Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Nat Chem Biol ; 11(11): 878-86, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26436839

ABSTRACT

Neomorphic mutations in isocitrate dehydrogenase 1 (IDH1) are driver mutations in acute myeloid leukemia (AML) and other cancers. We report the development of new allosteric inhibitors of mutant IDH1. Crystallographic and biochemical results demonstrated that compounds of this chemical series bind to an allosteric site and lock the enzyme in a catalytically inactive conformation, thereby enabling inhibition of different clinically relevant IDH1 mutants. Treatment of IDH1 mutant primary AML cells uniformly led to a decrease in intracellular 2-HG, abrogation of the myeloid differentiation block and induction of granulocytic differentiation at the level of leukemic blasts and more immature stem-like cells, in vitro and in vivo. Molecularly, treatment with the inhibitors led to a reversal of the DNA cytosine hypermethylation patterns caused by mutant IDH1 in the cells of individuals with AML. Our study provides proof of concept for the molecular and biological activity of novel allosteric inhibitors for targeting different mutant forms of IDH1 in leukemia.


Subject(s)
Dihydropyridines/pharmacology , Enzyme Inhibitors/pharmacology , Isocitrate Dehydrogenase/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Pyrazoles/pharmacology , Allosteric Regulation , Allosteric Site , Animals , Cell Differentiation/drug effects , Cell Line, Tumor , CpG Islands , Crystallography, X-Ray , Cytosine/chemistry , Cytosine/metabolism , DNA Methylation/drug effects , Dihydropyridines/chemistry , Dihydropyridines/pharmacokinetics , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Granulocytes/drug effects , Granulocytes/enzymology , Granulocytes/pathology , Humans , Isocitrate Dehydrogenase/chemistry , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Kinetics , Leukemia, Myeloid, Acute/enzymology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Male , Mice , Models, Molecular , Mutation , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/enzymology , Neoplastic Stem Cells/pathology , Primary Cell Culture , Protein Binding , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Xenograft Model Antitumor Assays
2.
Bioorg Med Chem Lett ; 22(6): 2230-4, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22361133

ABSTRACT

A series of PI3K-beta selective inhibitors, imidazo[1,2-a]-pyrimidin-5(1H)-ones, has been rationally designed based on the docking model of the more potent R enantiomer of TGX-221, identified by a chiral separation, in a PI3K-beta homology model. Synthesis and SAR of this novel chemotype are described. Several compounds in the series demonstrated potent growth inhibition in a PTEN-deficient breast cancer cell line MDA-MB-468 under anchorage independent conditions.


Subject(s)
Antineoplastic Agents/chemical synthesis , Imidazoles/chemical synthesis , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/chemical synthesis , Pyrimidinones/chemical synthesis , Antineoplastic Agents/pharmacology , Binding Sites , Breast Neoplasms , Cell Line, Tumor , Drug Screening Assays, Antitumor , Female , Gene Deletion , Humans , Imidazoles/pharmacology , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Kinetics , Models, Molecular , PTEN Phosphohydrolase/deficiency , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinase/metabolism , Protein Binding , Protein Kinase Inhibitors/pharmacology , Pyrimidinones/pharmacology , Structure-Activity Relationship
5.
J Pharmacol Exp Ther ; 329(3): 995-1005, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19304771

ABSTRACT

The Smoothened receptor (Smo) mediates hedgehog (Hh) signaling critical for development, cell growth, and migration, as well as stem cell maintenance. Aberrant Hh signaling pathway activation has been implicated in a variety of cancers, and small-molecule antagonists of Smo have entered human clinical trials for the treatment of cancer. Here, we report the biochemical characterization of allosteric interactions of agonists and antagonists for Smo. Binding of two radioligands, [(3)H]3-chloro-N-[trans-4-(methylamino)cyclohexyl]-N-{[3-(4-pyridinyl)-phenyl]methyl}-1-benzothiophene-2-carboxamide (SAG-1.3) (agonist) and [(3)H]cyclopamine (antagonist), was characterized using human Smo expressed in human embryonic kidney 293F membranes. We observed full displacement of [(3)H]cyclopamine by all Smo agonist and antagonist ligands examined. N-[(1E)-(3,5-Dimethyl-1-phenyl-1H-pyrazol-4-yl)methylidene]-4-(phenylmethyl)-1-piperazinamine (SANT-1), an antagonist, did not fully inhibit the binding of [(3)H]SAG-1.3. In a functional cell-based beta-lactamase reporter gene assay, SANT-1 and N-[3-(1H-benzimidazol-2-yl)-4-chlorophenyl]-3,4,5-tris(ethyloxy)-benzamide (SANT-2) fully inhibited 3-chloro-4,7-difluoro-N-[trans-4-(methylamino)cyclohexyl]-N-{[3-(4-pyridinyl)phenyl]methyl}-1-benzothiophene-2-carboxamide (SAG-1.5)-induced Hh pathway activation. Detailed "Schild-type" radioligand binding analysis with [(3)H]SAG-1.3 revealed that two structurally distinct Smoothened receptor antagonists, SANT-1 and SANT-2, bound in a manner consistent with that of allosteric modulation. Our mechanism of action characterization of radioligand binding to Smo combined with functional data provides a better understanding of small-molecule interactions with Smo and their influence on the Hh pathway.


Subject(s)
Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/metabolism , Anilides , Animals , Benzamides/chemistry , Benzamides/metabolism , Benzimidazoles/chemistry , Benzimidazoles/metabolism , Binding Sites , Binding, Competitive , Cell Line , Cell Membrane/metabolism , Cyclohexylamines/chemistry , Cyclohexylamines/metabolism , Genes, Reporter/genetics , Humans , Kinetics , Mice , Molecular Structure , Morpholines/chemistry , Morpholines/metabolism , NIH 3T3 Cells , Piperazines/chemistry , Piperazines/metabolism , Purines/chemistry , Purines/metabolism , Pyrazoles/chemistry , Pyrazoles/metabolism , Pyridines , Radioligand Assay , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/chemistry , Recombinant Proteins/agonists , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Smoothened Receptor , Thiophenes/chemistry , Thiophenes/metabolism , Tomatine/analogs & derivatives , Tomatine/chemistry , Tomatine/metabolism , Transfection , Veratrum Alkaloids/chemistry , Veratrum Alkaloids/metabolism , beta-Lactamases/metabolism
6.
Cancer Res ; 66(23): 11100-5, 2006 Dec 01.
Article in English | MEDLINE | ID: mdl-17145850

ABSTRACT

Oncogenic BRAF alleles are both necessary and sufficient for cellular transformation, suggesting that chemical inhibition of the activated mutant protein kinase may reverse the tumor phenotype. Here, we report the characterization of SB-590885, a novel triarylimidazole that selectively inhibits Raf kinases with more potency towards B-Raf than c-Raf. Crystallographic analysis revealed that SB-590885 stabilizes the oncogenic B-Raf kinase domain in an active configuration, which is distinct from the previously reported mechanism of action of the multi-kinase inhibitor, BAY43-9006. Malignant cells expressing oncogenic B-Raf show selective inhibition of mitogen-activated protein kinase activation, proliferation, transformation, and tumorigenicity when exposed to SB-590885, whereas other cancer cell lines and normal cells display variable sensitivities or resistance to similar treatment. These studies support the validation of oncogenic B-Raf as a target for cancer therapy and provide the first evidence of a correlation between the expression of oncogenic BRAF alleles and a positive response to a selective B-Raf inhibitor.


Subject(s)
Imidazoles/therapeutic use , Neoplasms/drug therapy , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Alleles , Animals , Blotting, Western , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Crystallization , Crystallography, X-Ray , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , HT29 Cells , Humans , Imidazoles/chemistry , Mice , Mice, Nude , Models, Molecular , Molecular Structure , Mutation/genetics , Neoplasms/enzymology , Neoplasms/pathology , Phosphorylation/drug effects , Protein Conformation/drug effects , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/chemistry , Proto-Oncogene Proteins B-raf/genetics , Xenograft Model Antitumor Assays
7.
ACS Med Chem Lett ; 7(3): 217-22, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26985301

ABSTRACT

A novel series of potent and selective hexokinase 2 (HK2) inhibitors, 2,6-disubstituted glucosamines, has been identified based on HTS hits, exemplified by compound 1. Inhibitor-bound crystal structures revealed that the HK2 enzyme could adopt an "induced-fit" conformation. The SAR study led to the identification of potent HK2 inhibitors, such as compound 34 with greater than 100-fold selectivity over HK1. Compound 25 inhibits in situ glycolysis in a UM-UC-3 bladder tumor cell line via (13)CNMR measurement of [3-(13)C]lactate produced from [1,6-(13)C2]glucose added to the cell culture.

8.
J Neurosci ; 24(12): 2942-52, 2004 Mar 24.
Article in English | MEDLINE | ID: mdl-15044533

ABSTRACT

gamma-Secretase is a multimeric complex consisted of presenilins (PSs) and three other proteins. PSs appear to be key contributors for the enzymatic center, the potential target of a number of recently developed gamma-secretase inhibitors. Using radiolabeled and unlabeled inhibitors as ligands, this study was aimed to determine the in situ distribution of gamma-secretase in the brain. Characterization using PS-1 knock-out mouse embryos revealed 50 and 80% reductions of gamma-secretase inhibitor binding density in the heterozygous (PS-1(+/-)) and homozygous (PS-1-/-) embryos, respectively, relative to the wild type (PS-1(+/+)). The pharmacological profile from competition binding assays suggests that the ligands may target at the N- and C-terminal fragments of PS essential for gamma-secretase activity. In the adult rat brain, the binding sites existed mostly in the forebrain, the cerebellum, and discrete brainstem areas and were particularly abundant in areas rich in neuronal terminals, e.g., olfactory glomeruli, CA3-hilus area, cerebellar molecular layer, and pars reticulata of the substantia nigra. In the developing rat brain, diffuse and elevated expression of binding sites occurred at the early postnatal stage relative to the adult. The possible association of binding sites with neuronal terminals in the adult brain was further investigated after olfactory deafferentation. A significant decrease with subsequent recovery of binding sites was noted in the olfactory glomeruli after chemical damage of the olfactory epithelium. The findings in this study support a physiological role of PS or gamma-secretase complex in neuronal and synaptic development and plasticity.


Subject(s)
Brain/metabolism , Endopeptidases/drug effects , Endopeptidases/metabolism , Enzyme Inhibitors/metabolism , Afferent Pathways/drug effects , Afferent Pathways/physiology , Age Factors , Amyloid Precursor Protein Secretases , Animals , Aspartic Acid Endopeptidases , Autoradiography , Binding Sites/physiology , Binding, Competitive/drug effects , Binding, Competitive/physiology , Brain/embryology , Brain/growth & development , Denervation , Enzyme Inhibitors/pharmacokinetics , Ligands , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Knockout , Olfactory Bulb/drug effects , Olfactory Bulb/physiology , Presenilin-1 , Rats , Rats, Sprague-Dawley , Zinc Sulfate/pharmacology
9.
ACS Med Chem Lett ; 4(2): 230-4, 2013 Feb 14.
Article in English | MEDLINE | ID: mdl-24900655

ABSTRACT

A series of novel [3a,4]dihydropyrazolo[1,5a]pyrimidines were identified, which were highly potent and selective inhibitors of PI3Kß. The template afforded the opportunity to develop novel SAR for both the hinge-binding (R3) and back-pocket (R4) substitutents. While cellular potency was relatively modest due to high protein binding, the series displayed low clearance in rat, mouse, and monkey.

10.
ACS Med Chem Lett ; 3(7): 524-9, 2012 Jul 12.
Article in English | MEDLINE | ID: mdl-24900504

ABSTRACT

A novel thiazolopyrimidinone series of PI3K-beta selective inhibitors has been identified. This chemotype has provided an excellent tool compound, 18, that showed potent growth inhibition in the PTEN-deficient breast cancer cell line MDA-MB-468 under anchorage-independent conditions, and it also demonstrated pharmacodynamic effects and efficacy in a PTEN-deficient prostate cancer PC-3 xenograft mouse model.

11.
Clin Cancer Res ; 17(5): 989-1000, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21245089

ABSTRACT

PURPOSE: Despite their preclinical promise, previous MEK inhibitors have shown little benefit for patients. This likely reflects the narrow therapeutic window for MEK inhibitors due to the essential role of the P42/44 MAPK pathway in many nontumor tissues. GSK1120212 is a potent and selective allosteric inhibitor of the MEK1 and MEK2 (MEK1/2) enzymes with promising antitumor activity in a phase I clinical trial (ASCO 2010). Our studies characterize GSK1120212' enzymatic, cellular, and in vivo activities, describing its unusually long circulating half-life. EXPERIMENTAL DESIGN: Enzymatic studies were conducted to determine GSK1120212 inhibition of recombinant MEK, following or preceding RAF kinase activation. Cellular studies examined GSK1120212 inhibition of ERK1 and 2 phosphorylation (p-ERK1/2) as well as MEK1/2 phosphorylation and activation. Further studies explored the sensitivity of cancer cell lines, and drug pharmacokinetics and efficacy in multiple tumor xenograft models. RESULTS: In enzymatic and cellular studies, GSK1120212 inhibits MEK1/2 kinase activity and prevents Raf-dependent MEK phosphorylation (S217 for MEK1), producing prolonged p-ERK1/2 inhibition. Potent cell growth inhibition was evident in most tumor lines with mutant BRAF or Ras. In xenografted tumor models, GSK1120212 orally dosed once daily had a long circulating half-life and sustained suppression of p-ERK1/2 for more than 24 hours; GSK1120212 also reduced tumor Ki67, increased p27(Kip1/CDKN1B), and caused tumor growth inhibition in multiple tumor models. The largest antitumor effect was among tumors harboring mutant BRAF or Ras. CONCLUSIONS: GSK1120212 combines high potency, selectivity, and long circulating half-life, offering promise for successfully targeting the narrow therapeutic window anticipated for clinical MEK inhibitors.


Subject(s)
Antineoplastic Agents/pharmacology , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Neoplasms, Experimental/drug therapy , Pyridones/pharmacology , Pyrimidinones/pharmacology , Animals , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Female , Genes, ras , Humans , Immunoblotting , Ki-67 Antigen/metabolism , Mice , Mice, Nude , Mitogen-Activated Protein Kinases/metabolism , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Phosphorylation , Proto-Oncogene Proteins B-raf/genetics , Pyridones/pharmacokinetics , Pyrimidinones/pharmacokinetics , Rats , Rats, Sprague-Dawley , Xenograft Model Antitumor Assays
12.
Arch Biochem Biophys ; 464(1): 130-7, 2007 Aug 01.
Article in English | MEDLINE | ID: mdl-17490600

ABSTRACT

We have developed a highly sensitive assay of MEK-mediated ATP hydrolysis by coupling the formation of ADP to NADH oxidation through the enzymes pyruvate kinase and lactate dehydrogenase. Robust ATP hydrolysis is catalyzed by phosphorylated MEK in the absence of the protein substrate ERK. This ERK-uncoupled ATPase activity is dependent on the phosphorylation status of MEK and is abrogated by the selective MEK kinase inhibitor U0126. ADP production is concomitant with Raf-mediated phosphorylation of MEK. Based on this finding, a coupled Raf/MEK assay is developed for measuring the Raf activity. A kinetic treatment derived under steady-state assumptions is presented for the analysis of the reaction progress curve generated by this coupled assay. We have shown that inhibitory potency of selective Raf inhibitors can be determined accurately by this assay.


Subject(s)
Adenosine Triphosphatases/metabolism , MAP Kinase Kinase 1/metabolism , Adenosine Triphosphate/chemistry , Animals , Butadienes/pharmacology , Escherichia coli/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Hydrolysis , Kinetics , Nitriles/pharmacology , Phosphates/metabolism , Phosphorylation , Proto-Oncogene Proteins B-raf/metabolism , Rabbits , Signal Transduction , Time Factors
13.
J Pharmacol Exp Ther ; 305(1): 57-69, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12649353

ABSTRACT

The in vitro pharmacological profile of a novel small molecule corticotropin-releasing factor 1 (CRF(1)) receptor antagonist, (+/-)-N-[2-methyl-4-methoxyphenyl]-1-(1-(methoxymethyl)propyl)-6-methyl-1H-1,2,3-triazolo[4,5-c]pyridin-4-amine (SN003), and the characteristics of its radioligand ([(3)H]SN003) are described. SN003 has high affinity and selectivity for CRF(1) receptors expressed in rat cortex, pituitary, and recombinant HEK293EBNA (HEK293e) cells with respective radiolabeled ovine CRF ([(125)I]oCRF) binding K(i) values of 2.5, 7.9, and 6.8 nM. SN003 was shown to be a CRF(1) receptor antagonist inasmuch as it inhibited CRF-induced cAMP accumulation in human CRF(1)HEK293e cells and CRF-stimulated adrenocorticotropin hormone release from rat pituitary cells without agonist activities. Significant decreases in the B(max) of [(125)I]oCRF binding by SN003 suggest that this antagonist is not simply competitive. To further explore the interaction of SN003 with the CRF(1) receptors, [(3)H]SN003 binding to rat cortex and human CRF(1)HEK293e cell membranes was characterized and shown to be reversible and saturable, with K(D) values of 4.8 and 4.6 nM, and B(max) values of 0.142 and 7.42 pmol/mg protein, respectively. The association and dissociation rate constants of [(3)H]SN003 (k(+1) 0.292 nM(-1) min(-1) and k(-1) 0.992 x 10(-2) min(-1)) were also assessed using human CRF(1)HEK293e cell membranes, giving an equilibrium dissociation constant of 3.4 nM. Moreover, [(3)H]SN003 binding displayed a single affinity state and insensitivity to 5'-guanylylimidodiphosphate, consistent with characteristics of antagonist binding. Incomplete inhibition of [(3)H]SN003 binding by CRF peptides also suggests that SN003 is not simply competitive with CRF at CRF(1) receptors. The distribution of [(3)H]SN003 binding sites was consistent with the expression pattern of CRF(1) receptors in rat brain regions. Small molecule CRF(1) antagonist radioligands like [(3)H]SN003 should enable a better understanding of small molecule interactions with the CRF(1) receptor.


Subject(s)
Pyridines/pharmacology , Radiopharmaceuticals/pharmacology , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Triazoles/pharmacology , Adrenocorticotropic Hormone/metabolism , Animals , Binding Sites , Cell Membrane/drug effects , Cell Membrane/metabolism , Cells, Cultured , Cyclic AMP/metabolism , Humans , Male , Radioligand Assay , Rats , Rats, Sprague-Dawley , Receptors, Corticotropin-Releasing Hormone/metabolism , Tritium
SELECTION OF CITATIONS
SEARCH DETAIL