Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Virus Genes ; 59(2): 323-332, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36542315

ABSTRACT

Bat-associated hantaviruses have been detected in Asia, Africa and Europe. Recently, a novel hantavirus (Brno loanvirus, BRNV) was identified in common noctule bats (Nyctalus noctula) in the Czech Republic, but nothing is known about its geographical range and prevalence. The objective of this study was to evaluate the distribution and host specificity of BRNV by testing bats from neighbouring countries Germany, Austria and Poland. One thousand forty-seven bats representing 21 species from Germany, 464 bats representing 18 species from Austria and 77 bats representing 12 species from Poland were screened by L segment broad-spectrum nested reverse transcription-polymerase chain reaction (RT-PCR) or by BRNV-specific real-time RT-PCR. Three common noctules from Germany, one common noctule from Austria and three common noctules from Poland were positive in the hantavirus RNA screening. Conventional RT-PCR and primer walking resulted in the amplification of partial L segment and (almost) complete S and M segment coding sequences for samples from Germany and partial L segment sequences for samples from Poland. Phylogenetic analysis of these nucleotide sequences showed highest similarity to BRNV from Czech Republic. The exclusive detection of BRNV in common noctules from different countries suggests high host specificity. The RNA detection rate in common noctules ranged between 1 of 207 (0.5%; Austria), 3 of 245 (1.2%; Germany) and 3 of 20 (15%; Poland). In conclusion, this study demonstrates a broader distribution of BRNV in common noctules in Central Europe, but at low to moderate prevalence. Additional studies are needed to prove the zoonotic potential of this hantavirus and evaluate its transmission within bat populations.


Subject(s)
Chiroptera , Hantavirus Infections , Orthohantavirus , Animals , Phylogeny , Orthohantavirus/genetics , Europe , Hantavirus Infections/epidemiology , Hantavirus Infections/veterinary , RNA, Viral/genetics
2.
Euro Surveill ; 28(16)2023 04.
Article in English | MEDLINE | ID: mdl-37078885

ABSTRACT

In late 2022 and early 2023, SARS-CoV-2 infections were detected on three mink farms in Poland situated within a few km from each other. Whole-genome sequencing of the viruses on two of the farms showed that they were related to a virus identified in humans in the same region 2 years before (B.1.1.307 lineage). Many mutations were found, including in the S protein typical of adaptations to the mink host. The origin of the virus remains to be determined.


Subject(s)
COVID-19 , Disease Reservoirs , Mink , SARS-CoV-2 , Animals , Humans , COVID-19/transmission , COVID-19/veterinary , Farms , Mink/virology , Poland/epidemiology , SARS-CoV-2/genetics , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Mutation , Whole Genome Sequencing
3.
Int J Mol Sci ; 24(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36614310

ABSTRACT

Exosomes may function as multifactorial mediators of cell-to-cell communication, playing crucial roles in both physiological and pathological processes. Exosomes released from virus-infected cells may contain RNA and proteins facilitating infection spread. The purpose of our study was to analyze how the small RNA content of exosomes is affected by infection with the influenza A virus (IAV). Exosomes were isolated by ultracentrifugation after hemadsorption of virions and their small RNA content was identified using high-throughput sequencing. As compared to mock-infected controls, 856 RNA transcripts were significantly differentially expressed in exosomes from IAV-infected cells, including fragments of 458 protein-coding (pcRNA), 336 small, 28 long intergenic non-coding RNA transcripts, and 33 pseudogene transcripts. Upregulated pcRNA species corresponded mainly to proteins associated with translation and antiviral response, and the most upregulated among them were RSAD2, CCDC141 and IFIT2. Downregulated pcRNA species corresponded to proteins associated with the cell cycle and DNA packaging. Analysis of differentially expressed pseudogenes showed that in most cases, an increase in the transcription level of pseudogenes was correlated with an increase in their parental genes. Although the role of exosome RNA in IAV infection remains undefined, the biological processes identified based on the corresponding proteins may indicate the roles of some of its parts in IAV replication.


Subject(s)
Exosomes , Influenza A virus , Influenza, Human , MicroRNAs , Proteins , Epithelial Cells/virology , Exosomes/genetics , Influenza A virus/genetics , Influenza, Human/genetics , Influenza, Human/virology , Proteins/genetics , Proteins/metabolism , Virus Replication , Genetic Code , MicroRNAs/genetics , MicroRNAs/metabolism , Madin Darby Canine Kidney Cells , Animals , Dogs
4.
BMC Vet Res ; 16(1): 374, 2020 Oct 06.
Article in English | MEDLINE | ID: mdl-33023592

ABSTRACT

BACKGROUND: Equid herpesvirus 1 (EHV-1) infections are endemic worldwide, including Poland. Many are subclinical, but some are associated with respiratory disease, abortion, neonatal foal death, or neurological disease. We describe an outbreak of abortions in Arabian mares at a well-managed State stud farm in Poland. CASE PRESENTATION: Eight of 30 pregnant mares aborted and one gave birth to a weak foal that died within 72 h after birth. EHV-1 was isolated from all fetuses as well as from the diseased foal. All viruses belonged to the N752 variant based on the predicted open reading frame (ORF) 30 amino acid sequence. All were identical to each other and to previous EHV-1 viruses from the same stud based on the ORF68 sequence analysis. The outbreak coincided with the lapse in the routine yearly EHV-1/4 vaccinations of the mares. CONCLUSIONS: Multiple abortion due to EHV-1 infection can occur in well-managed groups of horses. Reactivation of latent EHV-1 in one of the resident mares followed by a horizontal spread was considered the most likely explanation for the outbreak. Routine vaccination is an important part of a herd-heath program.


Subject(s)
Abortion, Veterinary/epidemiology , Herpesviridae Infections/veterinary , Herpesvirus 1, Equid/isolation & purification , Horse Diseases/epidemiology , Abortion, Veterinary/virology , Animals , Animals, Newborn/virology , Disease Outbreaks/veterinary , Female , Herpesviridae Infections/pathology , Herpesvirus 1, Equid/genetics , Horse Diseases/pathology , Horse Diseases/virology , Horses , Open Reading Frames , Poland/epidemiology , Pregnancy , Vaccination/veterinary
5.
Virol J ; 15(1): 106, 2018 07 11.
Article in English | MEDLINE | ID: mdl-29996858

ABSTRACT

BACKGROUND: Equid herpesviruses (EHVs) are widespread in equine populations worldwide. While the infection with equine α-herpesviruses (EHV-1 and EHV-4) has been linked to several clinical outcomes, the pathogenic potential for equine γ-herpesviruses (EHV-2 and EHV-5) is still unclear. The objective of the current study was to determine the prevalence of infection with EHVs among Polish horses, to investigate factors associated with EHV infections among horses sampled, and to determine genetic variability within Polish EHV-2 isolates. METHODS: Virus-specific real-time PCR assays were used for detection of EHV-1, EHV-2, EHV-4 and EHV-5 in nasal swabs collected from 540 horses from 13 national horse studs located throughout Poland. A proportion of EHV-2/5 positive samples were subjected to virus isolation followed by amplification and analysis of partial glycoprotein B sequence. RESULTS: Overall, 448/540 (83.0%) horses sampled were positive for at least one virus. The most prevalent was infection with EHV-2 (77.2%), followed by EHV-5 (47.0%), and EHV-4 (0.4%). None of the horses was positive for EHV-1. Approximately half of the virus-infected horses were positive for both EHV-2 and EHV-5. The proportion of EHV-2/5 positive horses varied by age, breed, and season. Only 8.0% of horses sampled, mostly Arabians, showed clinical signs of respiratory disease at the time of sampling. The viral load of both EHV-2 and EHV-5 DNA was highest in swabs from young horses, which was particularly evident for EHV-2 infected foals. Mean viral loads in nasal swabs collected from diseased horses were higher than in swabs from healthy horses. That was also true for EHV-2 when only diseased Arabian foals were considered, but the levels of EHV-5 DNA were lower in swabs from diseased than from healthy foals. In agreement with other studies, there was a considerable variability between Polish EHV-2 sequences, with no clustering of sequences from horses with different health status. The level of EHV-2 variability seemed to differ between different studs/breeds. CONCLUSIONS: The presence of foals and yearlings on a property is likely to increase the risk of active EHV-2/5 infection among in-contact horses. The existence of breed-specific differences in susceptibility to EHV-2/5 infections should be further investigated, as it may provide one variable that needs to be considered in attempts to associate EHV-2/5 infections with disease. Overall, the data presented add to the existing knowledge of the epidemiology and biology of equine γ-herpesviruses, with the long-term goal of better understanding of the pathogenesis and the impact of infections with these viruses on the well-being of the horse.


Subject(s)
Herpesviridae Infections/veterinary , Herpesviridae/classification , Herpesviridae/genetics , Horse Diseases/epidemiology , Horse Diseases/virology , Respiratory Tract Infections/veterinary , Animals , DNA, Viral , Genes, Viral , Herpesviridae/isolation & purification , Horses , Phylogeny , Prevalence , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , Viral Load
6.
Virus Genes ; 54(6): 792-803, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30341640

ABSTRACT

Schmallenberg virus (SBV) is the member of Peribunyaviridae family, which comprises pathogens of importance for human and veterinary medicine. The virus is transmitted only between animals and mainly by biting midges of the genus Culicoides. This study was performed in order to determine SBV genetic diversity and elucidate the host-vector adaptation. All three viral segments were analysed for sequence variability and phylogenetic relations. The Polish SBV strains obtained from acute infections of cattle, congenital cases in sheep, and from Culicoides midges were sequenced using Sanger and next-generation sequencing (NGS) methods. The obtained sequences were genetically similar (99.2-100% identity) to the first-detected strain BH80/11-4 from German cattle. The sampling year and origin of Polish sequences had no effect on molecular diversity of SBV. Considering all analysed Polish as well as European sequences, ovine-derived sequences were the most variable, while the midge ones were more conserved and encompassed unique substitutions located mainly in nonstructural protein S. SBV sequences isolated from Culicoides are the first submitted to GenBank and reported.


Subject(s)
Arthropod Vectors/virology , Mammals/virology , Orthobunyavirus/genetics , Animals , Genetic Variation , Genome, Viral , High-Throughput Nucleotide Sequencing , Orthobunyavirus/classification , Orthobunyavirus/isolation & purification , Phylogeny , Phylogeography
7.
Arch Virol ; 162(8): 2329-2335, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28451902

ABSTRACT

Equid herpesvirus type 1 (EHV-1) is a common viral infection associated with varied clinical outcomes including respiratory disease, abortion and neurological disease. We have characterized EHV-1 sequences (n = 38) obtained from cases of equine abortion in Poland between 1999 and 2016, based on sequencing of PCR products from open reading frames (ORF) 30 and 68 of the EHV-1 genome. The majority (81.6%) of sequences were not classified into any of the previously described groups based on the ORF68 sequence. The remaining sequences belonged to ORF68 group III (7.9%) or IV (10.5%). A haplotype network analysis did not show any obvious structure within networks of local Polish sequences, nor within a global network of 215 EHV-1 sequences when these networks were coloured based on the geographical origin of viruses or date of detection. Our data suggest that ORF68 does not provide a reliable molecular marker for epidemiological studies of EHV-1, at least in a global sense. Its usefulness to aid local investigations of individual outbreaks remains to be established. All but two Polish EHV-1 sequences belonged to the ORF30 N752 genotype. The two ORF30 D752 viruses were obtained from abortion cases in 2009 and 2010. Hence, abortion cases that occurred in Poland between 1999 and 2016 were caused predominantly by EHV-1 with the ORF30 N752 genotype, with no indication of an increase in the prevalence of the ORF30 D752 variant.


Subject(s)
Abortion, Veterinary/epidemiology , Herpesviridae Infections/veterinary , Herpesvirus 1, Equid/genetics , Horse Diseases/diagnosis , Horses/virology , Abortion, Veterinary/virology , Animals , Disease Outbreaks/veterinary , Female , Genotype , Herpesviridae Infections/virology , Horse Diseases/virology , Open Reading Frames , Poland/epidemiology , Polymerase Chain Reaction/veterinary , Pregnancy , Sequence Analysis, DNA
8.
BMC Vet Res ; 11: 102, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25929692

ABSTRACT

BACKGROUND: The incidence of reported cases of equine herpesvirus myeloencephalopathy (EHM) caused by infection with neuropathogenic strains of equine herpesvirus 1 (EHV-1) has markedly increased over the last decade in many Western countries. The purpose of this study was to estimate the prevalence of the neuropathogenic (G2254) and non-neuropathogenic (A2254) variants of EHV-1 among isolates associated with abortions in Polish stud farms. RESULTS: The results of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and sequencing were consistent, and showed that two out of 64 abortions (3.1%) were induced by the neuropathogenic genotype G2254. All remaining 18 EHV-1 positive abortion cases (28.1%) were caused by the non-neuropathogenic genotype A2254. CONCLUSIONS: Most of the abortions in mares in Poland from 1999 to 2012 were associated with non-neuropathogenic strains of EHV-1. However, the presented data indicate that the neuropathogenic genotype of the virus is also present in Polish stud farms. Such a presence suggests that the future emergence of EHM in Poland is probable.


Subject(s)
Abortion, Veterinary/virology , Genetic Variation , Herpesvirus 1, Equid/isolation & purification , Horse Diseases/virology , Pregnancy Complications, Infectious/veterinary , Abortion, Veterinary/epidemiology , Animals , Base Sequence , DNA, Viral/genetics , Disease Outbreaks , Female , Herpesvirus 1, Equid/genetics , Horse Diseases/epidemiology , Horses , Poland/epidemiology , Pregnancy , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/virology
9.
BMC Vet Res ; 10: 967, 2014 Dec 21.
Article in English | MEDLINE | ID: mdl-25528665

ABSTRACT

BACKGROUND: In view of recurrent Schmallenberg virus (SBV) infections all over Europe between 2011 and 2013, a lively scientific debate over the importance of the sylvatic transmission cycle of the virus has emerged. The study presents results of serosurvey which included wild ruminants representing species of red deer (Cervus elaphus), roe deer (Capreolus capreolus), European bison (Bison bonasus), fallow deer (Dama dama), mouflon (Ovis orientalis musimon) hunted or immobilized at 34 different locations of Poland in the autumn/winter 2013. RESULTS: Out of 580 sera, 145 (25%) were considered positive for SBV antibodies. The overall SBV seroprevalence calculated using district probability weights was estimated at 27.7% (95% CI: 24.0-31.4). The seroprevalences at the district level varied between 0 and 80.0% (95% CI: 24.5-135.0%) with the mean within-district prevalence of 24.0% (95% CI: 16.5-31.4). Significantly higher seroprevalence was observed in animals from the Eastern provinces (36.6%) compared to the Western provinces (22.8%). SBV infection impact varied significantly between different species (higher SBV seroprevalence in larger species such as European bison), population type (free-ranging; captive), age, body weight, percent of the district forest area, part of Poland, and the densities of wild and domestic ruminants at the district and province level. Using statistical multivariable logistic model, population type, age, part of Poland and domestic ruminant density were identified as the main risk factors for SBV infection in wild ruminants in Poland. CONCLUSIONS: SBV seroprevalence in wild ruminants, similarly to the epizootic situation in domestic ruminants in the country, varied significantly between districts and provinces. Association between SBV seropositivity, species, animal body weight and age group expressed by a higher prevalence in larger ruminants may be explained by more frequent exposure to midge-vector bites of the latter, however it might also be related to the different species susceptibility to SBV infection. The positive effect of higher domestic ruminant density on the risk of SBV infection in wildlife and lower SBV seroprevalences in the latter suggested that the sylvatic cycle of SBV transmission is an effect of the pathogen spillover from the domestic animals.


Subject(s)
Animals, Wild/virology , Bunyaviridae Infections/veterinary , Ruminants/virology , Animals , Bison/virology , Bunyaviridae Infections/epidemiology , Cross-Sectional Studies , Deer/virology , Enzyme-Linked Immunosorbent Assay/veterinary , Female , Male , Neutralization Tests/veterinary , Orthobunyavirus , Poland/epidemiology , Seasons , Seroepidemiologic Studies , Sheep/virology
10.
Viruses ; 16(8)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39205178

ABSTRACT

Equine rhinitis A (ERAV) and B (ERBV) viruses are respiratory pathogens with worldwide distribution. The current study aimed to determine the frequency of infection of ERAV and ERBV among horses and foals at Polish national studs, and to determine genetic variability within the viruses obtained. Virus-specific quantitative RT-PCR assays targeting a 5' untranslated region were used to screen nasal swabs collected from 621 horses at 16 national horse studs from throughout Poland, including 553 healthy horses and 68 horses with respiratory disease. A partial DNA polymerase gene was amplified and sequenced from the qRT-PCR-positive samples. The obtained sequences were analysed using phylogeny and genetic network analysis. None of the nasal swabs were positive for ERAV, whereas ERBV was found in 11/621 (1.78%) samples collected from 10 healthy horses and one foal affected by respiratory disease. Partial DNA polymerase gene sequence variability was correlated with individual horses and studs from which samples were collected when only Polish sequences were analysed, but there was no correlation between country of origin and ERBV sequence when Polish and international sequences were included in the network. The report presents the first detection of ERBV in Poland.


Subject(s)
Horse Diseases , Phylogeny , Picornaviridae Infections , Horses/virology , Animals , Poland/epidemiology , Horse Diseases/virology , Horse Diseases/epidemiology , Picornaviridae Infections/veterinary , Picornaviridae Infections/virology , Picornaviridae Infections/epidemiology , Prevalence , Genetic Variation , Erbovirus/genetics , Erbovirus/isolation & purification , Rhinovirus/genetics , Rhinovirus/isolation & purification , Rhinovirus/classification , Sequence Analysis, DNA
11.
Viruses ; 16(1)2024 01 04.
Article in English | MEDLINE | ID: mdl-38257780

ABSTRACT

Astroviruses (AstVs) are small RNA viruses characterized by a high mutation rate, the ability to recombine, and interspecies transmission, which allows them to infect a multitude of hosts including humans, companion animals, and farmed animals as well as wildlife. AstVs are stable in the environment, and their transmission is usually through the fecal-oral route or via contaminated water and food. Although direct zoonotic transmission was not confirmed, interspecies transmission events have occurred or have been indicated to occur in the past between wild and domestic animals and humans. They cause large economic losses, mainly in the poultry sector, due to gastroenteritis and mortality. In young children, they are the second most common cause of diarrhea. This study involved 166 intestine samples and pools of spleen, lymph node, and kidney samples collected from 352 wild animals, 52 pigs, and 31 companion animals. Astroviruses were detected in the intestine samples and were separately detected in pools of tissue samples prepared for individual animals using a heminested RT-PCR protocol. Amplicons were subjected to Sanger sequencing, and a phylogenetic analysis of 320 nt RNA-dependent RNA polymerase (RdRp) fragments referring to known nt sequences of astroviruses was performed. Astroviral RNA was detected in the intestine samples and/or tissue pools of red foxes (nine positive intestines and six positive tissue pools), rats (two positive intestines and three positive tissue pools), a cat (one AstV detected in an intestine sample), pigs (eight positive tissue pools), and wild boars (two positive pools of spleens, kidneys, and lymph nodes). No astroviral RNA was detected in wild mustelids, dogs, or other small wild animals including rodents. A phylogenetic analysis revealed that the astroviruses detected during this study were mostly host-specific, such as porcine, canine, and rat astroviruses that were highly homologous to the sequences of reference strains. In one of two wild boars, an AstV distinct to porcine species was found with the highest nt identity to Avastroviruses, i.e., turkey astroviruses, which suggests potential cross-species transmission of the virus, as previously described. Here, we present the first detection of astroviruses in the population of wild animals, companion animals, and pigs in Poland, confirming that astroviruses are frequent pathogens circulating in animals in the field. Our study also suggests potential cross-species transmission of Avaastrovirus to wild boars; however, further molecular characterization is needed.


Subject(s)
Avastrovirus , RNA Viruses , Humans , Child , Animals , Dogs , Cats , Rats , Swine , Child, Preschool , Poland/epidemiology , Prevalence , Phylogeny , Animals, Wild , Foxes , RNA , Sus scrofa
12.
J Clin Med ; 12(20)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37892741

ABSTRACT

The tick-borne encephalitis virus (TBEV) is the arboviral etiological agent of tick-borne encephalitis (TBE), considered to be one of the most important tick-borne viral diseases in Europe and Asia. In recent years, an increase in the incidence of TBE as well as an increasing geographical range of the disease have been noted. Despite the COVID-19 pandemic and the imposition of restrictions that it necessitated, the incidence of TBE is rising in more than half of the European countries analyzed in recent studies. The virus is transmitted between ticks, animals, and humans. It seems that ticks and small mammals play a role in maintaining TBEV in nature. The disease can also affect dogs, horses, cattle, and small ruminants. Humans are incidental hosts, infected through the bite of an infected tick or by the alimentary route, through the consumption of unpasteurized milk or milk products from TBEV-infected animals. TBEV infections in humans may be asymptomatic, but the symptoms can range from mild flu-like to severe neurological. In Europe, cases of TBE are reported every year. While there is currently no effective treatment for TBE, immunization and protection against tick bites are critical in preventing this disease.

13.
J Vet Res ; 67(2): 155-160, 2023 Jun.
Article in English | MEDLINE | ID: mdl-38143823

ABSTRACT

Introduction: Loss of pregnancy in mares is a major cause of economic and emotional impact for horse breeders. It can have many different infectious and noninfectious causes. The aim of this study was identification of the main viral causes of abortion in mares in Poland based on tissue samples from 180 aborted foetuses submitted for testing between 1999 and 2022. Material and Methods: Tissues of aborted foetuses collected from different horse studs throughout Poland were tested for the presence of equine herpesvirus types 1 and 4 (EHV-1/-4) and if negative, for equine arteritis virus (EAV). The examination was performed using a PCR/reverse transcriptase PCR (1999-2012) and a quantitative PCR (2013-2022). Results: The cause of abortion was determined to be EHV-1 in 49.4% of cases (n = 89), whereas no EHV-4- or EAV-positive cases were found. The proportion of abortions due to EHV-1 differed between regions, with the highest percentage in the Lubelskie and Wielkopolskie provinces. Conclusion: The results of the study indicate that EHV-1 is the most important viral infectious agent causing abortions in mares in Poland.

14.
Viruses ; 15(12)2023 12 15.
Article in English | MEDLINE | ID: mdl-38140674

ABSTRACT

Influenza D virus (IDV) infections have been observed in animals worldwide, confirmed through both serological and molecular tests, as well as virus isolation. IDV possesses unique properties that distinguish it from other influenza viruses, primarily attributed to the hemagglutinin-esterase fusion (HEF) surface glycoprotein, which determines the virus' tropism and wide host range. Cattle are postulated to be the reservoir of IDV, and the virus is identified as one of the causative agents of bovine respiratory disease (BRD) syndrome. Animals associated with humans and susceptible to IDV infection include camels, pigs, small ruminants, and horses. Notably, high seroprevalence towards IDV, apart from cattle, is also observed in camels, potentially constituting a reservoir of the virus. Among wild and captive animals, IDV infections have been confirmed in feral pigs, wild boars, deer, hedgehogs, giraffes, wildebeests, kangaroos, wallabies, and llamas. The transmission potential and host range of IDV may contribute to future viral differentiation. It has been confirmed that influenza D may pose a threat to humans as a zoonosis, with seroprevalence noted in people with professional contact with cattle.


Subject(s)
Cattle Diseases , Deer , Influenza, Human , Orthomyxoviridae Infections , Orthomyxoviridae , Thogotovirus , Humans , Animals , Cattle , Swine , Horses , Animals, Wild , Seroepidemiologic Studies , Camelus , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/veterinary , Ruminants
15.
J Vet Res ; 66(4): 479-486, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36846034

ABSTRACT

Introduction: Bovine coronavirus (BCoV) is a causative agent of enteric and respiratory diseases in cattle. Despite its importance for animal health, no data is available on its prevalence in Poland. The aim of the study was to determine the virus' seroprevalence, identify risk factors of BCoV exposure in selected cattle farms and investigate the genetic variability of circulating strains. Material and Methods: Serum and nasal swab samples were collected from 296 individuals from 51 cattle herds. Serum samples were tested with ELISA for the presence of BCoV-, bovine herpesvirus-1 (BoHV-1)- and bovine viral diarrhoea virus (BVDV)-specific antibodies. The presence of those viruses in nasal swabs was tested by real-time PCR assays. Phylogenetic analysis was performed using fragments of the BCoV S gene. Results: Antibodies specific to BCoV were found in 215 (72.6%) animals. Seropositivity for BCoV was more frequent (P>0.05) in calves under 6 months of age, animals with respiratory signs coinfected with BoHV-1 and BVDV and increased with herd size. In the final model, age and herd size were established as risk factors for BCoV-seropositivity. Genetic material of BCoV was found in 31 (10.5%) animals. The probability of BCoV detection was the highest in medium-sized herds. Polish BCoVs showed high genetic homology (98.3-100%) and close relatedness to European strains. Conclusion: Infections with BCoV were more common than infections with BoHV-1 and BVDV. Bovine coronavirus exposure and shedding show age- and herd density-dependence.

16.
Viruses ; 14(4)2022 03 29.
Article in English | MEDLINE | ID: mdl-35458443

ABSTRACT

Equid herpesvirus 2 (EHV-2) and 5 (EHV-5) are two γ-herpesviruses that are commonly detected from horses worldwide, based on several cross-sectional molecular surveys. Comparatively few studies examined the dynamics of γ-herpesvirus infection over time in a group of horses. The aim of the current study was to investigate the dynamics of EHV-2/5 infections among mares and their foals at three Polish national studs with different breeds of horses: Arabians, Thoroughbreds and Polish Konik horses. Nasal swabs were collected from each of 38 mare-foal pairs monthly for a period of 6 to 8 months. Virus-specific quantitative PCR assays were used to determine the viral load of EHV-2 and EHV-5 in each sample. All 76 horses sampled were positive for EHV-2 or EHV-5 on at least one sampling occasion. The majority (73/76, 96%) were infected with both EHV-2 and EHV-5. In general, the mean load of viral DNA was higher in samples from foals than from mares, but similar for EHV-2 and EHV-5 at most sampling occasions. There was, however, a considerable variability in the viral DNA load between samples collected at different times from the same foal, as well as between samples from different foals. The latter was more apparent for EHV-2 than for EHV-5. All foals became infected with both viruses early in life, before weaning, and remained positive on all, or most, subsequent samplings. The virus shedding by mares was more intermittent, indicating the existence of age-related differences. Overall, the data presented extend our knowledge of EHV-2/5 epidemiology among mares and foals.


Subject(s)
Herpesviridae Infections , Herpesvirus 1, Equid , Herpesvirus 4, Equid , Horse Diseases , Rhadinovirus , Animals , Cross-Sectional Studies , DNA, Viral/genetics , Female , Herpesvirus 1, Equid/genetics , Herpesvirus 4, Equid/genetics , Horses , Kinetics , Poland/epidemiology , Rhadinovirus/genetics
17.
J Clin Med ; 11(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35683413

ABSTRACT

Over the last decades, an increase in the emergence or re-emergence of arthropod-borne viruses has been observed in many regions. Viruses such as dengue, yellow fever, or zika are a threat for millions of people on different continents. On the other hand, some arboviruses are still described as endemic, however, they could become more important in the near future. Additionally, there is a group of arboviruses that, although important for animal breeding, are not a direct threat for human health. Those include, e.g., Schmallenberg, bluetongue, or African swine fever viruses. This review focuses on arboviruses and their major vectors: mosquitoes, ticks, biting midges, and sandflies. We discuss the current knowledge on arbovirus transmission, ecology, and methods of prevention. As arboviruses are a challenge to both human and animal health, successful prevention and control are therefore only possible through a One Health perspective.

18.
Viruses ; 14(9)2022 08 30.
Article in English | MEDLINE | ID: mdl-36146721

ABSTRACT

Bats are a major global reservoir of alphacoronaviruses (alphaCoVs) and betaCoVs. Attempts to discover the causative agents of COVID-19 and SARS have revealed horseshoe bats (Rhinolophidae) to be the most probable source of the virus. We report the first detection of bat coronaviruses (BtCoVs) in insectivorous bats in Poland and highlight SARS-related coronaviruses found in Rhinolophidae bats. The study included 503 (397 oral swabs and 106 fecal) samples collected from 20 bat species. Genetically diverse BtCoVs (n = 20) of the Alpha- and Betacoronavirus genera were found in fecal samples of two bat species. SARS-related CoVs were in 18 out of 58 lesser horseshoe bat (Rhinolophus hipposideros) samples (31%, 95% CI 20.6-43.8), and alphaCoVs were in 2 out of 55 Daubenton's bat (Myotis daubentonii) samples (3.6%, 95% CI 0.6-12.3). The overall BtCoV prevalence was 4.0% (95% CI 2.6-6.1). High identity was determined for BtCoVs isolated from European M. daubentonii and R. hipposideros bats. The detection of SARS-related and alphaCoVs in Polish bats with high phylogenetic relatedness to reference BtCoVs isolated in different European countries but from the same species confirms their high host restriction. Our data elucidate the molecular epidemiology, prevalence, and geographic distribution of coronaviruses and particularly SARS-related types in the bat population.


Subject(s)
Alphacoronavirus , COVID-19 , Chiroptera , Coronaviridae , Severe acute respiratory syndrome-related coronavirus , Alphacoronavirus/genetics , Animals , Phylogeny , Poland/epidemiology , Severe acute respiratory syndrome-related coronavirus/genetics
19.
Viruses ; 14(9)2022 09 06.
Article in English | MEDLINE | ID: mdl-36146781

ABSTRACT

Equine foamy virus (EFVeca) is a foamy virus of non-primate origin and among the least-studied members of this retroviral subfamily. By sequence comparison, EFVeca shows the highest similarity to bovine foamy virus. In contrast to simian, bovine or feline foamy viruses, knowledge about the epidemiology of EFVeca is still limited. Since preliminary studies suggested EFVeca infections among horses in Poland, we aimed to expand the diagnostics of EFVeca infections by developing specific diagnostic tools and apply them to investigate its prevalence. An ELISA test based on recombinant EFVeca Gag protein was developed for serological investigation, while semi-nested PCR for the detection of EFVeca DNA was established. 248 DNA and serum samples from purebred horses, livestock and saddle horses, Hucul horses and semi-feral Polish primitive horses were analyzed in this study. ELISA was standardized, and cut off value, sensitivity and specificity of the test were calculated using Receiver Operating Characteristic and Bayesian estimation. Based on the calculated cut off, 135 horses were seropositive to EFVeca Gag protein, while EFVeca proviral DNA was detected in 85 animals. The rate of infected individuals varied among the horse groups studied; this is the first report confirming the existence of EFVeca infections in horses from Poland using virus-specific tools.


Subject(s)
Horse Diseases , Spumavirus , Virus Diseases , Animals , Bayes Theorem , Cats , Gene Products, gag , Horse Diseases/diagnosis , Horse Diseases/epidemiology , Horses , Poland/epidemiology , Spumavirus/genetics
20.
J Vet Res ; 66(4): 449-458, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36846035

ABSTRACT

Introduction: Many countries have reported severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infections in mink, and transmission back to humans has raised the concern of novel variants emerging in these animals. The monitoring system on Polish mink farms detected SARS-CoV-2 infection first in January 2021 and has been kept in place since then. Material and Methods: Oral swab samples collected between February 2021 and March 2022 from 11,853 mink from 594 farms in different regions of Poland were screened molecularly for SARS-CoV-2. Isolates from those with the highest loads of viral genetic material from positive farms were sequenced and phylogenetically analysed. Serological studies were also carried out for one positive farm in order to follow the antibody response after infection. Results: SARS-CoV-2 RNA was detected in mink on 11 farms in 8 out of 16 Polish administrative regions. Whole genome sequences were obtained for 19 SARS-CoV-2 strains from 10 out of 11 positive farms. These genomes belonged to four different variants of concern (VOC) - VOC-Gamma (20B), VOC-Delta (21J), VOC-Alpha (20I) and VOC-Omicron (21L) - and seven different Pango lineages - B.1.1.464, B.1.1.7, AY.43, AY.122, AY.126, B.1.617.2 and BA.2. One of the nucleotide and amino acid mutations specific for persistent strains found in the analysed samples was the Y453F host adaptation mutation. Serological testing of blood samples revealed a high rate of seroprevalence on the single mink farm studied. Conclusion: Farmed mink are highly susceptible to infection with SARS-CoV-2 of different lineages, including Omicron BA.2 VOC. As these infections were asymptomatic, mink may become an unnoticeable virus reservoir generating new variants potentially threatening human health. Therefore, real-time monitoring of mink is extremely important in the context of the One Health approach.

SELECTION OF CITATIONS
SEARCH DETAIL