Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 186
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 119(35): e2204752119, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35994673

ABSTRACT

p38γ and p38δ (p38γ/p38δ) regulate inflammation, in part by controlling tumor progression locus 2 (TPL2) expression in myeloid cells. Here, we demonstrate that TPL2 protein levels are dramatically reduced in p38γ/p38δ-deficient (p38γ/δ-/-) cells and tissues without affecting TPL2 messenger ribonucleic acid (mRNA) expression. We show that p38γ/p38δ posttranscriptionally regulates the TPL2 amount at two different levels. p38γ/p38δ interacts with the TPL2/A20 Binding Inhibitor of NF-κB2 (ABIN2)/Nuclear Factor κB1p105 (NF-κB1p105) complex, increasing TPL2 protein stability. Additionally, p38γ/p38δ regulates TPL2 mRNA translation by modulating the repressor function of TPL2 3' Untranslated region (UTR) mediated by its association with aconitase-1 (ACO1). ACO1 overexpression in wild-type cells increases the translational repression induced by TPL2 3'UTR and severely decreases TPL2 protein levels. p38δ binds to ACO1, and p38δ expression in p38γ/δ-/- cells fully restores TPL2 protein to wild-type levels by reducing the translational repression of TPL2 mRNA. This study reveals a unique mechanism of posttranscriptional regulation of TPL2 expression, which given its central role in innate immune response, likely has great relevance in physiopathology.


Subject(s)
Aconitate Hydratase , MAP Kinase Kinase Kinases , Mitogen-Activated Protein Kinase 12 , Mitogen-Activated Protein Kinase 13 , Aconitate Hydratase/genetics , Aconitate Hydratase/metabolism , Gene Expression Regulation , Immunity, Innate , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Mitogen-Activated Protein Kinase 12/genetics , Mitogen-Activated Protein Kinase 12/metabolism , Mitogen-Activated Protein Kinase 13/genetics , Mitogen-Activated Protein Kinase 13/metabolism , RNA, Messenger/genetics
2.
Plant Cell ; 33(4): 1319-1340, 2021 05 31.
Article in English | MEDLINE | ID: mdl-33793825

ABSTRACT

In plants, chitin-triggered immunity is one of the first lines of defense against fungi, but phytopathogenic fungi have developed different strategies to prevent the recognition of chitin. Obligate biotrophs such as powdery mildew fungi suppress the activation of host responses; however, little is known about how these fungi subvert the immunity elicited by chitin. During epiphytic growth, the cucurbit powdery mildew fungus Podosphaera xanthii expresses a family of candidate effector genes comprising nine members with an unknown function. In this work, we examine the role of these candidates in the infection of melon (Cucumis melo L.) plants, using gene expression analysis, RNAi silencing assays, protein modeling and protein-ligand predictions, enzymatic assays, and protein localization studies. Our results show that these proteins are chitinases that are released at pathogen penetration sites to break down immunogenic chitin oligomers, thus preventing the activation of chitin-triggered immunity. In addition, these effectors, designated effectors with chitinase activity (EWCAs), are widely distributed in pathogenic fungi. Our findings reveal a mechanism by which fungi suppress plant immunity and reinforce the idea that preventing the perception of chitin by the host is mandatory for survival and development of fungi in plant environments.


Subject(s)
Ascomycota/pathogenicity , Chitin/metabolism , Chitinases/metabolism , Cucumis melo/microbiology , Plant Immunity/physiology , Ascomycota/cytology , Ascomycota/genetics , Ascomycota/metabolism , Cell Wall/metabolism , Chitin/immunology , Chitinases/chemistry , Chitinases/genetics , Cucumis melo/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Gene Silencing , Host-Pathogen Interactions/physiology , Multigene Family , Phylogeny , Plant Diseases/microbiology
3.
J Enzyme Inhib Med Chem ; 39(1): 2330907, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38651823

ABSTRACT

Antimicrobial resistance (AMR) is a pressing global issue exacerbated by the abuse of antibiotics and the formation of bacterial biofilms, which cause up to 80% of human bacterial infections. This study presents a computational strategy to address AMR by developing three novel quantitative structure-activity relationship (QSAR) models based on molecular topology to identify potential anti-biofilm and antibacterial agents. The models aim to determine the chemo-topological pattern of Gram (+) antibacterial, Gram (-) antibacterial, and biofilm formation inhibition activity. The models were applied to the virtual screening of a commercial chemical database, resulting in the selection of 58 compounds. Subsequent in vitro assays showed that three of these compounds exhibited the most promising antibacterial activity, with potential applications in enhancing food and medical device safety.


Subject(s)
Anti-Bacterial Agents , Biofilms , Drug Design , Microbial Sensitivity Tests , Quantitative Structure-Activity Relationship , Biofilms/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Molecular Structure , Humans , Food Contamination/prevention & control , Dose-Response Relationship, Drug
4.
Plant J ; 108(1): 120-133, 2021 10.
Article in English | MEDLINE | ID: mdl-34288193

ABSTRACT

Thioredoxins (TRXs) are well-known redox signalling players, which carry out post-translational modifications in target proteins. Chloroplast TRXs are divided into different types and have central roles in light energy uptake and the regulation of primary metabolism. The isoforms TRX m1, m2, and m4 from Arabidopsis thaliana are considered functionally related. Knowing their key position in the hub of plant metabolism, we hypothesized that the impairment of the TRX m signalling would not only have harmful consequences on chloroplast metabolism but also at different levels of plant development. To uncover the physiological and developmental processes that depend on TRX m signalling, we carried out a comprehensive study of Arabidopsis single, double, and triple mutants defective in the TRX m1, m2, and m4 proteins. As light and redox signalling are closely linked, we investigated the response to high light (HL) of the plants that are gradually compromised in TRX m signalling. We provide experimental evidence relating the lack of TRX m and the appearance of novel phenotypic features concerning mesophyll structure, stomata biogenesis, and stomatal conductance. We also report new data indicating that the isoforms of TRX m fine-tune the response to HL, including the accumulation of the protective pigment anthocyanin. These results reveal novel signalling functions for the TRX m and underline their importance for plant growth and fulfilment of the acclimation/response to HL conditions.


Subject(s)
Arabidopsis/physiology , Chloroplast Thioredoxins/metabolism , Signal Transduction , Anthocyanins/metabolism , Arabidopsis/genetics , Arabidopsis/radiation effects , Chlorophyll/metabolism , Chloroplasts/metabolism , Fluorescence , Light , Mutation , Oxidation-Reduction , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/radiation effects , Plant Stomata/genetics , Plant Stomata/physiology , Plant Stomata/radiation effects , Protein Isoforms
5.
J Exp Bot ; 73(3): 903-914, 2022 01 27.
Article in English | MEDLINE | ID: mdl-34651644

ABSTRACT

Fibrillins (FBNs) are plastidial proteins found in photosynthetic organisms from cyanobacteria to higher plants. The function of most FBNs remains unknown. Here, we focused on members of the FBN subgroup comprising FBN1a, FBN1b, and FBN2. We show that these three polypeptides interact between each other, potentially forming a network around the plastoglobule surface. Both FBN2 and FBN1s interact with allene oxide synthase, and the elimination of any of these FBNs results in a delay in jasmonate-mediated anthocyanin accumulation in response to a combination of moderate high light and low temperature. Mutations in the genes encoding FBN1s or FBN2 also affect the protection of PSII under the combination of these stresses. Fully developed leaves of these mutants have lower maximum quantum efficiency of PSII (Fv/Fm) and higher oxidative stress than wild-type plants. These effects are additive, and the fbn1a-1b-2 triple mutant shows a stronger decrease in Fv/Fm and a greater increase in oxidative stress than fbn1a-1b or fbn2 mutants. Co-immunoprecipitation analysis indicated that FBN2 also interacts with other proteins involved in different metabolic processes. We propose that these fibrillins facilitate accurate positioning of different proteins involved in distinct metabolic processes, and that their elimination leads to dysfunction of those proteins.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chloroplasts/metabolism , Fibrillin-1/metabolism , Fibrillins/metabolism
6.
Lupus ; 31(3): 354-362, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35157809

ABSTRACT

OBJECTIVES: (1) To assess the clinical utility of the adjusted global antiphospholipid syndrome score (aGAPSS) to predict new obstetric events during follow-up in primary obstetric antiphospholipid syndrome (POAPS) patients under standard-of-care treatment (SC) based on the use of low-dose aspirin (LDA) + heparin and (2) to study the risk of a first thrombotic event and to evaluate whether stratification according to this score could help to identify POAPS patients who would benefit from long-term thromboprophylaxis. METHODS: This is a retrospective, multicentre study. 169 women with POAPS were evaluated for the presence of a new obstetric event and/or a first thrombotic event during follow-up [time period: 2008-2020, median: 7 years (6-12 years)]. The outcomes of 107 pregnancies from these POAPS patients with SC were studied to evaluate relapses. Simple and multivariable logistic regression analyses were performed. RESULTS: Regarding obstetric morbidity, only triple positivity for antiphospholipid antibodies (aPLs) [OR = 8.462 (95% CI: 2.732-26.210); p < 0.0001] was found to be a strong risk factor independently associated with treatment failure. On the other hand, triple positivity for aPLs [OR=10.44 (95% CI: 2.161-50.469), p = 0.004] and an aGAPSS ≥7 [OR = 1.621 (95% CI: 1.198-2.193), p = 0.002] were independent risk factors associated with a first thrombotic event. LDA was marginally associated with a decrease in the risk of thrombosis only in patients with aGAPSS ≥ 7 (p = 0.048). CONCLUSION: aGAPSS appears to be useful in predicting the occurrence of a first thrombotic event in POAPS patients, and these stratification of patients could be helpful in selecting patients who would benefit from thromboprophylaxis with LDA.


Subject(s)
Antiphospholipid Syndrome , Lupus Erythematosus, Systemic , Thrombosis , Venous Thromboembolism , Anticoagulants/therapeutic use , Antiphospholipid Syndrome/complications , Antiphospholipid Syndrome/diagnosis , Antiphospholipid Syndrome/drug therapy , Aspirin/therapeutic use , Female , Humans , Lupus Erythematosus, Systemic/complications , Pregnancy , Retrospective Studies , Thrombosis/complications , Thrombosis/prevention & control
7.
Can J Physiol Pharmacol ; 100(10): 1005-1017, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35985049

ABSTRACT

The increasing prevalence and complications related to liver diseases (caused by infection, toxic agents, or metabolic syndrome), together with insufficient existence of treatments, make evident the need for better therapeutic alternatives. Therefore, the aim of this study was to determine the effect of 4-hydroxychalcone (4-HC) as preventive and curative treatment in acute and chronic liver injury, respectively. Liver damage was induced with carbon tetrachloride (CCl4) in Wistar rats. Rats were divided into two groups: (1) acute liver injury and (2) chronic liver injury. In turn, each group was divided into four subgroups: (i) control (water); (ii) dimethyl sulfoxide 10%; (iii) CCl4; and (iv) 4-HC. The pre-treatment with 4-HC decreased transaminases, IL-6 serum levels, and hepatic malondialdehyde, increased IL-10 serum levels and hepatic glutathione, and decreased liver damage (necrosis, steatosis, and inflammatory infiltrate). In contrast, treatment with 4-HC after the induction of chronic liver injury decreased IL-6 serum levels and liver damage (steatosis, inflammatory infiltrate, ballooning cells, steatofibrosis, and fibrosis degree). Thus, the 4-HC treatment is proposed as a preventive treatment against acute liver injury; moreover, these results suggested the potential of 4-HC as a curative treatment against chronic liver injury, but other scheme treatments must be evaluated in future.


Subject(s)
Chalcones , Chemical and Drug Induced Liver Injury , Fatty Liver , Liver Diseases , Animals , Carbon Tetrachloride/toxicity , Chalcones/pharmacology , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/prevention & control , Dimethyl Sulfoxide/metabolism , Dimethyl Sulfoxide/pharmacology , Fatty Liver/metabolism , Glutathione/metabolism , Interleukin-10/metabolism , Interleukin-6/metabolism , Liver , Malondialdehyde/metabolism , Oxidative Stress , Rats , Rats, Wistar , Transaminases/metabolism
8.
Mol Plant Microbe Interact ; 34(3): 319-324, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33141618

ABSTRACT

Podosphaera xanthii is the main causal agent of powdery mildew in cucurbits and, arguably, the most important fungal pathogen of cucurbit crops. Here, we present the first reference genome assembly for P. xanthii. We performed a hybrid genome assembly, using reads from Illumina NextSeq550 and PacBio Sequel S3. The short and long reads were assembled into 1,727 scaffolds with an N50 size of 163,173 bp, resulting in a 142-Mb genome size. The combination of homology-based and ab initio predictions allowed the prediction of 14,911 complete genes. Repetitive sequences comprised 76.2% of the genome. Our P. xanthii genome assembly improves considerably the molecular resources for research on P. xanthii-cucurbit interactions and provides new opportunities for further genomics, transcriptomics, and evolutionary studies in powdery mildew fungi.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Ascomycota , Computational Biology , Cucurbita , Genome, Plant , Ascomycota/genetics , Cucurbita/microbiology , Plant Diseases/genetics , Plant Diseases/microbiology
9.
Anal Chem ; 93(38): 12833-12839, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34533933

ABSTRACT

Molecular networking of non-targeted tandem mass spectrometry data connects structurally related molecules based on similar fragmentation spectra. Here, we report the Chemical Proportionality (ChemProp) contextualization of molecular networks. ChemProp scores the changes of abundance between two connected nodes over sequential data series (e.g., temporal or spatial relationships), which can be displayed as a direction within the network to prioritize potential biological and chemical transformations or proportional changes of (biosynthetically) related compounds. We tested the ChemProp workflow on a ground truth data set of a defined mixture and highlighted the utility of the tool to prioritize specific molecules within biological samples, including bacterial transformations of bile acids, human drug metabolism, and bacterial natural products biosynthesis. The ChemProp workflow is freely available through the Global Natural Products Social Molecular Networking (GNPS) environment.


Subject(s)
Biological Products , Tandem Mass Spectrometry , Humans , Workflow
10.
Circulation ; 139(20): 2342-2357, 2019 05 14.
Article in English | MEDLINE | ID: mdl-30818997

ABSTRACT

BACKGROUND: The primary cilium is a singular cellular structure that extends from the surface of many cell types and plays crucial roles in vertebrate development, including that of the heart. Whereas ciliated cells have been described in developing heart, a role for primary cilia in adult heart has not been reported. This, coupled with the fact that mutations in genes coding for multiple ciliary proteins underlie polycystic kidney disease, a disorder with numerous cardiovascular manifestations, prompted us to identify cells in adult heart harboring a primary cilium and to determine whether primary cilia play a role in disease-related remodeling. METHODS: Histological analysis of cardiac tissues from C57BL/6 mouse embryos, neonatal mice, and adult mice was performed to evaluate for primary cilia. Three injury models (apical resection, ischemia/reperfusion, and myocardial infarction) were used to identify the location and cell type of ciliated cells with the use of antibodies specific for cilia (acetylated tubulin, γ-tubulin, polycystin [PC] 1, PC2, and KIF3A), fibroblasts (vimentin, α-smooth muscle actin, and fibroblast-specific protein-1), and cardiomyocytes (α-actinin and troponin I). A similar approach was used to assess for primary cilia in infarcted human myocardial tissue. We studied mice silenced exclusively in myofibroblasts for PC1 and evaluated the role of PC1 in fibrogenesis in adult rat fibroblasts and myofibroblasts. RESULTS: We identified primary cilia in mouse, rat, and human heart, specifically and exclusively in cardiac fibroblasts. Ciliated fibroblasts are enriched in areas of myocardial injury. Transforming growth factor ß-1 signaling and SMAD3 activation were impaired in fibroblasts depleted of the primary cilium. Extracellular matrix protein levels and contractile function were also impaired. In vivo, depletion of PC1 in activated fibroblasts after myocardial infarction impaired the remodeling response. CONCLUSIONS: Fibroblasts in the neonatal and adult heart harbor a primary cilium. This organelle and its requisite signaling protein, PC1, are required for critical elements of fibrogenesis, including transforming growth factor ß-1-SMAD3 activation, production of extracellular matrix proteins, and cell contractility. Together, these findings point to a pivotal role of this organelle, and PC1, in disease-related pathological cardiac remodeling and suggest that some of the cardiovascular manifestations of autosomal dominant polycystic kidney disease derive directly from myocardium-autonomous abnormalities.


Subject(s)
Fibroblasts/ultrastructure , Myocardium/pathology , Polycystic Kidney, Autosomal Dominant/pathology , 3T3 Cells/ultrastructure , Animals , Animals, Newborn , Atrial Remodeling , Cilia , Fetal Heart/cytology , Fibrosis , Heart Injuries/pathology , Humans , Kinesins/deficiency , Kinesins/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/pathology , Polycystic Kidney, Autosomal Dominant/genetics , Rats , Signal Transduction , Smad3 Protein/physiology , TRPP Cation Channels/deficiency , TRPP Cation Channels/physiology , Transforming Growth Factor beta1/physiology , Ventricular Remodeling
11.
Environ Microbiol ; 22(11): 4532-4544, 2020 11.
Article in English | MEDLINE | ID: mdl-32794337

ABSTRACT

Plants and microbes have evolved sophisticated ways to communicate and coexist. The simplest interactions that occur in plant-associated habitats, i.e., those involved in disease detection, depend on the production of microbial pathogenic and virulence factors and the host's evolved immunological response. In contrast, microbes can also be beneficial for their host plants in a number of ways, including fighting pathogens and promoting plant growth. In order to clarify the mechanisms directly involved in these various plant-microbe interactions, we must still deepen our understanding of how these interkingdom communication systems, which are constantly modulated by resident microbial activity, are established and, most importantly, how their effects can span physically separated plant compartments. Efforts in this direction have revealed a complex and interconnected network of molecules and associated metabolic pathways that modulate plant-microbe and microbe-microbe communication pathways to regulate diverse ecological responses. Once sufficiently understood, these pathways will be biotechnologically exploitable, for example, in the use of beneficial microbes in sustainable agriculture. The aim of this review is to present the latest findings on the dazzlingly diverse arsenal of molecules that efficiently mediate specific microbe-microbe and microbe-plant communication pathways during plant development and on different plant organs.


Subject(s)
Bacteria/metabolism , Plant Development/physiology , Plants/microbiology , Symbiosis/physiology , Germination/physiology , Microbial Interactions/physiology , Microbiota/physiology , Plant Roots/microbiology , Plants/metabolism , Rhizosphere , Seeds/growth & development , Seeds/microbiology , Signal Transduction/physiology , Virulence Factors/metabolism
12.
FASEB J ; 33(11): 12146-12163, 2019 11.
Article in English | MEDLINE | ID: mdl-31370706

ABSTRACT

The formation of biofilms provides structural and adaptive bacterial response to the environment. In Bacillus species, the biofilm extracellular matrix is composed of exopolysaccharides, hydrophobins, and several functional amyloid proteins. We report, using multiscale approaches such as solid-state NMR (SSNMR), electron microscopy, X-ray diffraction, dynamic light scattering, attenuated total reflection Fourier transform infrared (FTIR), and immune-gold labeling, the molecular architecture of B. subtilis and pathogenic B. cereus functional amyloids. SSNMR data reveal that the major amyloid component TasA in its fibrillar amyloid form contain ß-sheet and α-helical secondary structure, suggesting a nontypical amyloid architecture in B. subtilis. Proteinase K digestion experiments indicate the amyloid moiety is ∼100 aa long, and subsequent SSNMR and FTIR signatures for B. subtilis and B. cereus TasA filaments highlight a conserved amyloid fold, albeit with substantial differences in structural polymorphism and secondary structure composition. Structural analysis and coassembly data on the accessory protein TapA in B. subtilis and its counterpart camelysin in B. cereus reveal a catalyzing effect between the functional amyloid proteins and a common structural architecture, suggesting a coassembly in the context of biofilm formation. Our findings highlight nontypical amyloid behavior of these bacterial functional amyloids, underlining structural variations between biofilms even in closely related bacterial species.-El Mammeri, N., Hierrezuelo, J., Tolchard, J., Cámara-Almirón, J., Caro-Astorga, J., Álvarez-Mena, A., Dutour, A., Berbon, M., Shenoy, J., Morvan, E., Grélard, A., Kauffmann, B., Lecomte, S., de Vicente, A., Habenstein, B., Romero, D., Loquet, A. Molecular architecture of bacterial amyloids in Bacillus biofilms.


Subject(s)
Amyloidogenic Proteins/chemistry , Bacillus/physiology , Bacterial Proteins/chemistry , Biofilms , Magnetic Resonance Spectroscopy , Metalloproteases/chemistry , Protein Folding , Protein Structure, Secondary , Spectroscopy, Fourier Transform Infrared
13.
Lupus ; 29(13): 1736-1742, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32838621

ABSTRACT

OBJECTIVE: The first aim was to retrospectively identify risk factors for the development of early severe preeclampsia (sPE) in patients with obstetric antiphospholipid syndrome (OAPS) who received conventional treatment (CT). The second aim was to evaluate the impact of hydroxychloroquine (HCQ) in preventing early sPE among a subgroup of patients considered at high risk. METHODS: A total of 102 women diagnosed with OAPS and treated with CT since the diagnosis of pregnancy were selected. At the end of pregnancy, we identified risk factors associated with early sPE. According to these risk factors, we collected a new cohort of 42 patients who presented high-risk factors for developing early sPE and split them into two groups according to the treatment received: group A, CT (30 patients); and group B, CT+HCQ (12 patients). We evaluated and compared pregnancy outcomes in both groups. RESULTS: According to the multivariate analysis, risk factors associated with early sPE and CT were triple positivity for antiphospholipid antibodies (aPL) (OR = 24.70, [4.27-142.92], p < 0.001) and a history of early sPE (OR = 7.11, [1.13-44.64], p = 0.036). A low-risk aPL profile was associated with a good response to CT in preventing early sPE (OR = 0.073, [0.014-0.382], p = 0.002). High-risk patients treated with CT+HCQ had a significantly lower early sPE rate than those treated with CT only (8.3% vs 40.0%; p = 0.03). CONCLUSION: Triple positivity for aPL and a history of early sPE are potential strong risk factors for the development of early sPE. HCQ might be an interesting therapeutic option for patients with high-risk factors for early sPE.


Subject(s)
Antibodies, Antiphospholipid/blood , Antiphospholipid Syndrome/drug therapy , Hydroxychloroquine/therapeutic use , Pre-Eclampsia/etiology , Adult , Antiphospholipid Syndrome/complications , Aspirin/therapeutic use , Female , Heparin/therapeutic use , Humans , Logistic Models , Multivariate Analysis , Pre-Eclampsia/blood , Pregnancy , Pregnancy Complications , Pregnancy Outcome , Retrospective Studies , Risk Factors
14.
Biol Res ; 53(1): 13, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32293552

ABSTRACT

BACKGROUND: Gallbladder cancer (GBC) is the most common tumor of the biliary tract. The incidence of GBC shows a large geographic variability, being particularly frequent in Native American populations. In Chile, GBC represents the second cause of cancer-related death among women. We describe here the establishment of three novel cell lines derived from the ascitic fluid of a Chilean GBC patient, who presented 46% European, 36% Mapuche, 12% Aymara and 6% African ancestry. RESULTS: After immunocytochemical staining of the primary cell culture, we isolated and comprehensively characterized three independent clones (PUC-GBC1, PUC-GBC2 and PUC-GBC3) by short tandem repeat DNA profiling and RNA sequencing as well as karyotype, doubling time, chemosensitivity, in vitro migration capability and in vivo tumorigenicity assay. Primary culture cells showed high expression of CK7, CK19, CA 19-9, MUC1 and MUC16, and negative expression of mesothelial markers. The three isolated clones displayed an epithelial phenotype and an abnormal structure and number of chromosomes. RNA sequencing confirmed the increased expression of cytokeratin and mucin genes, and also of TP53 and ERBB2 with some differences among the three cells lines, and revealed a novel exonic mutation in NF1. The PUC-GBC3 clone was the most aggressive according to histopathological features and the tumorigenic capacity in NSG mice. CONCLUSIONS: The first cell lines established from a Chilean GBC patient represent a new model for studying GBC in patients of Native American descent.


Subject(s)
Antigens, Tumor-Associated, Carbohydrate/genetics , Gallbladder Neoplasms/genetics , Indians, South American/genetics , Animals , Antineoplastic Agents/pharmacology , Ascitic Fluid/metabolism , Carcinogenesis/genetics , Carcinogenicity Tests , Cell Line, Tumor/drug effects , Cell Line, Tumor/metabolism , Chile , Cisplatin/pharmacology , Clone Cells/drug effects , Clone Cells/metabolism , DNA Fingerprinting , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Epithelial Cells/metabolism , Gallbladder Neoplasms/metabolism , Gene Expression Profiling , Genes, erbB-2/genetics , Humans , Keratin-19/genetics , Keratin-7/genetics , Male , Mice, Inbred NOD , Middle Aged , Receptor, ErbB-2/genetics , Sequence Analysis, RNA , Tumor Cells, Cultured , Tumor Suppressor Protein p53/genetics , Gemcitabine
15.
Angew Chem Int Ed Engl ; 59(6): 2204-2210, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31724281

ABSTRACT

Fragment-based drug discovery (FBDD) is a popular method in academia and the pharmaceutical industry for the discovery of early lead candidates. Despite its wide-spread use, the approach still suffers from laborious screening workflows and a limited diversity in the fragments applied. Presented here is the design, synthesis, and biological evaluation of the first fragment library specifically tailored to tackle both these challenges. The 3F library of 115 fluorinated, Fsp3 -rich fragments is shape diverse and natural-product-like with desirable physicochemical properties. The library is perfectly suited for rapid and efficient screening by NMR spectroscopy in a two-stage workflow of 19 F NMR and subsequent 1 H NMR methods. Hits against four diverse protein targets are widely distributed among the fragment scaffolds in the 3F library and a 67 % validation rate was achieved using secondary assays. This collection is the first synthetic fragment library tailor-made for 19 F NMR screening and the results demonstrate that the approach should find broad application in the FBDD community.


Subject(s)
Drug Discovery/methods , Fluorine/chemistry , Magnetic Resonance Spectroscopy , Small Molecule Libraries/chemistry , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/metabolism , Cell Adhesion Molecules/antagonists & inhibitors , Cell Adhesion Molecules/metabolism , Cycloaddition Reaction , Halogenation , Humans , Lectins, C-Type/antagonists & inhibitors , Lectins, C-Type/metabolism , Quantum Theory , Receptors, Cell Surface/antagonists & inhibitors , Receptors, Cell Surface/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/antagonists & inhibitors , Ribosomal Protein S6 Kinases, 70-kDa/metabolism
16.
Histopathology ; 74(4): 597-607, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30565710

ABSTRACT

AIMS: Gallbladder cancer (GBC) is an aggressive tumour that is usually diagnosed at advanced stages and is characterised by a poor prognosis. Using public data of normal human tissues, we found that mRNA and protein levels of mucin 5B (MUC5B) and carbonic anhydrase 9 (CA9) were highly increased in gallbladder tissues. In addition, previous evidence has shown that claudin 18 (CLDN18) protein expression is higher in GBC. The aim of this study was to perform an analysis of these cell surface proteins during the histological progression of GBC in order to identify their theranostic potential. METHODS AND RESULTS: MUC5B expression, CA9 expression and CLDN18 expression were examined by immunohistochemistry in a series of 179 chronic cholecystitis (including 16 metaplastic tissues), 15 dysplasia and 217 GBC samples by the use of tissue microarray analysis. A composite staining score was calculated from staining intensity and percentage of positive cells. Immunohistochemical analysis showed high expression of MUC5B and CA9 among normal epithelium, metaplastic tissues, and dysplastic tissues. However, expression of both proteins was observed in roughly 50% of GBC samples. In contrast, CLDN18 was absent in normal epithelium, but its expression was higher in metaplastic cells. Among GBC cases, approximately half showed high CLDN18 expression. No associations were found between MUC5B, CA9 and CLDN18 expression and any clinicopathological features. CONCLUSIONS: CLDN18 is a new metaplasia marker in gallbladder tissues, and is conserved in approximately half of GBC cases. MUC5B and CA9 are highly conserved during GBC histological progression. The three markers are potential theranostic markers, in particular CA9 and CLDN18, for which there are already targeted therapies available.


Subject(s)
Antigens, Neoplasm/biosynthesis , Biomarkers, Tumor/analysis , Carbonic Anhydrase IX/biosynthesis , Claudins/biosynthesis , Gallbladder Neoplasms/pathology , Mucin-5B/biosynthesis , Adult , Aged , Female , Humans , Male , Middle Aged , Theranostic Nanomedicine/methods
17.
Mol Plant Microbe Interact ; 31(9): 914-931, 2018 09.
Article in English | MEDLINE | ID: mdl-29513627

ABSTRACT

Podosphaera xanthii is the main causal agent of powdery mildew disease in cucurbits. In a previous study, we determined that P. xanthii expresses approximately 50 Podosphaera effector candidates (PECs), identified based on the presence of a predicted signal peptide and the absence of functional annotation. In this work, we used host-induced gene silencing (HIGS), employing Agrobacterium tumefaciens as a vector for the delivery of the silencing constructs (ATM-HIGS), to identify genes involved in early plant-pathogen interaction. The analysis of seven selected PEC-encoding genes showed that six of them, PEC007, PEC009, PEC019, PEC032, PEC034, and PEC054, are required for P. xanthii pathogenesis, as revealed by reduced fungal growth and increased production of hydrogen peroxide by host cells. In addition, protein models and protein-ligand predictions allowed us to identify putative functions for these candidates. The biochemical activities of PEC019, PEC032, and PEC054 were elucidated using their corresponding proteins expressed in Escherichia coli. These proteins were confirmed as phospholipid-binding protein, α-mannosidase, and cellulose-binding protein. Further, BLAST searches showed that these three effectors are widely distributed in phytopathogenic fungi. These results suggest novel targets for fungal effectors, such as host-cell plasma membrane, host-cell glycosylation, and damage-associated molecular pattern-triggered immunity.


Subject(s)
Ascomycota/pathogenicity , Cucurbitaceae/microbiology , Fungal Proteins/metabolism , Host-Pathogen Interactions , Models, Molecular , Plant Diseases/microbiology , Agrobacterium tumefaciens/genetics , Ascomycota/genetics , Cucurbitaceae/immunology , Fungal Proteins/genetics , Gene Silencing , Genetic Vectors/genetics , Plant Diseases/immunology
18.
N Engl J Med ; 383(4): e20, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32706543
19.
Crit Rev Microbiol ; 44(6): 653-666, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30354913

ABSTRACT

Intense research has confirmed the formerly theoretical distribution of amyloids in nature, and studies on different systems have illustrated the role of these proteins in microbial adaptation and in interactions with the environment. Two lines of research are expanding our knowledge on functional amyloids: (i) structural studies providing insights into the molecular machineries responsible for the transition from monomer to fibers and (ii) studies showing the way in which these proteins might participate in the microbial fitness in natural settings. Much is known about how amyloids play a role in the social behavior of bacteria, or biofilm formation, and in the adhesion of bacteria to surfaces; however, we are still in the initial stages of understanding a complementary involvement of amyloids in bacteria-host interactions. This review will cover the following two topics: first, the key aspects of the microbial platforms dedicated to the assembly of the fibers, and second, the mechanisms by which bacteria utilize the morphological and biochemical variability of amyloids to modulate the immunological response of the host, plants and humans, contributing to (i) infection, in the case of pathogenic bacteria or (ii) promotion of the health of the host, in the case of beneficial bacteria.


Subject(s)
Amyloid/chemistry , Amyloid/metabolism , Bacteria/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Amyloid/genetics , Bacteria/chemistry , Bacteria/genetics , Bacterial Proteins/genetics
20.
Tumour Biol ; 40(11): 1010428318810059, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30419802

ABSTRACT

A complex network of chemokines can influence cancer progression with the recruitment and activation of hematopoietic cells, including macrophages to the supporting tumor stroma promoting carcinogenesis and metastasis. The aim of this study was to investigate the relation between tissue and plasma chemokine levels involved in macrophage recruitment with tumor-associated macrophage profile markers and clinicopathological features such as tumor-node-metastases stage, desmoplasia, tumor necrosis factor-α, and vascular endothelial growth factor plasma content. Plasma and tumor/healthy mucosa were obtained from Chilean patients undergoing colon cancer surgery. Chemokines were evaluated from tissue lysates (CCL2, CCL3, CCL4, CCL5, and CX3CL1) by Luminex. Statistical analysis was performed using Wilcoxon match-paired test ( p < 0.05). Macrophage markers (CD68, CD163, and iNOS) were evaluated by immunohistochemistry samples derived from colorectal cancer patients. Correlation analysis between chemokines and macrophage markers and clinicopathological features were performed using Spearman's test. Plasmatic levels of chemokines and inflammatory mediators' vascular endothelial growth factor and tumor necrosis factor-α were evaluated by Luminex. Tumor levels of CCL2 (mean ± standard deviation = 530.1 ± 613.9 pg/mg), CCL3 (102.7 ± 106.0 pg/mg), and CCL4 (64.98 ± 48.09 pg/mg) were higher than those found in healthy tissue (182.1 ± 116.5, 26.79 ± 22.40, and 27.06 ± 23.69 pg/mg, respectively p < 0.05). The tumor characterization allowed us to identify a positive correlation between CCL4 and the pro-tumor macrophages marker CD163 ( p = 0.0443), and a negative correlation of iNOS with desmoplastic reaction ( p = 0.0467). Moreover, we identified that tumors with immature desmoplasia have a higher CD163 density compared to those with a mature/intermediated stromal tissue ( p = 0.0288). Plasmatic CCL4 has shown a positive correlation with inflammatory mediators (tumor necrosis factor-α and vascular endothelial growth factor) that have previously been associated with poor prognosis in patients. In conclusion High expression of CCL4 in colon cancer could induce the infiltration of tumor-associated macrophages and specifically a pro-tumor macrophage profile (CD163+ cells). Moreover, plasmatic chemokines could be considered inflammatory mediators associated to CRC progression as well as tumor necrosis factor-α and vascular endothelial growth factor. These data reinforce the idea of chemokines as potential therapeutic targets or biomarker in CRC.


Subject(s)
Biomarkers, Tumor/metabolism , Chemokine CCL2/metabolism , Chemokine CCL3/metabolism , Chemokine CCL4/metabolism , Colorectal Neoplasms/pathology , Macrophages/pathology , Tumor Microenvironment , Adult , Aged , Aged, 80 and over , Case-Control Studies , Colorectal Neoplasms/metabolism , Female , Follow-Up Studies , Humans , Macrophages/metabolism , Male , Middle Aged , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL