Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 234
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 23(10): 1495-1506, 2022 10.
Article in English | MEDLINE | ID: mdl-36151395

ABSTRACT

The immune system can eliminate tumors, but checkpoints enable immune escape. Here, we identify immune evasion mechanisms using genome-scale in vivo CRISPR screens across cancer models treated with immune checkpoint blockade (ICB). We identify immune evasion genes and important immune inhibitory checkpoints conserved across cancers, including the non-classical major histocompatibility complex class I (MHC class I) molecule Qa-1b/HLA-E. Surprisingly, loss of tumor interferon-γ (IFNγ) signaling sensitizes many models to immunity. The immune inhibitory effects of tumor IFN sensing are mediated through two mechanisms. First, tumor upregulation of classical MHC class I inhibits natural killer cells. Second, IFN-induced expression of Qa-1b inhibits CD8+ T cells via the NKG2A/CD94 receptor, which is induced by ICB. Finally, we show that strong IFN signatures are associated with poor response to ICB in individuals with renal cell carcinoma or melanoma. This study reveals that IFN-mediated upregulation of classical and non-classical MHC class I inhibitory checkpoints can facilitate immune escape.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Histocompatibility Antigens Class I/metabolism , Humans , Immune Checkpoint Inhibitors , Immune Evasion , Interferon-gamma/genetics , Interferon-gamma/metabolism , NK Cell Lectin-Like Receptor Subfamily C
2.
Cell ; 179(5): 1222-1238.e17, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31730859

ABSTRACT

Mitochondrial dysfunction is associated with a spectrum of human conditions, ranging from rare, inborn errors of metabolism to the aging process. To identify pathways that modify mitochondrial dysfunction, we performed genome-wide CRISPR screens in the presence of small-molecule mitochondrial inhibitors. We report a compendium of chemical-genetic interactions involving 191 distinct genetic modifiers, including 38 that are synthetic sick/lethal and 63 that are suppressors. Genes involved in glycolysis (PFKP), pentose phosphate pathway (G6PD), and defense against lipid peroxidation (GPX4) scored high as synthetic sick/lethal. A surprisingly large fraction of suppressors are pathway intrinsic and encode mitochondrial proteins. A striking example of such "intra-organelle" buffering is the alleviation of a chemical defect in complex V by simultaneous inhibition of complex I, which benefits cells by rebalancing redox cofactors, increasing reductive carboxylation, and promoting glycolysis. Perhaps paradoxically, certain forms of mitochondrial dysfunction may best be buffered with "second site" inhibitors to the organelle.


Subject(s)
Genes, Modifier , Mitochondria/genetics , Mitochondria/pathology , Autoantigens/metabolism , Cell Death/drug effects , Cytosol/drug effects , Cytosol/metabolism , Electron Transport Complex I/metabolism , Epistasis, Genetic/drug effects , Ferroptosis/drug effects , Ferroptosis/genetics , Genome , Glutathione Peroxidase/metabolism , Glycolysis/drug effects , Glycolysis/genetics , Humans , K562 Cells , Mitochondria/drug effects , Oligomycins/toxicity , Oxidation-Reduction , Oxidative Phosphorylation/drug effects , Pentose Phosphate Pathway/drug effects , Pentose Phosphate Pathway/genetics , Reactive Oxygen Species/metabolism , Ribonucleoproteins/metabolism , SS-B Antigen
3.
Cell ; 170(3): 564-576.e16, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28753430

ABSTRACT

Most human epithelial tumors harbor numerous alterations, making it difficult to predict which genes are required for tumor survival. To systematically identify cancer dependencies, we analyzed 501 genome-scale loss-of-function screens performed in diverse human cancer cell lines. We developed DEMETER, an analytical framework that segregates on- from off-target effects of RNAi. 769 genes were differentially required in subsets of these cell lines at a threshold of six SDs from the mean. We found predictive models for 426 dependencies (55%) by nonlinear regression modeling considering 66,646 molecular features. Many dependencies fall into a limited number of classes, and unexpectedly, in 82% of models, the top biomarkers were expression based. We demonstrated the basis behind one such predictive model linking hypermethylation of the UBB ubiquitin gene to a dependency on UBC. Together, these observations provide a foundation for a cancer dependency map that facilitates the prioritization of therapeutic targets.


Subject(s)
Neoplasms/genetics , Neoplasms/pathology , Cell Line, Tumor , Humans , RNA Interference , Software , Ubiquitin/genetics
4.
Mol Cell ; 84(2): 261-276.e18, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38176414

ABSTRACT

A hallmark of high-risk childhood medulloblastoma is the dysregulation of RNA translation. Currently, it is unknown whether medulloblastoma dysregulates the translation of putatively oncogenic non-canonical open reading frames (ORFs). To address this question, we performed ribosome profiling of 32 medulloblastoma tissues and cell lines and observed widespread non-canonical ORF translation. We then developed a stepwise approach using multiple CRISPR-Cas9 screens to elucidate non-canonical ORFs and putative microproteins implicated in medulloblastoma cell survival. We determined that multiple lncRNA-ORFs and upstream ORFs (uORFs) exhibited selective functionality independent of main coding sequences. A microprotein encoded by one of these ORFs, ASNSD1-uORF or ASDURF, was upregulated, associated with MYC-family oncogenes, and promoted medulloblastoma cell survival through engagement with the prefoldin-like chaperone complex. Our findings underscore the fundamental importance of non-canonical ORF translation in medulloblastoma and provide a rationale to include these ORFs in future studies seeking to define new cancer targets.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Humans , Protein Biosynthesis , Medulloblastoma/genetics , Open Reading Frames/genetics , Cell Survival/genetics , Cerebellar Neoplasms/genetics
5.
Mol Cell ; 82(13): 2472-2489.e8, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35537449

ABSTRACT

Disruption of antagonism between SWI/SNF chromatin remodelers and polycomb repressor complexes drives the formation of numerous cancer types. Recently, an inhibitor of the polycomb protein EZH2 was approved for the treatment of a sarcoma mutant in the SWI/SNF subunit SMARCB1, but resistance occurs. Here, we performed CRISPR screens in SMARCB1-mutant rhabdoid tumor cells to identify genetic contributors to SWI/SNF-polycomb antagonism and potential resistance mechanisms. We found that loss of the H3K36 methyltransferase NSD1 caused resistance to EZH2 inhibition. We show that NSD1 antagonizes polycomb via cooperation with SWI/SNF and identify co-occurrence of NSD1 inactivation in SWI/SNF-defective cancers, indicating in vivo relevance. We demonstrate that H3K36me2 itself has an essential role in the activation of polycomb target genes as inhibition of the H3K36me2 demethylase KDM2A restores the efficacy of EZH2 inhibition in SWI/SNF-deficient cells lacking NSD1. Together our data expand the mechanistic understanding of SWI/SNF and polycomb interplay and identify NSD1 as the key for coordinating this transcriptional control.


Subject(s)
Enhancer of Zeste Homolog 2 Protein , F-Box Proteins , Histone-Lysine N-Methyltransferase , Jumonji Domain-Containing Histone Demethylases , Polycomb-Group Proteins , SMARCB1 Protein , Chromatin/genetics , Chromatin/metabolism , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , F-Box Proteins/genetics , F-Box Proteins/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/genetics , Histones/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Rhabdoid Tumor/genetics , Rhabdoid Tumor/metabolism , Rhabdoid Tumor/pathology , SMARCB1 Protein/genetics , SMARCB1 Protein/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation/genetics , Tumor Cells, Cultured/metabolism
6.
Cell ; 158(1): 171-84, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24954536

ABSTRACT

Cancer cells that express oncogenic alleles of RAS typically require sustained expression of the mutant allele for survival, but the molecular basis of this oncogene dependency remains incompletely understood. To identify genes that can functionally substitute for oncogenic RAS, we systematically expressed 15,294 open reading frames in a human KRAS-dependent colon cancer cell line engineered to express an inducible KRAS-specific shRNA. We found 147 genes that promoted survival upon KRAS suppression. In particular, the transcriptional coactivator YAP1 rescued cell viability in KRAS-dependent cells upon suppression of KRAS and was required for KRAS-induced cell transformation. Acquired resistance to Kras suppression in a Kras-driven murine lung cancer model also involved increased YAP1 signaling. KRAS and YAP1 converge on the transcription factor FOS and activate a transcriptional program involved in regulating the epithelial-mesenchymal transition (EMT). Together, these findings implicate transcriptional regulation of EMT by YAP1 as a significant component of oncogenic RAS signaling.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Survival , Colonic Neoplasms/drug therapy , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , Lung Neoplasms/drug therapy , Phosphoproteins/metabolism , Proto-Oncogene Proteins/metabolism , ras Proteins/metabolism , Animals , Cell Cycle Proteins , Colonic Neoplasms/metabolism , Drug Delivery Systems , HCT116 Cells , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Proto-Oncogene Proteins p21(ras)/metabolism , Signal Transduction , Transcription Factors , Transcriptional Activation , YAP-Signaling Proteins
7.
Nature ; 609(7926): 408-415, 2022 09.
Article in English | MEDLINE | ID: mdl-35831509

ABSTRACT

Receptor tyrosine kinase (RTK)-RAS signalling through the downstream mitogen-activated protein kinase (MAPK) cascade regulates cell proliferation and survival. The SHOC2-MRAS-PP1C holophosphatase complex functions as a key regulator of RTK-RAS signalling by removing an inhibitory phosphorylation event on the RAF family of proteins to potentiate MAPK signalling1. SHOC2 forms a ternary complex with MRAS and PP1C, and human germline gain-of-function mutations in this complex result in congenital RASopathy syndromes2-5. However, the structure and assembly of this complex are poorly understood. Here we use cryo-electron microscopy to resolve the structure of the SHOC2-MRAS-PP1C complex. We define the biophysical principles of holoenzyme interactions, elucidate the assembly order of the complex, and systematically interrogate the functional consequence of nearly all of the possible missense variants of SHOC2 through deep mutational scanning. We show that SHOC2 binds PP1C and MRAS through the concave surface of the leucine-rich repeat region and further engages PP1C through the N-terminal disordered region that contains a cryptic RVXF motif. Complex formation is initially mediated by interactions between SHOC2 and PP1C and is stabilized by the binding of GTP-loaded MRAS. These observations explain how mutant versions of SHOC2 in RASopathies and cancer stabilize the interactions of complex members to enhance holophosphatase activity. Together, this integrative structure-function model comprehensively defines key binding interactions within the SHOC2-MRAS-PP1C holophosphatase complex and will inform therapeutic development .


Subject(s)
Cryoelectron Microscopy , Intracellular Signaling Peptides and Proteins , Multiprotein Complexes , Protein Phosphatase 1 , ras Proteins , Amino Acid Motifs , Binding Sites , Guanosine Triphosphate/metabolism , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , MAP Kinase Signaling System , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure , Mutation, Missense , Phosphorylation , Protein Binding , Protein Phosphatase 1/chemistry , Protein Phosphatase 1/metabolism , Protein Phosphatase 1/ultrastructure , Protein Stability , raf Kinases , ras Proteins/chemistry , ras Proteins/metabolism , ras Proteins/ultrastructure
8.
Nat Methods ; 21(6): 1114-1121, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38594452

ABSTRACT

The identification of genetic and chemical perturbations with similar impacts on cell morphology can elucidate compounds' mechanisms of action or novel regulators of genetic pathways. Research on methods for identifying such similarities has lagged due to a lack of carefully designed and well-annotated image sets of cells treated with chemical and genetic perturbations. Here we create such a Resource dataset, CPJUMP1, in which each perturbed gene's product is a known target of at least two chemical compounds in the dataset. We systematically explore the directionality of correlations among perturbations that target the same protein encoded by a given gene, and we find that identifying matches between chemical and genetic perturbations is a challenging task. Our dataset and baseline analyses provide a benchmark for evaluating methods that measure perturbation similarities and impact, and more generally, learn effective representations of cellular state from microscopy images. Such advancements would accelerate the applications of image-based profiling of cellular states, such as uncovering drug mode of action or probing functional genomics.


Subject(s)
Image Processing, Computer-Assisted , Humans , Image Processing, Computer-Assisted/methods , Microscopy/methods
9.
Nat Immunol ; 16(5): 495-504, 2015 May.
Article in English | MEDLINE | ID: mdl-25848864

ABSTRACT

The molecules and pathways that fine-tune innate inflammatory responses mediated by Toll-like receptor 7 (TLR7) remain to be fully elucidated. Using an unbiased genome-scale screen with short hairpin RNA (shRNA), we identified the receptor TREML4 as an essential positive regulator of TLR7 signaling. Macrophages from Treml4(-/-) mice were hyporesponsive to TLR7 agonists and failed to produce type I interferons due to impaired phosphorylation of the transcription factor STAT1 by the mitogen-activated protein kinase p38 and decreased recruitment of the adaptor MyD88 to TLR7. TREML4 deficiency reduced the production of inflammatory cytokines and autoantibodies in MRL/lpr mice, which are prone to systemic lupus erythematosus (SLE), and inhibited the antiviral immune response to influenza virus. Our data identify TREML4 as a positive regulator of TLR7 signaling and provide insight into the molecular mechanisms that control antiviral immunity and the development of autoimmunity.


Subject(s)
Lupus Erythematosus, Systemic/immunology , Macrophages/physiology , Membrane Glycoproteins/metabolism , Orthomyxoviridae Infections/immunology , Orthomyxoviridae/immunology , Receptors, Immunologic/metabolism , Toll-Like Receptor 7/metabolism , Animals , Autoantibodies/metabolism , Autoimmunity/genetics , Cells, Cultured , Cytokines/metabolism , Humans , Immunity, Innate/genetics , Inflammation Mediators/metabolism , Interferon Type I/metabolism , Macrophages/virology , Mice , Mice, Inbred C57BL , Mice, Inbred MRL lpr , Mice, Knockout , Myeloid Differentiation Factor 88/metabolism , RNA, Small Interfering/genetics , Receptors, Immunologic/genetics , STAT1 Transcription Factor/metabolism , Signal Transduction/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
10.
Cell ; 151(7): 1457-73, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23245941

ABSTRACT

Wnt/ß-catenin signaling plays a key role in the pathogenesis of colon and other cancers; emerging evidence indicates that oncogenic ß-catenin regulates several biological processes essential for cancer initiation and progression. To decipher the role of ß-catenin in transformation, we classified ß-catenin activity in 85 cancer cell lines in which we performed genome-scale loss-of-function screens and found that ß-catenin active cancers are dependent on a signaling pathway involving the transcriptional regulator YAP1. Specifically, we found that YAP1 and the transcription factor TBX5 form a complex with ß-catenin. Phosphorylation of YAP1 by the tyrosine kinase YES1 leads to localization of this complex to the promoters of antiapoptotic genes, including BCL2L1 and BIRC5. A small-molecule inhibitor of YES1 impeded the proliferation of ß-catenin-dependent cancers in both cell lines and animal models. These observations define a ß-catenin-YAP1-TBX5 complex essential to the transformation and survival of ß-catenin-driven cancers.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Transformation, Neoplastic , Colonic Neoplasms/metabolism , Phosphoproteins/metabolism , T-Box Domain Proteins/metabolism , beta Catenin/metabolism , Animals , Cell Line, Tumor , Colon/embryology , Colon/metabolism , Colonic Neoplasms/pathology , Humans , Inhibitor of Apoptosis Proteins/genetics , Mice , Mice, Nude , Proto-Oncogene Proteins c-yes/antagonists & inhibitors , Proto-Oncogene Proteins c-yes/metabolism , Survivin , Transcription Factors , Transcription, Genetic , YAP-Signaling Proteins , Zebrafish/embryology , bcl-X Protein/genetics , src-Family Kinases/antagonists & inhibitors
11.
Cell ; 150(4): 842-54, 2012 Aug 17.
Article in English | MEDLINE | ID: mdl-22901813

ABSTRACT

Due to genome instability, most cancers exhibit loss of regions containing tumor suppressor genes and collateral loss of other genes. To identify cancer-specific vulnerabilities that are the result of copy number losses, we performed integrated analyses of genome-wide copy number and RNAi profiles and identified 56 genes for which gene suppression specifically inhibited the proliferation of cells harboring partial copy number loss of that gene. These CYCLOPS (copy number alterations yielding cancer liabilities owing to partial loss) genes are enriched for spliceosome, proteasome, and ribosome components. One CYCLOPS gene, PSMC2, encodes an essential member of the 19S proteasome. Normal cells express excess PSMC2, which resides in a complex with PSMC1, PSMD2, and PSMD5 and acts as a reservoir protecting cells from PSMC2 suppression. Cells harboring partial PSMC2 copy number loss lack this complex and die after PSMC2 suppression. These observations define a distinct class of cancer-specific liabilities resulting from genome instability.


Subject(s)
Genes, Essential , Genomic Instability , Neoplasms/genetics , ATPases Associated with Diverse Cellular Activities , Animals , Cell Line, Tumor , Chromosome Deletion , Gene Dosage , Genes, Tumor Suppressor , Humans , Mice , Mice, Nude , Neoplasm Transplantation , Neoplasms/metabolism , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Transplantation, Heterologous
12.
Cell ; 150(3): 575-89, 2012 Aug 03.
Article in English | MEDLINE | ID: mdl-22863010

ABSTRACT

The mechanism by which cells decide to skip mitosis to become polyploid is largely undefined. Here we used a high-content image-based screen to identify small-molecule probes that induce polyploidization of megakaryocytic leukemia cells and serve as perturbagens to help understand this process. Our study implicates five networks of kinases that regulate the switch to polyploidy. Moreover, we find that dimethylfasudil (diMF, H-1152P) selectively increased polyploidization, mature cell-surface marker expression, and apoptosis of malignant megakaryocytes. An integrated target identification approach employing proteomic and shRNA screening revealed that a major target of diMF is Aurora kinase A (AURKA). We further find that MLN8237 (Alisertib), a selective inhibitor of AURKA, induced polyploidization and expression of mature megakaryocyte markers in acute megakaryocytic leukemia (AMKL) blasts and displayed potent anti-AMKL activity in vivo. Our findings provide a rationale to support clinical trials of MLN8237 and other inducers of polyploidization and differentiation in AMKL.


Subject(s)
Azepines/pharmacology , Drug Discovery , Leukemia, Megakaryoblastic, Acute/drug therapy , Megakaryocytes/metabolism , Polyploidy , Pyrimidines/pharmacology , Small Molecule Libraries , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , Animals , Aurora Kinase A , Aurora Kinases , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Humans , Leukemia, Megakaryoblastic, Acute/genetics , Megakaryocytes/cytology , Megakaryocytes/pathology , Mice , Mice, Inbred C57BL , Protein Interaction Maps , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , rho-Associated Kinases/metabolism
13.
Cell ; 147(4): 853-67, 2011 Nov 11.
Article in English | MEDLINE | ID: mdl-22078882

ABSTRACT

Deciphering the signaling networks that underlie normal and disease processes remains a major challenge. Here, we report the discovery of signaling components involved in the Toll-like receptor (TLR) response of immune dendritic cells (DCs), including a previously unkown pathway shared across mammalian antiviral responses. By combining transcriptional profiling, genetic and small-molecule perturbations, and phosphoproteomics, we uncover 35 signaling regulators, including 16 known regulators, involved in TLR signaling. In particular, we find that Polo-like kinases (Plk) 2 and 4 are essential components of antiviral pathways in vitro and in vivo and activate a signaling branch involving a dozen proteins, among which is Tnfaip2, a gene associated with autoimmune diseases but whose role was unknown. Our study illustrates the power of combining systematic measurements and perturbations to elucidate complex signaling circuits and discover potential therapeutic targets.


Subject(s)
Dendritic Cells/immunology , Signal Transduction , Toll-Like Receptors/metabolism , Viruses , Animals , Dendritic Cells/metabolism , Female , Humans , Interferon Regulatory Factor-3/metabolism , Interferons/metabolism , Mice , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism
14.
Cell ; 143(1): 122-33, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20887897

ABSTRACT

Activation-induced cytidine deaminase (AID) initiates antibody gene diversification by creating U:G mismatches. However, AID is not specific for antibody genes; Off-target lesions can activate oncogenes or cause chromosome translocations. Despite its importance in these transactions little is known about how AID finds its targets. We performed an shRNA screen to identify factors required for class switch recombination (CSR) of antibody loci. We found that Spt5, a factor associated with stalled RNA polymerase II (Pol II) and single stranded DNA (ssDNA), is required for CSR. Spt5 interacts with AID, it facilitates association between AID and Pol II, and AID recruitment to its Ig and non-Ig targets. ChIP-seq experiments reveal that Spt5 colocalizes with AID and stalled Pol II. Further, Spt5 accumulation at sites of Pol II stalling is predictive of AID-induced mutation. We propose that AID is targeted to sites of Pol II stalling in part via its association with Spt5.


Subject(s)
B-Lymphocytes/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Cytidine Deaminase/metabolism , Immunoglobulin Class Switching , RNA Polymerase II/metabolism , Transcriptional Elongation Factors/metabolism , Animals , Cell Line , Cell Line, Tumor , Fibroblasts/metabolism , Humans , Immunoglobulins/genetics , Mice
15.
Nature ; 568(7753): 551-556, 2019 04.
Article in English | MEDLINE | ID: mdl-30971823

ABSTRACT

Synthetic lethality-an interaction between two genetic events through which the co-occurrence of these two genetic events leads to cell death, but each event alone does not-can be exploited for cancer therapeutics1. DNA repair processes represent attractive synthetic lethal targets, because many cancers exhibit an impairment of a DNA repair pathway, which can lead to dependence on specific repair proteins2. The success of poly(ADP-ribose) polymerase 1 (PARP-1) inhibitors in cancers with deficiencies in homologous recombination highlights the potential of this approach3. Hypothesizing that other DNA repair defects would give rise to synthetic lethal relationships, we queried dependencies in cancers with microsatellite instability (MSI), which results from deficient DNA mismatch repair. Here we analysed data from large-scale silencing screens using CRISPR-Cas9-mediated knockout and RNA interference, and found that the RecQ DNA helicase WRN was selectively essential in MSI models in vitro and in vivo, yet dispensable in models of cancers that are microsatellite stable. Depletion of WRN induced double-stranded DNA breaks and promoted apoptosis and cell cycle arrest selectively in MSI models. MSI cancer models required the helicase activity of WRN, but not its exonuclease activity. These findings show that WRN is a synthetic lethal vulnerability and promising drug target for MSI cancers.


Subject(s)
Microsatellite Instability , Microsatellite Repeats/genetics , Neoplasms/genetics , Synthetic Lethal Mutations/genetics , Werner Syndrome Helicase/genetics , Apoptosis/genetics , CRISPR-Cas Systems/genetics , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , DNA Breaks, Double-Stranded , Humans , Models, Genetic , Neoplasms/pathology , RNA Interference , Tumor Suppressor Protein p53/metabolism , Werner Syndrome Helicase/deficiency
16.
N Engl J Med ; 384(25): 2382-2393, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34161704

ABSTRACT

BACKGROUND: Clinical trials of the KRAS inhibitors adagrasib and sotorasib have shown promising activity in cancers harboring KRAS glycine-to-cysteine amino acid substitutions at codon 12 (KRASG12C). The mechanisms of acquired resistance to these therapies are currently unknown. METHODS: Among patients with KRASG12C -mutant cancers treated with adagrasib monotherapy, we performed genomic and histologic analyses that compared pretreatment samples with those obtained after the development of resistance. Cell-based experiments were conducted to study mutations that confer resistance to KRASG12C inhibitors. RESULTS: A total of 38 patients were included in this study: 27 with non-small-cell lung cancer, 10 with colorectal cancer, and 1 with appendiceal cancer. Putative mechanisms of resistance to adagrasib were detected in 17 patients (45% of the cohort), of whom 7 (18% of the cohort) had multiple coincident mechanisms. Acquired KRAS alterations included G12D/R/V/W, G13D, Q61H, R68S, H95D/Q/R, Y96C, and high-level amplification of the KRASG12C allele. Acquired bypass mechanisms of resistance included MET amplification; activating mutations in NRAS, BRAF, MAP2K1, and RET; oncogenic fusions involving ALK, RET, BRAF, RAF1, and FGFR3; and loss-of-function mutations in NF1 and PTEN. In two of nine patients with lung adenocarcinoma for whom paired tissue-biopsy samples were available, histologic transformation to squamous-cell carcinoma was observed without identification of any other resistance mechanisms. Using an in vitro deep mutational scanning screen, we systematically defined the landscape of KRAS mutations that confer resistance to KRASG12C inhibitors. CONCLUSIONS: Diverse genomic and histologic mechanisms impart resistance to covalent KRASG12C inhibitors, and new therapeutic strategies are required to delay and overcome this drug resistance in patients with cancer. (Funded by Mirati Therapeutics and others; ClinicalTrials.gov number, NCT03785249.).


Subject(s)
Acetonitriles/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Colorectal Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics , Lung Neoplasms/drug therapy , Mutation , Piperazines/therapeutic use , Proto-Oncogene Proteins p21(ras)/genetics , Pyrimidines/therapeutic use , Appendiceal Neoplasms/drug therapy , Appendiceal Neoplasms/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Colorectal Neoplasms/genetics , Humans , Lung Neoplasms/genetics , Protein Conformation , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/ultrastructure , Pyridines/therapeutic use
17.
Nat Chem Biol ; 18(6): 615-624, 2022 06.
Article in English | MEDLINE | ID: mdl-35332332

ABSTRACT

The ability to understand and predict variable responses to therapeutic agents may improve outcomes in patients with cancer. We hypothesized that the basal gene-transcription state of cancer cell lines, coupled with cell viability profiles of small molecules, might be leveraged to nominate specific mechanisms of intrinsic resistance and to predict drug combinations that overcome resistance. We analyzed 564,424 sensitivity profiles to identify candidate gene-compound pairs, and validated nine such relationships. We determined the mechanism of a novel relationship, in which expression of the serine hydrolase enzymes monoacylglycerol lipase (MGLL) or carboxylesterase 1 (CES1) confers resistance to the histone lysine demethylase inhibitor GSK-J4 by direct enzymatic modification. Insensitive cell lines could be sensitized to GSK-J4 by inhibition or gene knockout. These analytical and mechanistic studies highlight the potential of integrating gene-expression features with small-molecule response to identify patient populations that are likely to benefit from treatment, to nominate rational candidates for combinations and to provide insights into mechanisms of action.


Subject(s)
Histone Demethylases , Monoacylglycerol Lipases , Biomarkers , Cell Survival , Drug Combinations , Histone Demethylases/metabolism , Humans
18.
Cell ; 139(7): 1255-67, 2009 Dec 24.
Article in English | MEDLINE | ID: mdl-20064372

ABSTRACT

During the course of a viral infection, viral proteins interact with an array of host proteins and pathways. Here, we present a systematic strategy to elucidate the dynamic interactions between H1N1 influenza and its human host. A combination of yeast two-hybrid analysis and genome-wide expression profiling implicated hundreds of human factors in mediating viral-host interactions. These factors were then examined functionally through depletion analyses in primary lung cells. The resulting data point to potential roles for some unanticipated host and viral proteins in viral infection and the host response, including a network of RNA-binding proteins, components of WNT signaling, and viral polymerase subunits. This multilayered approach provides a comprehensive and unbiased physical and regulatory model of influenza-host interactions and demonstrates a general strategy for uncovering complex host-pathogen relationships.


Subject(s)
Host-Pathogen Interactions , Influenza A Virus, H1N1 Subtype/metabolism , Viral Proteins/metabolism , Apoptosis , Epithelial Cells/virology , Gene Expression Profiling , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/pathogenicity , Interferons/metabolism , Lung/cytology , Lung/virology , Proteomics , RNA, Small Interfering/metabolism , RNA, Viral/metabolism , Two-Hybrid System Techniques , Viral Nonstructural Proteins/metabolism , Wnt Proteins/metabolism
19.
Cell ; 137(5): 821-34, 2009 May 29.
Article in English | MEDLINE | ID: mdl-19490892

ABSTRACT

An alternative to therapeutic targeting of oncogenes is to perform "synthetic lethality" screens for genes that are essential only in the context of specific cancer-causing mutations. We used high-throughput RNA interference (RNAi) to identify synthetic lethal interactions in cancer cells harboring mutant KRAS, the most commonly mutated human oncogene. We find that cells that are dependent on mutant KRAS exhibit sensitivity to suppression of the serine/threonine kinase STK33 irrespective of tissue origin, whereas STK33 is not required by KRAS-independent cells. STK33 promotes cancer cell viability in a kinase activity-dependent manner by regulating the suppression of mitochondrial apoptosis mediated through S6K1-induced inactivation of the death agonist BAD selectively in mutant KRAS-dependent cells. These observations identify STK33 as a target for treatment of mutant KRAS-driven cancers and demonstrate the potential of RNAi screens for discovering functional dependencies created by oncogenic mutations that may enable therapeutic intervention for cancers with "undruggable" genetic alterations.


Subject(s)
Neoplasms/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , ras Proteins/genetics , ras Proteins/metabolism , Animals , Cell Line, Tumor , Cell Survival , Humans , Mice , Mutation , NIH 3T3 Cells , Neoplasms/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras) , RNA Interference , Ribosomal Protein S6 Kinases, 70-kDa/metabolism
20.
Nature ; 563(7732): 522-526, 2018 11.
Article in English | MEDLINE | ID: mdl-30464262

ABSTRACT

Limited DNA end resection is the key to impaired homologous recombination in BRCA1-mutant cancer cells. Here, using a loss-of-function CRISPR screen, we identify DYNLL1 as an inhibitor of DNA end resection. The loss of DYNLL1 enables DNA end resection and restores homologous recombination in BRCA1-mutant cells, thereby inducing resistance to platinum drugs and inhibitors of poly(ADP-ribose) polymerase. Low BRCA1 expression correlates with increased chromosomal aberrations in primary ovarian carcinomas, and the junction sequences of somatic structural variants indicate diminished homologous recombination. Concurrent decreases in DYNLL1 expression in carcinomas with low BRCA1 expression reduced genomic alterations and increased homology at lesions. In cells, DYNLL1 limits nucleolytic degradation of DNA ends by associating with the DNA end-resection machinery (MRN complex, BLM helicase and DNA2 endonuclease). In vitro, DYNLL1 binds directly to MRE11 to limit its end-resection activity. Therefore, we infer that DYNLL1 is an important anti-resection factor that influences genomic stability and responses to DNA-damaging chemotherapy.


Subject(s)
BRCA1 Protein/deficiency , Cytoplasmic Dyneins/metabolism , DNA/metabolism , Genes, BRCA1 , MRE11 Homologue Protein/metabolism , Recombinational DNA Repair , BRCA1 Protein/genetics , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Chromosome Aberrations , DNA Damage/drug effects , Drug Resistance, Neoplasm/drug effects , Female , Gene Editing , Genomic Instability/drug effects , Homologous Recombination/drug effects , Humans , Mutation , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Platinum/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Protein Binding , Recombinational DNA Repair/drug effects , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL