Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Nature ; 528(7580): 127-31, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26580007

ABSTRACT

Prevailing dogma holds that cell-cell communication through Notch ligands and receptors determines binary cell fate decisions during progenitor cell divisions, with differentiated lineages remaining fixed. Mucociliary clearance in mammalian respiratory airways depends on secretory cells (club and goblet) and ciliated cells to produce and transport mucus. During development or repair, the closely related Jagged ligands (JAG1 and JAG2) induce Notch signalling to determine the fate of these lineages as they descend from a common proliferating progenitor. In contrast to such situations in which cell fate decisions are made in rapidly dividing populations, cells of the homeostatic adult airway epithelium are long-lived, and little is known about the role of active Notch signalling under such conditions. To disrupt Jagged signalling acutely in adult mammals, here we generate antibody antagonists that selectively target each Jagged paralogue, and determine a crystal structure that explains selectivity. We show that acute Jagged blockade induces a rapid and near-complete loss of club cells, with a concomitant gain in ciliated cells, under homeostatic conditions without increased cell death or division. Fate analyses demonstrate a direct conversion of club cells to ciliated cells without proliferation, meeting a conservative definition of direct transdifferentiation. Jagged inhibition also reversed goblet cell metaplasia in a preclinical asthma model, providing a therapeutic foundation. Our discovery that Jagged antagonism relieves a blockade of cell-to-cell conversion unveils unexpected plasticity, and establishes a model for Notch regulation of transdifferentiation.


Subject(s)
Antibodies/therapeutic use , Cell Transdifferentiation , Lung/cytology , Lung/metabolism , Receptors, Notch/metabolism , Animals , Antibodies/immunology , Antibodies/pharmacology , Asthma/drug therapy , Asthma/metabolism , Asthma/pathology , Calcium-Binding Proteins/antagonists & inhibitors , Calcium-Binding Proteins/immunology , Calcium-Binding Proteins/metabolism , Cell Death/drug effects , Cell Division/drug effects , Cell Lineage/drug effects , Cell Tracking , Cell Transdifferentiation/drug effects , Cilia/metabolism , Disease Models, Animal , Female , Goblet Cells/cytology , Goblet Cells/drug effects , Goblet Cells/pathology , Homeostasis/drug effects , Humans , Intercellular Signaling Peptides and Proteins/immunology , Intercellular Signaling Peptides and Proteins/metabolism , Jagged-1 Protein , Jagged-2 Protein , Ligands , Lung/drug effects , Male , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/immunology , Membrane Proteins/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Serrate-Jagged Proteins , Signal Transduction/drug effects
2.
J Immunol ; 195(3): 953-64, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26116508

ABSTRACT

NF-κB-inducing kinase (NIK) is a primary regulator of the noncanonical NF-κB signaling pathway, which plays a vital role downstream of BAFF, CD40L, lymphotoxin, and other inflammatory mediators. Germline deletion or inactivation of NIK in mice results in the defective development of B cells and secondary lymphoid organs, but the role of NIK in adult animals has not been studied. To address this, we generated mice containing a conditional allele of NIK. Deletion of NIK in adult mice results in decreases in B cell populations in lymph nodes and spleen, similar to what is observed upon blockade of BAFF. Consistent with this, B cells from mice in which NIK is acutely deleted fail to respond to BAFF stimulation in vitro and in vivo. In addition, mice with induced NIK deletion exhibit a significant decrease in germinal center B cells and serum IgA, which is indicative of roles for NIK in additional pathways beyond BAFF signaling. Our conditional NIK-knockout mice may be broadly useful for assessing the postdevelopmental and cell-specific roles of NIK and the noncanonical NF-κB pathway in mice.


Subject(s)
B-Cell Activating Factor/genetics , B-Lymphocytes/immunology , Lymphocyte Activation/genetics , NF-kappa B p52 Subunit/biosynthesis , Protein Serine-Threonine Kinases/genetics , Animals , B-Lymphocytes/cytology , Cell Differentiation/immunology , Cell Survival/genetics , Cell Survival/immunology , Germ-Line Mutation , I-kappa B Kinase/metabolism , Immunoglobulin A/blood , Lymph Nodes/cytology , Lymphocyte Activation/immunology , Mice , Mice, Knockout , NF-kappa B p52 Subunit/genetics , Sequence Deletion , Signal Transduction/genetics , Signal Transduction/immunology , Spleen/cytology , Tamoxifen/pharmacology , NF-kappaB-Inducing Kinase
3.
Proc Natl Acad Sci U S A ; 107(21): 9771-6, 2010 May 25.
Article in English | MEDLINE | ID: mdl-20457908

ABSTRACT

Macrophages respond to cytosolic nucleic acids by activating cysteine protease caspase-1 within a complex called the inflammasome. Subsequent cleavage and secretion of proinflammatory cytokines IL-1beta and IL-18 are critical for innate immunity. Here, we show that macrophages from mice lacking absent in melanoma 2 (AIM2) cannot sense cytosolic double-stranded DNA and fail to trigger inflammasome assembly. Caspase-1 activation in response to intracellular pathogen Francisella tularensis also required AIM2. Immunofluorescence microscopy of macrophages infected with F. tularensis revealed striking colocalization of bacterial DNA with endogenous AIM2 and inflammasome adaptor ASC. By contrast, type I IFN (IFN-alpha and -beta) secretion in response to F. tularensis did not require AIM2. IFN-I did, however, boost AIM2-dependent caspase-1 activation by increasing AIM2 protein levels. Thus, inflammasome activation was reduced in infected macrophages lacking either the IFN-I receptor or stimulator of interferon genes (STING). Finally, AIM2-deficient mice displayed increased susceptibility to F. tularensis infection compared with wild-type mice. Their increased bacterial burden in vivo confirmed that AIM2 is essential for an effective innate immune response.


Subject(s)
Francisella tularensis/immunology , Immunity, Innate , Nuclear Proteins/immunology , Tularemia/immunology , Animals , Caspase 1/metabolism , Cells, Cultured , Cytosol/immunology , DNA/genetics , DNA/immunology , DNA-Binding Proteins , Enzyme Activation , Interferon-alpha/immunology , Interferon-beta/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Proteins/deficiency , Receptor, Interferon alpha-beta/immunology
4.
Neuron ; 111(17): 2642-2659.e13, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37352856

ABSTRACT

Loss-of-function mutations in Nav1.7, a voltage-gated sodium channel, cause congenital insensitivity to pain (CIP) in humans, demonstrating that Nav1.7 is essential for the perception of pain. However, the mechanism by which loss of Nav1.7 results in insensitivity to pain is not entirely clear. It has been suggested that loss of Nav1.7 induces overexpression of enkephalin, an endogenous opioid receptor agonist, leading to opioid-dependent analgesia. Using behavioral pharmacology and single-cell RNA-seq analysis, we find that overexpression of enkephalin occurs only in cLTMR neurons, a subclass of sensory neurons involved in low-threshold touch detection, and that this overexpression does not play a role in the analgesia observed following genetic removal of Nav1.7. Furthermore, we demonstrate using laser speckle contrast imaging (LSCI) and in vivo electrophysiology that Nav1.7 function is required for the initiation of C-fiber action potentials (APs), which explains the observed insensitivity to pain following genetic removal or inhibition of Nav1.7.


Subject(s)
Analgesics, Opioid , Nociceptors , Mice , Humans , Animals , Analgesics, Opioid/pharmacology , Action Potentials , NAV1.7 Voltage-Gated Sodium Channel/genetics , Pain/genetics , Sensory Receptor Cells , Opioid Peptides , Enkephalins , Ganglia, Spinal
5.
Heliyon ; 9(3): e14238, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36950615

ABSTRACT

The ability of stem cells to rapidly proliferate and differentiate is integral to the steady-state maintenance of tissues with high turnover such as the blood and intestine. Mutations that alter these processes can cause primary immunodeficiencies, malignancies and defects in barrier function. The Rho-kinases, Rock1 and Rock2, regulate cell shape and cytoskeletal rearrangement, activities essential to mitosis. Here, we use inducible gene targeting to ablate Rock1 and Rock2 in adult mice, and identify an obligate requirement for these enzymes in the preservation of the hematopoietic and gastrointestinal systems. Hematopoietic cell progenitors devoid of Rho-kinases display cell cycle arrest, blocking the differentiation to mature blood lineages. Similarly, these mice exhibit impaired epithelial cell renewal in the small intestine, which is ultimately fatal. Our data reveal a novel role for these kinases in the proliferation and viability of stem cells and their progenitors, which is vital to maintaining the steady-state integrity of these organ systems.

6.
Nature ; 440(7081): 228-32, 2006 Mar 09.
Article in English | MEDLINE | ID: mdl-16407890

ABSTRACT

A crucial part of the innate immune response is the assembly of the inflammasome, a cytosolic complex of proteins that activates caspase-1 to process the proinflammatory cytokines interleukin (IL)-1beta and IL-18. The adaptor protein ASC is essential for inflammasome function, binding directly to caspase-1 (refs 3, 4), but the triggers of this interaction are less clear. ASC also interacts with the adaptor cryopyrin (also known as NALP3 or CIAS1). Activating mutations in cryopyrin are associated with familial cold autoinflammatory syndrome, Muckle-Wells syndrome and neonatal onset multisystem inflammatory disease, diseases that are characterized by excessive production of IL-1beta. Here we show that cryopyrin-deficient macrophages cannot activate caspase-1 in response to Toll-like receptor agonists plus ATP, the latter activating the P2X7 receptor to decrease intracellular K+ levels. The release of IL-1beta in response to nigericin, a potassium ionophore, and maitotoxin, a potent marine toxin, was also found to be dependent on cryopyrin. In contrast to Asc-/- macrophages, cells deficient in the gene encoding cryopyrin (Cias1-/-) activated caspase-1 and secreted normal levels of IL-1beta and IL-18 when infected with Gram-negative Salmonella typhimurium or Francisella tularensis. Macrophages exposed to Gram-positive Staphylococcus aureus or Listeria monocytogenes, however, required both ASC and cryopyrin to activate caspase-1 and secrete IL-1beta. Therefore, cryopyrin is essential for inflammasome activation in response to signalling pathways triggered specifically by ATP, nigericin, maitotoxin, S. aureus or L. monocytogenes.


Subject(s)
Adenosine Triphosphate/pharmacology , Carrier Proteins/metabolism , Caspase 1/metabolism , Cytoskeletal Proteins/metabolism , Inflammation/metabolism , Toxins, Biological/pharmacology , Adenosine Triphosphate/metabolism , Animals , Apoptosis Regulatory Proteins , CARD Signaling Adaptor Proteins , Carrier Proteins/genetics , Cytoskeletal Proteins/genetics , Enzyme Activation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Inflammation/enzymology , Inflammation/immunology , Interleukin-1/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Listeria monocytogenes/genetics , Listeria monocytogenes/immunology , Listeria monocytogenes/physiology , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Marine Toxins/pharmacology , Mice , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Nigericin/pharmacology , Nod2 Signaling Adaptor Protein , Oxocins/pharmacology , Signal Transduction/drug effects , Staphylococcus aureus/immunology , Staphylococcus aureus/physiology , Toll-Like Receptors/agonists , Toll-Like Receptors/immunology , Toll-Like Receptors/metabolism
7.
Sci Transl Med ; 13(605)2021 08 04.
Article in English | MEDLINE | ID: mdl-34349032

ABSTRACT

Transforming growth factor-ß (TGFß) is a key driver of fibrogenesis. Three TGFß isoforms (TGFß1, TGFß2, and TGFß3) in mammals have distinct functions in embryonic development; however, the postnatal pathological roles and activation mechanisms of TGFß2 and TGFß3 have not been well characterized. Here, we show that the latent forms of TGFß2 and TGFß3 can be activated by integrin-independent mechanisms and have lower activation thresholds compared to TGFß1. Unlike TGFB1, TGFB2 and TGFB3 expression is increased in human lung and liver fibrotic tissues compared to healthy control tissues. Thus, TGFß2 and TGFß3 may play a pathological role in fibrosis. Inducible conditional knockout mice and anti-TGFß isoform-selective antibodies demonstrated that TGFß2 and TGFß3 are independently involved in mouse fibrosis models in vivo, and selective TGFß2 and TGFß3 inhibition does not lead to the increased inflammation observed with pan-TGFß isoform inhibition. A cocrystal structure of a TGFß2-anti-TGFß2/3 antibody complex reveals an allosteric isoform-selective inhibitory mechanism. Therefore, inhibiting TGFß2 and/or TGFß3 while sparing TGFß1 may alleviate fibrosis without toxicity concerns associated with pan-TGFß blockade.


Subject(s)
Transforming Growth Factor beta2 , Transforming Growth Factor beta3 , Animals , Disease Models, Animal , Female , Fibrosis , Humans , Mice , Protein Isoforms/metabolism , Transforming Growth Factor beta2/metabolism , Transforming Growth Factor beta3/metabolism
8.
Nature ; 430(6996): 213-8, 2004 Jul 08.
Article in English | MEDLINE | ID: mdl-15190255

ABSTRACT

Specific adaptors regulate the activation of initiator caspases; for example, FADD and Apaf-1 engage caspases 8 and 9, respectively. The adaptors ASC, Ipaf and RIP2 have each been proposed to regulate caspase-1 (also called interleukin (IL)-1 converting enzyme), which is activated within the 'inflammasome', a complex comprising several adaptors. Here we show the impact of ASC-, Ipaf- or RIP2-deficiency on inflammasome function. ASC was essential for extracellular ATP-driven activation of caspase-1 in toll-like receptor (TLR)-stimulated macrophages. Accordingly, ASC-deficient macrophages exhibited defective maturation of IL-1beta and IL-18, and ASC-null mice were resistant to lipopolysaccharide-induced endotoxic shock. Furthermore, activation of caspase-1 in response to an intracellular pathogen (Salmonella typhimurium) was abrogated severely in ASC-null macrophages. Unexpectedly, Ipaf-deficient macrophages activated caspase-1 in response to TLR plus ATP stimulation but not S. typhimurium. Caspase-1 activation was not compromised by loss of RIP2. These data show that whereas ASC is key to caspase-1 activation within the inflammasome, Ipaf provides a special conduit to the inflammasome for signals triggered by intracellular pathogens. Notably, cell death triggered by stimuli that engage caspase-1 was ablated in macrophages lacking either ASC or Ipaf, suggesting a coupling between the inflammatory and cell death pathways.


Subject(s)
Calcium-Binding Proteins/metabolism , Caspase 1/metabolism , Inflammation/enzymology , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Animals , Calcium-Binding Proteins/genetics , Cell Death , Enzyme Activation/drug effects , Gene Deletion , Inflammation/immunology , Interleukin-1/metabolism , Interleukin-18/metabolism , Lipopolysaccharides/pharmacology , Macrophages, Peritoneal/cytology , Macrophages, Peritoneal/enzymology , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/microbiology , Mice , Protein Processing, Post-Translational/drug effects , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinase 2 , Receptor-Interacting Protein Serine-Threonine Kinases , Salmonella typhimurium/physiology , Shock, Septic/enzymology , Shock, Septic/metabolism , Shock, Septic/microbiology , Shock, Septic/pathology
9.
Immunohorizons ; 2(5): 164-171, 2018 05 30.
Article in English | MEDLINE | ID: mdl-31022698

ABSTRACT

Intestinal epithelial cells form a physical barrier that is tightly regulated to control intestinal permeability. Proinflammatory cytokines, such as TNF-α, increase epithelial permeability through disruption of epithelial junctions. The regulation of the epithelial barrier in inflammatory gastrointestinal disease remains to be fully characterized. In this article, we show that the human inflammatory bowel disease genetic susceptibility gene C1ORF106 plays a key role in regulating gut epithelial permeability. C1ORF106 directly interacts with cytohesins to maintain functional epithelial cell junctions. C1orf106-deficient mice are hypersensitive to TNF-α-induced increase in epithelial permeability, and this is associated with increased diarrhea. This study identifies C1ORF106 as an epithelial cell junction protein, and the loss of C1ORF106 augments TNF-α-induced intestinal epithelial leakage and diarrhea that may play a critical role in the development of inflammatory bowel disease.


Subject(s)
Carrier Proteins/genetics , Inflammatory Bowel Diseases/genetics , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Animals , Caco-2 Cells , Carrier Proteins/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Epithelial Cells/metabolism , GTPase-Activating Proteins/metabolism , Guanine Nucleotide Exchange Factors/metabolism , HEK293 Cells , Humans , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Inflammatory Bowel Diseases/therapy , Mice , Mice, Inbred C57BL , Mice, Knockout , Permeability , Receptors, Cytoplasmic and Nuclear/metabolism , Tight Junctions/genetics , Tight Junctions/metabolism , Tumor Necrosis Factor-alpha/genetics
10.
Cell Rep ; 25(1): 80-94, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30282040

ABSTRACT

We examined hematopoietic protein kinase 1 (HPK1), whose reliance on scaffold versus kinase functions for negative immune cell regulation is poorly understood and critical to its assessment as a viable drug target. We identify kinase-dependent roles for HPK1 in CD8 T cells that restrict their anti-viral and anti-tumor responses by using HPK1 kinase-dead (HPK1.kd) knockin mice. Loss of HPK1 kinase function enhanced T cell receptor signaling and cytokine secretion in a T-cell-intrinsic manner. In response to chronic lymphocytic choriomeningitis virus (LCMV) infection or tumor challenge, viral clearance and tumor growth inhibition were enhanced in HPK1.kd mice, accompanied by an increase in effector CD8 T cell function. Co-blockade of PD-L1 further enhanced T effector cell function, resulting in superior anti-viral and anti-tumor immunity over single target blockade. These results identify the importance of HPK1 kinase activity in the negative regulation of CD8 effector functions, implicating its potential as a cancer immunotherapy target.


Subject(s)
Protein Serine-Threonine Kinases/metabolism , T-Lymphocytes/enzymology , T-Lymphocytes/immunology , Animals , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/enzymology , CD8-Positive T-Lymphocytes/immunology , Colonic Neoplasms/immunology , Colonic Neoplasms/therapy , Female , Glioma/immunology , Glioma/therapy , Immunotherapy , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/immunology , Random Allocation , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL