Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
BMC Genomics ; 21(1): 126, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32024463

ABSTRACT

BACKGROUND: Bacteriophages encode genes that modify bacterial functions during infection. The acquisition of phage-encoded virulence genes is a major mechanism for the rise of bacterial pathogens. In coral reefs, high bacterial density and lysogeny has been proposed to exacerbate reef decline through the transfer of phage-encoded virulence genes. However, the functions and distribution of these genes in phage virions on the reef remain unknown. RESULTS: Here, over 28,000 assembled viral genomes from the free viral community in Atlantic and Pacific Ocean coral reefs were queried against a curated database of virulence genes. The diversity of virulence genes encoded in the viral genomes was tested for relationships with host taxonomy and bacterial density in the environment. These analyses showed that bacterial density predicted the profile of virulence genes encoded by phages. The Shannon diversity of virulence-encoding phages was negatively related with bacterial density, leading to dominance of fewer genes at high bacterial abundances. A statistical learning analysis showed that reefs with high microbial density were enriched in viruses encoding genes enabling bacterial recognition and invasion of metazoan epithelium. Over 60% of phages could not have their hosts identified due to limitations of host prediction tools; for those which hosts were identified, host taxonomy was not an indicator of the presence of virulence genes. CONCLUSIONS: This study described bacterial virulence factors encoded in the genomes of bacteriophages at the community level. The results showed that the increase in microbial densities that occurs during coral reef degradation is associated with a change in the genomic repertoire of bacteriophages, specifically in the diversity and distribution of bacterial virulence genes. This suggests that phages are implicated in the rise of pathogens in disturbed marine ecosystems.


Subject(s)
Bacteria/genetics , Bacteriophages/genetics , Genes, Bacterial , Virulence Factors/genetics , Bacteria/pathogenicity , Coral Reefs , Ecosystem , Genome, Viral , Genomics
2.
Proc Natl Acad Sci U S A ; 114(2): E171-E180, 2017 01 10.
Article in English | MEDLINE | ID: mdl-28028238

ABSTRACT

Dinoflagellates are key species in marine environments, but they remain poorly understood in part because of their large, complex genomes, unique molecular biology, and unresolved in-group relationships. We created a taxonomically representative dataset of dinoflagellate transcriptomes and used this to infer a strongly supported phylogeny to map major morphological and molecular transitions in dinoflagellate evolution. Our results show an early-branching position of Noctiluca, monophyly of thecate (plate-bearing) dinoflagellates, and paraphyly of athecate ones. This represents unambiguous phylogenetic evidence for a single origin of the group's cellulosic theca, which we show coincided with a radiation of cellulases implicated in cell division. By integrating dinoflagellate molecular, fossil, and biogeochemical evidence, we propose a revised model for the evolution of thecal tabulations and suggest that the late acquisition of dinosterol in the group is inconsistent with dinoflagellates being the source of this biomarker in pre-Mesozoic strata. Three distantly related, fundamentally nonphotosynthetic dinoflagellates, Noctiluca, Oxyrrhis, and Dinophysis, contain cryptic plastidial metabolisms and lack alternative cytosolic pathways, suggesting that all free-living dinoflagellates are metabolically dependent on plastids. This finding led us to propose general mechanisms of dependency on plastid organelles in eukaryotes that have lost photosynthesis; it also suggests that the evolutionary origin of bioluminescence in nonphotosynthetic dinoflagellates may be linked to plastidic tetrapyrrole biosynthesis. Finally, we use our phylogenetic framework to show that dinoflagellate nuclei have recruited DNA-binding proteins in three distinct evolutionary waves, which included two independent acquisitions of bacterial histone-like proteins.


Subject(s)
Dinoflagellida/genetics , Evolution, Molecular , Phylogeny , Plastids , RNA, Protozoan/genetics , Sequence Analysis, RNA , Transcriptome
3.
Proc Natl Acad Sci U S A ; 114(44): 11685-11690, 2017 10 31.
Article in English | MEDLINE | ID: mdl-29078340

ABSTRACT

Untargeted metabolomics of environmental samples routinely detects thousands of small molecules, the vast majority of which cannot be identified. Meta-mass shift chemical (MeMSChem) profiling was developed to identify mass differences between related molecules using molecular networks. This approach illuminates metabolome-wide relationships between molecules and the putative chemical groups that differentiate them (e.g., H2, CH2, COCH2). MeMSChem profiling was used to analyze a publicly available metabolomic dataset of coral, algal, and fungal mat holobionts (i.e., the host and its associated microbes and viruses) sampled from some of Earth's most remote and pristine coral reefs. Each type of holobiont had distinct mass shift profiles, even when the analysis was restricted to molecules found in all samples. This result suggests that holobionts modify the same molecules in different ways and offers insights into the generation of molecular diversity. Three genera of stony corals had distinct patterns of molecular relatedness despite their high degree of taxonomic relatedness. MeMSChem profiles also partially differentiated between individuals, suggesting that every coral reef holobiont is a potential source of novel chemical diversity.


Subject(s)
Anthozoa/metabolism , Metabolomics/methods , Animals , Coral Reefs , Metabolome , Transcriptome
4.
Proc Natl Acad Sci U S A ; 111(26): 9567-72, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24927546

ABSTRACT

The Precambrian explosion led to the rapid appearance of most major animal phyla alive today. It has been argued that the complexity of life has steadily increased since that event. Here we challenge this hypothesis through the characterization of apoptosis in reef-building corals, representatives of some of the earliest animals. Bioinformatic analysis reveals that all of the major components of the death receptor pathway are present in coral with high-predicted structural conservation with Homo sapiens. The TNF receptor-ligand superfamilies (TNFRSF/TNFSF) are central mediators of the death receptor pathway, and the predicted proteome of Acropora digitifera contains more putative coral TNFRSF members than any organism described thus far, including humans. This high abundance of TNFRSF members, as well as the predicted structural conservation of other death receptor signaling proteins, led us to wonder what would happen if corals were exposed to a member of the human TNFSF (HuTNFα). HuTNFα was found to bind directly to coral cells, increase caspase activity, cause apoptotic blebbing and cell death, and finally induce coral bleaching. Next, immortalized human T cells (Jurkats) expressing a functional death receptor pathway (WT) and a corresponding Fas-associated death domain protein (FADD) KO cell line were exposed to a coral TNFSF member (AdTNF1) identified and purified here. AdTNF1 treatment resulted in significantly higher cell death (P < 0.0001) in WT Jurkats compared with the corresponding FADD KO, demonstrating that coral AdTNF1 activates the H. sapiens death receptor pathway. Taken together, these data show remarkable conservation of the TNF-induced apoptotic response representing 550 My of functional conservation.


Subject(s)
Adaptation, Biological/genetics , Anthozoa/genetics , Apoptosis/genetics , Biological Evolution , Receptors, Tumor Necrosis Factor/genetics , Tumor Necrosis Factor-alpha/genetics , Adaptation, Biological/immunology , Animals , Anthozoa/metabolism , Apoptosis/drug effects , Cells, Cultured , Computational Biology , Electrophoresis, Gel, Two-Dimensional , Fas-Associated Death Domain Protein/genetics , Fas-Associated Death Domain Protein/metabolism , Flow Cytometry , Gene Knockout Techniques , Humans , Immunohistochemistry , Jurkat Cells , Microscopy, Fluorescence , Receptors, Death Domain/metabolism , Species Specificity , Tumor Necrosis Factor-alpha/pharmacology
5.
Proc Biol Sci ; 283(1837)2016 Aug 31.
Article in English | MEDLINE | ID: mdl-27581878

ABSTRACT

Immunity is mostly studied in a few model organisms, leaving the majority of immune systems on the planet unexplored. To characterize the immune systems of non-model organisms alternative approaches are required. Viruses manipulate host cell biology through the expression of proteins that modulate the immune response. We hypothesized that metagenomic sequencing of viral communities would be useful to identify both known and unknown host immune proteins. To test this hypothesis, a mock human virome was generated and compared to the human proteome using tBLASTn, resulting in 36 proteins known to be involved in immunity. This same pipeline was then applied to reef-building coral, a non-model organism that currently lacks traditional molecular tools like transgenic animals, gene-editing capabilities, and in vitro cell cultures. Viromes isolated from corals and compared with the predicted coral proteome resulted in 2503 coral proteins, including many proteins involved with pathogen sensing and apoptosis. There were also 159 coral proteins predicted to be involved with coral immunity but currently lacking any functional annotation. The pipeline described here provides a novel method to rapidly predict host immune components that can be applied to virtually any system with the potential to discover novel immune proteins.


Subject(s)
Anthozoa/immunology , Metagenomics , Proteome/immunology , Viruses/genetics , Animals , Humans
6.
Proc Natl Acad Sci U S A ; 110(50): 20236-41, 2013 Dec 10.
Article in English | MEDLINE | ID: mdl-24259713

ABSTRACT

Bacterial viruses (phages) are the most abundant biological group on Earth and are more genetically diverse than their bacterial prey/hosts. To characterize their role as agents shaping gut microbial community structure, adult germ-free mice were colonized with a consortium of 15 sequenced human bacterial symbionts, 13 of which harbored one or more predicted prophages. One member, Bacteroides cellulosilyticus WH2, was represented by a library of isogenic transposon mutants that covered 90% of its genes. Once assembled, the community was subjected to a staged phage attack with a pool of live or heat-killed virus-like particles (VLPs) purified from the fecal microbiota of five healthy humans. Shotgun sequencing of DNA from the input pooled VLP preparation plus shotgun sequencing of gut microbiota samples and purified fecal VLPs from the gnotobiotic mice revealed a reproducible nonsimultaneous pattern of attack extending over a 25-d period that involved five phages, none described previously. This system allowed us to (i) correlate increases in specific phages present in the pooled VLPs with reductions in the representation of particular bacterial taxa, (ii) provide evidence that phage resistance occurred because of ecological or epigenetic factors, (iii) track the origin of each of the five phages among the five human donors plus the extent of their genome variation between and within recipient mice, and (iv) establish the dramatic in vivo fitness advantage that a locus within a B. cellulosilyticus prophage confers upon its host. Together, these results provide a defined community-wide view of phage-bacterial host dynamics in the gut.


Subject(s)
Bacteroides/virology , Gastrointestinal Tract/microbiology , Genetic Variation/genetics , Germ-Free Life , Host-Pathogen Interactions/physiology , Models, Animal , Prophages/genetics , Animals , Bacteroides/genetics , Base Sequence , Cell Count , Clustered Regularly Interspaced Short Palindromic Repeats , DNA Primers/genetics , Feces/microbiology , Flow Cytometry , Humans , Mice , Molecular Sequence Data , Polymerase Chain Reaction , Sequence Analysis, DNA
7.
J Acoust Soc Am ; 135(4): 1775-88, 2014 Apr.
Article in English | MEDLINE | ID: mdl-25234977

ABSTRACT

Although ambient biological underwater sound was first characterized more than 60 years ago, attributing specific components of ambient sound to their creators remains a challenge. Noise produced by snapping shrimp typically dominates the ambient spectra near tropical coasts, but significant unexplained spectral variation exists. Here, evidence is presented indicating that a discernible contribution to the ambient sound field over coral reef ecosystems in the Line Islands archipelago originates from the interaction of hard-shelled benthic macro-organisms with the coral substrate. Recordings show a broad spectral peak centered between 14.30 and 14.63 kHz, incoherently added to a noise floor typically associated with relatively "white" snapping shrimp sounds. A 4.6 to 6.2 dB increase of pressure spectral density level in the 11 to 17 kHz band occurs simultaneously with an increase in benthic invertebrate activity at night, quantified through time-lapse underwater photography. Spectral-level-filtered recordings of hermit crabs Clibanarius diugeti in quiet aquarium conditions reveal that transient sounds produced by the interaction between the crustaceans' carapace, shell, and coral substrate are spectrally consistent with Line Islands recordings. Coral reef ecosystems are highly interconnected and subtle yet important ecological changes may be detected quantitatively through passive monitoring that utilizes the acoustic byproducts of biological activity.


Subject(s)
Coral Reefs , Crustacea/physiology , Sound , Acoustics , Animals , Environmental Monitoring/methods , Motion , Pressure , Seawater , Signal Processing, Computer-Assisted , Sound Spectrography , Time Factors
8.
Proc Biol Sci ; 279(1733): 1655-64, 2012 Apr 22.
Article in English | MEDLINE | ID: mdl-22090385

ABSTRACT

Competition between reef-building corals and benthic algae is of key importance for reef dynamics. These interactions occur on many spatial scales, ranging from chemical to regional. Using microprobes, 16S rDNA pyrosequencing and underwater surveys, we examined the interactions between the reef-building coral Montastraea annularis and four types of benthic algae. The macroalgae Dictyota bartayresiana and Halimeda opuntia, as well as a mixed consortium of turf algae, caused hypoxia on the adjacent coral tissue. Turf algae were also associated with major shifts in the bacterial communities at the interaction zones, including more pathogens and virulence genes. In contrast to turf algae, interactions with crustose coralline algae (CCA) and M. annularis did not appear to be antagonistic at any scale. These zones were not hypoxic, the microbes were not pathogen-like and the abundance of coral-CCA interactions was positively correlated with per cent coral cover. We propose a model in which fleshy algae (i.e. some species of turf and fleshy macroalgae) alter benthic competition dynamics by stimulating bacterial respiration and promoting invasion of virulent bacteria on corals. This gives fleshy algae a competitive advantage over corals when human activities, such as overfishing and eutrophication, remove controls on algal abundance. Together, these results demonstrate the intricate connections and mechanisms that structure coral reefs.


Subject(s)
Anthozoa/physiology , Chlorophyta/physiology , Phaeophyceae/physiology , Seawater/microbiology , Animals , Cell Hypoxia , Coral Reefs , Models, Theoretical , Population Dynamics
9.
Funct Ecol ; 36(8): 2104-2118, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36247100

ABSTRACT

The increased release of dissolved organic matter (DOM) by algae has been associated with the fast but inefficient growth of opportunistic microbial pathogens and the ongoing degradation of coral reefs. Turf algae (consortia of microalgae and macroalgae commonly including cyanobacteria) dominate benthic communities on many reefs worldwide. Opposite to other reef algae that predominantly release DOM during the day, turf algae containing cyanobacteria may additionally release large amounts of DOM at night. However, this night-DOM release and its potential contribution to the microbialization of reefs remains to be investigated.We first tested the occurrence of hypoxic conditions at the turf algae-water interface, as a lack of oxygen will facilitate the production and release of fermentation intermediates as night-time DOM. Second, the dissolved organic carbon (DOC) release by turf algae was quantified during day time and nighttime, and the quality of day and night exudates as food for bacterioplankton was tested. Finally, DOC release rates of turf algae were combined with estimates of DOC release based on benthic community composition in 1973 and 2013 to explore how changes in benthic community composition affected the contribution of night-DOC to the reef-wide DOC production.A rapid shift from supersaturated to hypoxic conditions at the turf algae-water interface occurred immediately after the onset of darkness, resulting in night-DOC release rates similar to those during daytime. Bioassays revealed major differences in the quality between day and night exudates: Night-DOC was utilized by bacterioplankton two times faster than day-DOC, but yielded a four times lower growth efficiency. Changes in benthic community composition were estimated to have resulted in a doubling of DOC release since 1973, due to an increasing abundance of benthic cyanobacterial mats (BCMs), with night-DOC release by BCMs and turf algae accounting for >50% of the total release over a diurnal cycle.Night-DOC released by BCMs and turf algae is likely an important driver in the microbialization of reefs by stimulating microbial respiration at the expense of energy and nutrient transfer to higher trophic levels via the microbial loop, thereby threatening the productivity and biodiversity of these unique ecosystems. Read the free Plain Language Summary for this article on the Journal blog.


El incremento de la liberación de materia orgánica disuelta (MOD) por parte de las algas se ha asociado con el crecimiento rápido pero ineficaz de microorganismos patógenos oportunistas y la continua degradación de los arrecifes coralinos. Los céspedes algales (consorcios de micro y macroalgas que suelen incluir cianobacterias) dominan las comunidades bentónicas de muchos arrecifes de todo el mundo. A diferencia de otras algas de arrecife que liberan predominantemente MOD durante el día, los céspedes algales que contienen cianobacterias pueden liberar adicionalmente grandes cantidades de MOD durante la noche. Sin embargo, esta liberación nocturna de MOD y su potencial contribución a la microbialización de los arrecifes aún falta por ser investigada.En primer lugar, investigamos la existencia de condiciones de hipoxia en la interfase entre los céspedes algales y el agua, ya que la falta de oxígeno facilitaría la producción y liberación de productos intermedios de fermentación como MOD nocturna. En segundo lugar, cuantificamos la liberación de carbono orgánico disuelto (COD) por los céspedes algales durante el día y la noche, y se comprobó la calidad de los exudados diurnos y nocturnos como alimento para el bacterioplancton. Finalmente, las tasas de liberación de MOD de los céspedes algales se combinaron con las estimaciones de liberación de COD basadas en la composición de la comunidad bentónica en 1973 y 2013 para explorar cómo los cambios en la composición de la comunidad bentónica afectaron a la contribución de MOD nocturna y a su vez a la producción de COD en todo el arrecife.En ausencia de luz, se produjo inmediatamente un cambio rápido de condiciones sobresaturadas a condiciones hipóxicas en la interfaz entre los céspedes algales y el agua, lo que dio lugar a tasas de liberación de COD nocturnas similares a las diurnas. Los bioensayos revelaron importantes diferencias en la calidad de los exudados diurnos y nocturnos: el bacterioplancton utilizó el COD nocturno dos veces más rápido que el COD diurno, pero su eficiencia de crecimiento fue cuatro veces menor. Se estimó que los cambios en la composición de la comunidad bentónica han dado lugar a una duplicación de la liberación de MOD desde 1973 debido a la creciente abundancia de tapetes de cianobacterias bentónicas, y que la liberación nocturna de COD por parte de estos tapetes y los céspedes algales representa >50% de la liberación total durante un ciclo diurno.El COD nocturno que es liberado por los tapetes de cianobacterias bentónicas y los céspedes algales es probablemente un importante promotor de la microbialización de los arrecifes al estimular la respiración microbiana a expensas de la transferencia de energía y nutrientes a los niveles tróficos superiores a través del bucle microbiano y, por tanto, amenaza la productividad y la biodiversidad de estos ecosistemas únicos.

10.
Environ Microbiol ; 13(5): 1192-204, 2011 May.
Article in English | MEDLINE | ID: mdl-21272183

ABSTRACT

The coral reef benthos is primarily colonized by corals and algae, which are often in direct competition with one another for space. Numerous studies have shown that coral-associated Bacteria are different from the surrounding seawater and are at least partially species specific (i.e. the same bacterial species on the same coral species). Here we extend these microbial studies to four of the major ecological functional groups of algae found on coral reefs: upright and encrusting calcifying algae, fleshy algae, and turf algae, and compare the results to the communities found on the reef-building coral Montastraea annularis. It was found using 16S rDNA tag pyrosequencing that the different algal genera harbour characteristic bacterial communities, and these communities were generally more diverse than those found on corals. While the majority of coral-associated Bacteria were related to known heterotrophs, primarily consuming carbon-rich coral mucus, algal-associated communities harboured a high percentage of autotrophs. The majority of algal-associated autotrophic Bacteria were Cyanobacteria and may be important for nitrogen cycling on the algae. There was also a rich diversity of photosynthetic eukaryotes associated with the algae, including protists, diatoms, and other groups of microalgae. Together, these observations support the hypothesis that coral reefs are a vast landscape of distinctive microbial communities and extend the holobiont concept to benthic algae.


Subject(s)
Anthozoa/microbiology , Biodiversity , Coral Reefs , Cyanobacteria/genetics , Microalgae/microbiology , Animals , Carbon/metabolism , Caribbean Region , Cyanobacteria/classification , Cyanobacteria/growth & development , Gene Library , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Sequence Analysis, DNA
11.
Proc Natl Acad Sci U S A ; 105(47): 18413-8, 2008 Nov 25.
Article in English | MEDLINE | ID: mdl-19017800

ABSTRACT

During the last several decades corals have been in decline and at least one-third of all coral species are now threatened with extinction. Coral disease has been a major contributor to this threat, but little is known about the responsible pathogens. To date most research has focused on bacterial and fungal diseases; however, viruses may also be important for coral health. Using a combination of empirical viral metagenomics and real-time PCR, we show that Porites compressa corals contain a suite of eukaryotic viruses, many related to the Herpesviridae. This coral-associated viral consortium was found to shift in response to abiotic stressors. In particular, when exposed to reduced pH, elevated nutrients, and thermal stress, the abundance of herpes-like viral sequences rapidly increased in 2 separate experiments. Herpes-like viral sequences were rarely detected in apparently healthy corals, but were abundant in a majority of stressed samples. In addition, surveys of the Nematostella and Hydra genomic projects demonstrate that even distantly related Cnidarians contain numerous herpes-like viral genes, likely as a result of latent or endogenous viral infection. These data support the hypotheses that corals experience viral infections, which are exacerbated by stress, and that herpes-like viruses are common in Cnidarians.


Subject(s)
Anthozoa/virology , Genomics , Herpesviridae/physiology , Virus Replication , Animals , Molecular Sequence Data , Polymerase Chain Reaction
12.
Curr Biol ; 28(21): 3355-3363.e4, 2018 11 05.
Article in English | MEDLINE | ID: mdl-30344114

ABSTRACT

Mixotrophy is among the most successful nutritional strategies in terrestrial and marine ecosystems. The ability of organisms to supplement primary nutritional modes along continua of autotrophy and heterotrophy fosters trophic flexibility that can sustain metabolic demands under variable or stressful conditions. Symbiotic, reef-building corals are among the most broadly distributed and ecologically important mixotrophs, yet we lack a basic understanding of how they modify their use of autotrophy and heterotrophy across gradients of food availability. Here, we evaluate how one coral species, Pocillopora meandrina, supplements autotrophic nutrition through heterotrophy within an archipelago and test whether this pattern holds across species globally. Using stable isotope analysis (δ13C) and satellite-derived estimates of nearshore primary production (chlorophyll-a, as a proxy for food availability), we show that P. meandrina incorporates a greater proportion of carbon via heterotrophy when more food is available across five central Pacific islands. We then show that this pattern is consistent globally using data from 15 coral species across 16 locations spanning the Caribbean Sea and the Indian and Pacific Oceans. Globally, surface chlorophyll-a explains 77% of the variation in coral heterotrophic nutrition, 86% for one genus across 10 islands, and 94% when controlling for coral taxonomy within archipelagos. These results demonstrate, for the first time, that satellite-derived estimates of nearshore primary production provide a globally relevant proxy for resource availability that can explain variation in coral trophic ecology. Thus, our model provides a pivotal step toward resolving the biophysical couplings between mixotrophic organisms and spatial patterns of resource availability in the coastal oceans.


Subject(s)
Anthozoa/metabolism , Carbon/metabolism , Coral Reefs , Ecosystem , Symbiosis , Animals , Autotrophic Processes , Oceans and Seas
13.
ISME J ; 11(4): 835-840, 2017 04.
Article in English | MEDLINE | ID: mdl-27983723

ABSTRACT

The last common metazoan ancestor (LCMA) emerged over half a billion years ago. These complex metazoans provided newly available niche space for viruses and microbes. Modern day contemporaries, such as cnidarians, suggest that the LCMA consisted of two cell layers: a basal endoderm and a mucus-secreting ectoderm, which formed a surface mucus layer (SML). Here we propose a model for the origin of metazoan immunity based on external and internal microbial selection mechanisms. In this model, the SML concentrated bacteria and their associated viruses (phage) through physical dynamics (that is, the slower flow fields near a diffusive boundary layer), which selected for mucin-binding capabilities. The concentration of phage within the SML provided the LCMA with an external microbial selective described by the bacteriophage adherence to mucus (BAM) model. In the BAM model, phage adhere to mucus protecting the metazoan host against invading, potentially pathogenic bacteria. The same fluid dynamics that concentrated phage and bacteria in the SML also concentrated eukaryotic viruses. As eukaryotic viruses competed for host intracellular niche space, those viruses that provided the LCMA with immune protection were maintained. If a resident virus became pathogenic or if a non-beneficial infection occurred, we propose that tumor necrosis factor (TNF)-mediated programmed cell death, as well as other apoptosis mechanisms, were utilized to remove virally infected cells. The ubiquity of the mucosal environment across metazoan phyla suggest that both BAM and TNF-induced apoptosis emerged during the Precambrian era and continue to drive the evolution of metazoan immunity.


Subject(s)
Biological Evolution , Immune System Phenomena/genetics , Microbiota/physiology , Viruses/genetics , Animals , Mucus/immunology , Mucus/virology
14.
PeerJ ; 5: e3423, 2017.
Article in English | MEDLINE | ID: mdl-28649468

ABSTRACT

Human impacts are causing ecosystem phase shifts from coral- to algal-dominated reef systems on a global scale. As these ecosystems undergo transition, there is an increased incidence of coral-macroalgal interactions. Mounting evidence indicates that the outcome of these interaction events is, in part, governed by microbially mediated dynamics. The allocation of available energy through different trophic levels, including the microbial food web, determines the outcome of these interactions and ultimately shapes the benthic community structure. However, little is known about the underlying thermodynamic mechanisms involved in these trophic energy transfers. This study utilizes a novel combination of methods including calorimetry, flow cytometry, and optical oxygen measurements, to provide a bioenergetic analysis of coral-macroalgal interactions in a controlled aquarium setting. We demonstrate that the energetic demands of microbial communities at the coral-algal interaction interface are higher than in the communities associated with either of the macroorganisms alone. This was evident through higher microbial power output (energy use per unit time) and lower oxygen concentrations at interaction zones compared to areas distal from the interface. Increases in microbial power output and lower oxygen concentrations were significantly correlated with the ratio of heterotrophic to autotrophic microbes but not the total microbial abundance. These results suggest that coral-algal interfaces harbor higher proportions of heterotrophic microbes that are optimizing maximal power output, as opposed to yield. This yield to power shift offers a possible thermodynamic mechanism underlying the transition from coral- to algal-dominated reef ecosystems currently being observed worldwide. As changes in the power output of an ecosystem are a significant indicator of the current state of the system, this analysis provides a novel and insightful means to quantify microbial impacts on reef health.

15.
Curr Biol ; 27(23): 3717-3724.e5, 2017 Dec 04.
Article in English | MEDLINE | ID: mdl-29174886

ABSTRACT

The origin of eukaryotic cells represents a key transition in cellular evolution and is closely tied to outstanding questions about mitochondrial endosymbiosis [1, 2]. For example, gene-rich mitochondrial genomes are thought to be indicative of an ancient divergence, but this relies on unexamined assumptions about endosymbiont-to-host gene transfer [3-5]. Here, we characterize Ancoracysta twista, a new predatory flagellate that is not closely related to any known lineage in 201-protein phylogenomic trees and has a unique morphology, including a novel type of extrusome (ancoracyst). The Ancoracysta mitochondrion has a gene-rich genome with a coding capacity exceeding that of all other eukaryotes except the distantly related jakobids and Diphylleia, and it uniquely possesses heterologous, nucleus-, and mitochondrion-encoded cytochrome c maturase systems. To comprehensively examine mitochondrial genome reduction, we also assembled mitochondrial genomes from picozoans and colponemids and re-annotated existing mitochondrial genomes using hidden Markov model gene profiles. This revealed over a dozen previously overlooked mitochondrial genes at the level of eukaryotic supergroups. Analysis of trends over evolutionary time demonstrates that gene transfer to the nucleus was non-linear, that it occurred in waves of exponential decrease, and that much of it took place comparatively early, massively independently, and with lineage-specific rates. This process has led to differential gene retention, suggesting that gene-rich mitochondrial genomes are not a product of their early divergence. Parallel transfer of mitochondrial genes and their functional replacement by new nuclear factors are important in models for the origin of eukaryotes, especially as major gaps in our knowledge of eukaryotic diversity at the deepest level remain unfilled.


Subject(s)
Alveolata/genetics , Evolution, Molecular , Genome, Mitochondrial , Alveolata/classification , Phylogeny
16.
Nat Microbiol ; 2(10): 1350-1357, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28785078

ABSTRACT

Cyanobacteria are important contributors to primary production in the open oceans. Over the past decade, various photosynthesis-related genes have been found in viruses that infect cyanobacteria (cyanophages). Although photosystem II (PSII) genes are common in both cultured cyanophages and environmental samples 1-4 , viral photosystem I (vPSI) genes have so far only been detected in environmental samples 5,6 . Here, we have used a targeted strategy to isolate a cyanophage from the tropical Pacific Ocean that carries a PSI gene cassette with seven distinct PSI genes (psaJF, C, A, B, K, E, D) as well as two PSII genes (psbA, D). This cyanophage, P-TIM68, belongs to the T4-like myoviruses, has a prolate capsid, a long contractile tail and infects Prochlorococcus sp. strain MIT9515. Phage photosynthesis genes from both photosystems are expressed during infection, and the resultant proteins are incorporated into membranes of the infected host. Moreover, photosynthetic capacity in the cell is maintained throughout the infection cycle with enhancement of cyclic electron flow around PSI. Analysis of metagenomic data from the Tara Oceans expedition 7 shows that phages carrying PSI gene cassettes are abundant in the tropical Pacific Ocean, composing up to 28% of T4-like cyanomyophages. They are also present in the tropical Indian and Atlantic Oceans. P-TIM68 populations, specifically, compose on average 22% of the PSI-gene-cassette carrying phages. Our results suggest that cyanophages carrying PSI and PSII genes are likely to maintain and even manipulate photosynthesis during infection of their Prochlorococcus hosts in the tropical oceans.


Subject(s)
Electron Transport/genetics , Myoviridae/genetics , Photosystem I Protein Complex/genetics , Photosystem II Protein Complex/genetics , Prochlorococcus/genetics , Prochlorococcus/virology , Atlantic Ocean , Gene Expression Regulation, Bacterial , Genes, Bacterial/genetics , Genes, Viral/genetics , Genome, Viral/genetics , Myoviridae/classification , Myoviridae/pathogenicity , Myoviridae/ultrastructure , Pacific Ocean , Photosynthesis/genetics , Phylogeny , Viral Proteins/genetics
17.
Ecol Lett ; 9(7): 835-45, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16796574

ABSTRACT

Declines in coral cover are generally associated with increases in the abundance of fleshy algae. In many cases, it remains unclear whether algae are responsible, directly or indirectly, for coral death or whether they simply settle on dead coral surfaces. Here, we show that algae can indirectly cause coral mortality by enhancing microbial activity via the release of dissolved compounds. When coral and algae were placed in chambers together but separated by a 0.02 mum filter, corals suffered 100% mortality. With the addition of the broad-spectrum antibiotic ampicillin, mortality was completely prevented. Physiological measurements showed complementary patterns of increasing coral stress with proximity to algae. Our results suggest that as human impacts increase and algae become more abundant on reefs a positive feedback loop may be created whereby compounds released by algae enhance microbial activity on live coral surfaces causing mortality of corals and further algal growth.


Subject(s)
Anthozoa , Eukaryota , Animals , Anthozoa/microbiology , Bacteria/chemistry , Ecosystem , Mortality , Population Dynamics
18.
NPJ Biofilms Microbiomes ; 2: 16010, 2016.
Article in English | MEDLINE | ID: mdl-28721247

ABSTRACT

Phages can exploit their bacterial hosts by lytic infection, when many viral particles are released at cell lysis, or by lysogeny, when phages integrate into the host's genome. We recently proposed a new dynamic model of bacteria-phage interactions in which lysogeny predominates at high microbial abundance and growth rates. This model, named Piggyback-the-Winner (PtW), contrasts to current accepted models on the frequency of lysis and lysogeny and predicts that phages integrate into their hosts' genomes as prophages when microbial abundances and growth rates are high. According to PtW, switching to the temperate life cycle reduces phage predation control on bacterial abundance and confers superinfection exclusion, preventing that a closely-related phage infects the same bacterial cell. Here we examine how PtW is important for metazoans. Specifically, we postulate that PtW and the recently described bacteriophage adherence to mucus (BAM) model are strongly interrelated and have an important role in the development of the microbiome. In BAM, phage produced by the microbiome attach to mucins and protect underlying epithelial cells from invading bacteria. Spatial structuring of the mucus creates a gradient of phage replication strategies consistent with PtW. We predict that lysogeny is favored at the top mucosal layer and lytic predation predominates in the bacteria-sparse intermediary layers. The lysogeny confers competitive advantage to commensals against niche invasion and the lytic infection eliminates potential pathogens from deeper mucus layers.

19.
ISME J ; 10(5): 1157-69, 2016 May.
Article in English | MEDLINE | ID: mdl-26555246

ABSTRACT

Coral and algal holobionts are assemblages of macroorganisms and microorganisms, including viruses, Bacteria, Archaea, protists and fungi. Despite a decade of research, it remains unclear whether these associations are spatial-temporally stable or species-specific. We hypothesized that conflicting interpretations of the data arise from high noise associated with sporadic microbial symbionts overwhelming signatures of stable holobiont members. To test this hypothesis, the bacterial communities associated with three coral species (Acropora rosaria, Acropora hyacinthus and Porites lutea) and two algal guilds (crustose coralline algae and turf algae) from 131 samples were analyzed using a novel statistical approach termed the Abundance-Ubiquity (AU) test. The AU test determines whether a given bacterial species would be present given additional sampling effort (that is, stable) versus those species that are sporadically associated with a sample. Using the AU test, we show that coral and algal holobionts have a high-diversity group of stable symbionts. Stable symbionts are not exclusive to one species of coral or algae. No single bacterial species was ubiquitously associated with one host, showing that there is not strict heredity of the microbiome. In addition to the stable symbionts, there was a low-diversity community of sporadic symbionts whose abundance varied widely across individual holobionts of the same species. Identification of these two symbiont communities supports the holobiont model and calls into question the hologenome theory of evolution.


Subject(s)
Anthozoa/microbiology , Archaea/classification , Microbiota , Symbiosis , Algorithms , Animals , Bacteria/classification , DNA Barcoding, Taxonomic , DNA, Ribosomal/analysis , Environment , Evolution, Molecular , Fungi/classification , Polymerase Chain Reaction , Sequence Analysis, DNA , Species Specificity , Viruses/classification
20.
ISME J ; 10(6): 1483-98, 2016 06.
Article in English | MEDLINE | ID: mdl-26623545

ABSTRACT

Cystic fibrosis (CF) lungs are filled with thick mucus that obstructs airways and facilitates chronic infections. Pseudomonas aeruginosa is a significant pathogen of this disease that produces a variety of toxic small molecules. We used molecular networking-based metabolomics to investigate the chemistry of CF sputa and assess how the microbial molecules detected reflect the microbiome and clinical culture history of the patients. Metabolites detected included xenobiotics, P. aeruginosa specialized metabolites and host sphingolipids. The clinical culture and microbiome profiles did not correspond to the detection of P. aeruginosa metabolites in the same samples. The P. aeruginosa molecules that were detected in sputum did not match those from laboratory cultures. The pseudomonas quinolone signal (PQS) was readily detectable from cultured strains, but absent from sputum, even when its precursor molecules were present. The lack of PQS production in vivo is potentially due to the chemical nature of the CF lung environment, indicating that culture-based studies of this pathogen may not explain its behavior in the lung. The most differentially abundant molecules between CF and non-CF sputum were sphingolipids, including sphingomyelins, ceramides and lactosylceramide. As these highly abundant molecules contain the inflammatory mediator ceramide, they may have a significant role in CF hyperinflammation. This study demonstrates that the chemical makeup of CF sputum is a complex milieu of microbial, host and xenobiotic molecules. Detection of a bacterium by clinical culturing and 16S rRNA gene profiling do not necessarily reflect the active production of metabolites from that bacterium in a sputum sample.


Subject(s)
Cystic Fibrosis/microbiology , Metabolome , Microbiota , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/metabolism , Quinolones/chemistry , Xenobiotics/chemistry , Adolescent , Ceramides/chemistry , Humans , Lung/microbiology , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/genetics , RNA, Ribosomal, 16S/genetics , Sputum/chemistry , Sputum/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL