longicaudata (Ashmead) and Fopius arisanus (Sonan) among Integrated Pest Management (IPM) systems. To understand the in situ mango-C. cosyra-parasitoid tritrophic interaction, we assessed the responses of the fruit fly and the three parasitoids to headspace volatiles from various mango conditions. These conditions included non-infested mature unripe mangoes, C. cosyra-infested mangoes, 7th- and 9th-day post-infestation mangoes, non-infested ripe mangoes of three varieties (Kent, Apple, and Haden), and clean air (blank). We also compared the fruit fly's performance in the mango varieties and identified the chemical profiles of mango headspace volatiles. Ceratitis cosyra was attracted to both infested and non-infested mangoes (66-84 % of responsive C. cosyra) and showed superior performance in Kent mango (72.1 % of the 287 puparia recovered) compared to Apple and Haden varieties. Fopius arisanus displayed a stronger attraction to the volatiles of C. cosyra-infested mangoes (68-70 %), while P. cosyrae and D. longicaudata were significantly attracted to the 9th-day post-infestation mangoes (68-78 %) compared to non-infested mango volatiles. Gas chromatography-mass spectroscopy showed substantial quantitative and qualitative differences in volatile profiles among mango treatments. Esters predominated in non-infested ripe, 7th- and 9th-day post-infestation mangoes, while monoterpenes and sesquiterpenes were most dominant in the other treatments. The in situ experiments underscored varying preferences of the species for mango headspace volatiles and their subsequent treatments. These results provide valuable insights for further exploration, specifically in identifying the key volatiles responsible for species responses, to facilitate the development of applicable selective semiochemicals for managing species of African fruit fly.

11.
Nat Commun ; 15(1): 4212, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760343

ABSTRACT

For decades, it was considered all but impossible to perform Stark spectroscopy on molecules in a liquid solution, because their concomitant orientation to the applied electric field results in overwhelming background signals. A way out was to immobilize the solute molecules by freezing the solvent. While mitigating solute orientation, freezing removes the possibility to study molecules in liquid environments at ambient conditions. Here we demonstrate time-resolved THz Stark spectroscopy, utilizing intense single-cycle terahertz pulses as electric field source. At THz frequencies, solute molecules have no time to orient their dipole moments. Hence, dynamic Stark spectroscopy on the time scales of molecular vibrations or rotations in both non-polar and polar solvents at arbitrary temperatures is now possible. We verify THz Stark spectroscopy for two judiciously selected molecular systems and compare the results to conventional Stark spectroscopy and first principle calculations.

12.
Chemphyschem ; 14(1): 132-9, 2013 Jan 14.
Article in English | MEDLINE | ID: mdl-23112080

ABSTRACT

We investigate the ultrafast dynamics of the photoinduced electron transfer between surface-adsorbed indoline D149 dye and porous ZnO as used in the working electrodes of dye-sensitized solar cells. Transient absorption spectroscopy was conducted on the dye in solution, on solid state samples and for the latter in contact to a I(-)/I(3)(-) redox electrolyte typical for dye-sensitized solar cells to elucidate the effect of each component in the observed dynamics. D149 in a solution of 1:1 acetonitrile and tert-butyl alcohol shows excited-state lifetimes of 300±50 ps. This signature is severely quenched when D149 is adsorbed to ZnO, with the fastest component of the decay trace measured at 150±20 fs due to the charge-transfer mechanism. Absorption bands of the oxidized dye molecule were investigated to determine regeneration times which are in excess of 1 ns. The addition of the redox electrolyte to the system results in faster regeneration times, of the order of 1 ns.

13.
Article in English | MEDLINE | ID: mdl-37995549

ABSTRACT

Tuberculosis (TB) remains a global health concern. This study aimed to investigate the potential of human skin volatile organic compounds (VOCs) as prospective biomarkers for TB diagnosis. It employed a non-invasive approach using a wearable silicone rubber band for VOC sampling, comprehensive gas chromatography - time of flight mass spectrometry (GCxGC-TOFMS), and chemometric techniques. Both targeted and untargeted biochemical screening was utilized to explore biochemical differences between healthy individuals and those with TB infection. Results confirmed a correlation between compounds found in this study, and those reported for TB from other biofluids. In a comparison to known TB-associated compounds from other biofluids our analysis established the presence of 27 of these compounds emanating from human skin. Additionally, 16 previously unreported compounds were found as potential biomarkers. The diagnostic ability of the VOCs selected by statistical methods was investigated using predictive modelling techniques. Artificial neural network multi-layered perceptron (ANN) yielded two compounds, 1H-indene, 2,3 dihydro-1,1,3-trimethyl-3-phenyl; and heptane-3-ethyl-2-methyl, as the most discriminatory, and could differentiate between TB-positive (n = 15) and TB-negative (n = 23) individuals with an area under the receiver operating characteristic curve (AUROC) of 92 %, a sensitivity of 100 % and a specificity of 94 % for six targeted features. For untargeted analysis, ANN assigned 3-methylhexane as the most discriminatory between TB-positive and TB- negative individuals. An AUROC of 98.5 %, a sensitivity of 83 %, and a specificity of 88 % were obtained for 16 untargeted features as chosen by high performance variable selection. The obtained values compare highly favourable to alternative diagnostic methods such as breath analysis and GeneXpert. Consequently, human skin VOCs hold considerable potential as a TB diagnostic screening test.


Subject(s)
Tuberculosis , Volatile Organic Compounds , Humans , Tuberculosis/diagnosis , Gas Chromatography-Mass Spectrometry/methods , Skin/chemistry , Volatile Organic Compounds/analysis , Biomarkers
14.
Nucl Med Biol ; 116-117: 108307, 2023.
Article in English | MEDLINE | ID: mdl-36435145

ABSTRACT

BACKGROUND: Ubiquicidin is a peptide fragment with selective binding to negatively charged bacterial cell membranes. Besides its earlier labelling with gamma emitting radionuclides, it has been labelled with Positron Emission Tomography (PET) radionuclides in the last decade for imaging infection and distinguishing infectious disease from sterile inflammation. This systematic review aims to evaluate the technology readiness level of PET based ubiquicidin radiopharmaceuticals. METHODS: Two independent researchers reviewed all articles and abstracts pertaining ubiquicidin and PET imaging that are currently available. Scopus, Google Scholar and PubMed/Medline were used in the search. Upon completion of the literature search all articles and abstracts were evaluated and duplicates were excluded. All non-PET articles as well as review articles without new data were deemed ineligible. RESULTS: From a total of 17 papers and 10 abstracts the studies were grouped into development, preclinical and clinical studies. Development was published in 15/17 (88%) publications and 6/10 (60%) abstracts, preclinical applications in 9/17 (53%) publications and 1/10 (10%) of abstracts. Finally, clinical studies made up 6/17 (35%) of full publications and 4/10 (40%) of the available abstracts. Development results were the most abundant. All the findings in the different areas of development of ubiquicidin as PET radiopharmaceutical are summarized in this paper. CONCLUSION: Labelling procedures are generally uncomplicated and relatively fast and there are indications of adequate product stability. The production of PET radiopharmaceuticals based on UBI will therefore not be a barrier for clinical introduction of this technology. Systematization and unification of criteria for preclinical imaging and larger clinical trials are needed to ensure the translation of this radiopharmaceutical into the clinic. Therefore a conclusion with regards to the clinical relevance of ubiquicidin based PET is not yet possible.


Subject(s)
Positron-Emission Tomography , Radiopharmaceuticals , Humans , Positron-Emission Tomography/methods , Ribosomal Proteins , Inflammation
15.
J Mass Spectrom ; 56(2): e4686, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33462985

ABSTRACT

Human skin surface chemical cues comprise a complex mixture of compounds that mosquitoes use to locate and select their human host, based on inter- and intra-human variation in chemical profiles. The complexity of the skin surface matrix calls for advanced analytical techniques to enable separation and identification of biomarkers, which may be used as topical attractants and repellants in future mosquito vector control programmes. The perceived mosquito attractiveness between 20 volunteers and the preference of mosquitoes to bite certain regions, namely, ankle versus wrist, of the human host were investigated in this study, by comparing skin surface chemical profiles. Ion mobility was combined with high resolution mass spectrometry to provide additional confidence in biological marker discovery and identification of human skin surface compounds. This study employed a non-intrusive sampling scheme using a polydimethylsiloxane (PDMS) sampler and solvent desorption analysed with ultra-performance liquid chromatography with ion mobility high-resolution mass spectrometry (UPLC-IMS-HRMS). Statistical approaches guided the identification of 14 biological markers discerning difference in perceived mosquito attractiveness and 20 biomarkers associated with the different skin regions sampled. A broad range (m/z 96.0437 to 788.6095) of chemical compounds was detected from a variety of classes (including sugars, steroids, fatty acids, peptides and peptide derivatives, and compounds of food origin). Ten compounds were unequivocally identified on the human skin surface, and caffeine was reported on the human skin surface for the first time. Furthermore, 77 compounds, of which 64 to the authors' knowledge have not previously been reported, were detected on the human skin surface using accurate mass, collision cross section (CCS) values and fragmentation patterns. This approach enabled comprehensive human skin surface chemical profiling and provides an extensive list of tentatively identified skin surface compounds together with accurate mass values and adducts with their corresponding CCS values.


Subject(s)
Biomarkers/analysis , Mass Spectrometry/methods , Skin/chemistry , Adult , Animals , Biomarkers/chemistry , Chromatography, High Pressure Liquid , Humans , Middle Aged , Mosquito Control , Mosquito Vectors , Skin/anatomy & histology , Young Adult
16.
Chem Commun (Camb) ; 57(34): 4142-4145, 2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33908495

ABSTRACT

Photo-induced oxidation-enhancement in biomimetic bridged Ru(ii)-Mo(vi) photo-catalyst is unexpectedly photo-activated in ps timescales. One-photon absorption generates an excited state where both photo-oxidized and photo-reduced catalytic centres are activated simultaneously and independently.

17.
Parasit Vectors ; 13(1): 80, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32066499

ABSTRACT

The use of semiochemicals in odour-based traps for surveillance and control of vector mosquitoes is deemed a new and viable component for integrated vector management programmes. Over 114 semiochemicals have been identified, yet implementation of these for management of infectious diseases such as malaria, dengue, chikungunya and Rift Valley fever is still a major challenge. The difficulties arise due to variation in how different mosquito species respond to not only single chemical compounds but also complex chemical blends. Additionally, mosquitoes respond to different volatile blends when they are looking for a mating partner, oviposition sites or a meal. Analytically the challenge lies not only in correctly identifying these semiochemical signals and cues but also in developing formulations that effectively mimic blend ratios that different mosquito species respond to. Only then can the formulations be used to enhance the selectivity and efficacy of odour-based traps. Understanding how mosquitoes use semiochemical cues and signals to survive may be key to unravelling these complex interactions. An overview of the current studies of these chemical messages and the chemical ecology involved in complex behavioural patterns is given. This includes an updated list of the semiochemicals which can be used for integrated vector control management programmes. A thorough understanding of these semiochemical cues is of importance for the development of new vector control methods that can be integrated into established control strategies.


Subject(s)
Mosquito Control/methods , Mosquito Vectors , Pheromones , Aedes , Animals , Anopheles , Culex , Female , Odorants
18.
Chemosphere ; 238: 124643, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31473532

ABSTRACT

Polychlorinated n-alkanes or chlorinated paraffins (CPs) contain a magnitude of structural isomers and are categorized as short-chain (SCCPs), medium-chain (MCCPs), and long-chain (LCCPs) CPs, according to the carbon chain lengths. In this study the Æ©SCCPs, Æ©MCCPs, and Æ©LCCP concentrations are reported for South African indoor dust and pet cat hair. The median concentrations of the Æ©CPs (C9-C37) ranged from 33 to 663 µg/g for freshly collected dust (FD), 36-488 µg/g for dust collected from household vacuum cleaner bags (VD), and 1.2-15 µg/g for cat hair (CH) samples. MCCPs were the dominant CP group, followed by SCCPs and LCCPs. The Æ©MCCP concentration ranged from 13 to 498 µg/g in dust and 0.6-6.5 µg/g in cat hair. SCCPs with shorter carbon chains and lower chlorine substitution were observed in cat hair. LCCPs with carbon chains > C20 were detected in dust and hair samples, possibly indicating the use of wax grade LCCP formulations. Non-traditional Kendrick mass defect plots were used to obtain information on the magnitude of CPs and provide evidence of possible interfering compounds. This is the first report on the occurrence of SCCPs, MCCPs, and LCCPs in the South African indoor environment.


Subject(s)
Dust/analysis , Hair/chemistry , Hydrocarbons, Chlorinated/chemistry , Paraffin/chemistry , Air Pollution, Indoor , Animals , Cats , Environmental Monitoring , Hydrocarbons, Chlorinated/analysis , Paraffin/analysis , South Africa
19.
Toxins (Basel) ; 11(5)2019 05 14.
Article in English | MEDLINE | ID: mdl-31091836

ABSTRACT

Mycotoxins occur worldwide in the major grains, and producers, traders and processors are all challenged to prevent serious health problems for consumers. The challenges originate with pre-harvest fungi infections in the grain fields, increased contamination during improper storage and, finally, the mycotoxin accumulation in commercial food and feed products. Little is known about the multi-mycotoxin occurrence in maize and wheat commercially produced in South Africa. This is the first comprehensive study that reports on the multi-mycotoxin occurrence in South African produced maize and wheat crops after harvest, over four production seasons, in all the production regions of the country. The study was made possible with the development of a fit-for-purpose, cost-effective LC-MS/MS multi-mycotoxin method, validated for 13 "regulated" mycotoxins. A low mycotoxin risk was found in South African produced wheat, with only deoxynivalenol (DON) in 12.5% of the 160 samples at levels well below the 2000 µg/kg South African (SA) regulatory level. It was concluded that aflatoxin B1 (AFB1) is seldom present in South African produced commercial maize. The concentrations, regional variation and seasonal trends of deoxynivalenol and fumonisins, the two most prevalent mycotoxins, and of zearalenone (ZON), are reported for white and yellow maize in all the production provinces, based on the analytical results of 1400 maize samples. A threefold to eightfold increase in deoxynivalenol mean concentrations in white maize was observed in the main production regions in the fourth season, with 8.9% samples above 2000 µg/kg. A strong correlation was found between higher deoxynivalenol concentrations and the presence of 15-acetyl-deoxynivalenol (15-ADON). The mean fumonisin concentrations were well below the 4000 µg/kg South African regulatory value. A possible shift in the incidence and severity of mycotoxigenic Fusarium spp. in the provinces must be investigated. The variations and trends highlight the importance of a continuous monitoring of multi-mycotoxins in South Africa along the grain value chain.


Subject(s)
Edible Grain/chemistry , Food Contamination/analysis , Mycotoxins/analysis , Triticum , Zea mays , Chromatography, Liquid , Environmental Monitoring , Reproducibility of Results , South Africa , Tandem Mass Spectrometry
20.
J Mass Spectrom ; 54(4): 328-341, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30720234

ABSTRACT

The heavy petroleum fractions produced during refining processes need to be upgraded to useable products to increase their value. Hydrogenated heavy paraffinic fractions can be oxidised to produce high value products that contain a variety of oxygenates. These heavy oxygenated paraffinic fractions need to be characterised to enable the control of oxidation processes and to understand product properties. The accurate identification of the oxygenates present in these fractions by electron ionisation (EI) mass spectrometry is challenging due to the complexity of these heavy fractions. Adding to this challenge is the limited applicability of EI mass spectral libraries due to the absence of molecular ions from the EI mass spectra of many oxygenates. The separation of oxygenates from the complex hydrocarbon matrix prior to high temperature GC-MS (HT-GC-MS) analysis reduces the complexity of these fractions and assists in the accurate identification of these oxygenates. Solid phase extraction (SPE) and supercritical fluid chromatography (SFC) were employed as prefractionation techniques. GC-MS with supersonic molecular beams (SMBs) (also named GC-MS with cold-EI) utilises a SMB interface with which EI is done with vibrationally cold sample compounds in a fly-through ion source (cold-EI) resulting in a substantial increase in the molecular ion signal intensity in the mass spectrum. This greatly enhances the accurate identification of the oxygenates in these fractions. This study investigated the ionisation behaviour of oxygenated compounds using cold-EI. The prefractionation by SPE and SFC and the subsequent analysis with GC-MS with cold-EI were applied to an oxygenated heavy paraffinic fraction.

SELECTION OF CITATIONS
SEARCH DETAIL