Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Gut ; 73(3): 509-520, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-37770128

ABSTRACT

OBJECTIVE: Liver metastases are often resistant to immune checkpoint inhibitor therapy (ICI) and portend a worse prognosis compared with metastases to other locations. Regulatory T cells (Tregs) are one of several immunosuppressive cells implicated in ICI resistance of liver tumours, but the role played by Tregs residing within the liver surrounding a tumour is unknown. DESIGN: Flow cytometry and single-cell RNA sequencing were used to characterise hepatic Tregs before and after ICI therapy. RESULTS: We found that the murine liver houses a Treg population that, unlike those found in other organs, is both highly proliferative and apoptotic at baseline. On administration of αPD-1, αPD-L1 or αCTLA4, the liver Treg population doubled regardless of the presence of an intrahepatic tumour. Remarkably, this change was not due to the preferential expansion of the subpopulation of Tregs that express PD-1. Instead, a subpopulation of CD29+ (Itgb1, integrin ß1) Tregs, that were highly proliferative at baseline, doubled its size in response to αPD-1. Partial and full depletion of Tregs identified CD29+ Tregs as the prominent niche-filling subpopulation in the liver, and CD29+ Tregs demonstrated enhanced suppression in vitro when derived from the liver but not the spleen. We identified IL2 as a critical modulator of both CD29+ and CD29- hepatic Tregs, but expansion of the liver Treg population with αPD-1 driven by CD29+ Tregs was in part IL2-independent. CONCLUSION: We propose that CD29+ Tregs constitute a unique subpopulation of hepatic Tregs that are primed to respond to ICI agents and mediate resistance.


Subject(s)
Liver Neoplasms , T-Lymphocytes, Regulatory , Animals , Mice , Interleukin-2 , Integrin beta1 , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology
2.
Gut ; 71(6): 1161-1175, 2022 06.
Article in English | MEDLINE | ID: mdl-34340996

ABSTRACT

OBJECTIVE: Hepatocellular carcinoma (HCC) represents a typical inflammation-associated cancer. Tissue resident innate lymphoid cells (ILCs) have been suggested to control tumour surveillance. Here, we studied how the local cytokine milieu controls ILCs in HCC. DESIGN: We performed bulk RNA sequencing of HCC tissue as well as flow cytometry and single-cell RNA sequencing of enriched ILCs from non-tumour liver, margin and tumour core derived from 48 patients with HCC. Simultaneous measurement of protein and RNA expression at the single-cell level (AbSeq) identified precise signatures of ILC subgroups. In vitro culturing of ILCs was used to validate findings from in silico analysis. Analysis of RNA-sequencing data from large HCC cohorts allowed stratification and survival analysis based on transcriptomic signatures. RESULTS: RNA sequencing of tumour, non-tumour and margin identified tumour-dependent gradients, which were associated with poor survival and control of ILC plasticity. Single-cell RNA sequencing and flow cytometry of ILCs from HCC livers identified natural killer (NK)-like cells in the non-tumour tissue, losing their cytotoxic profile as they transitioned into tumour ILC1 and NK-like-ILC3 cells. Tumour ILC composition was mediated by cytokine gradients that directed ILC plasticity towards activated tumour ILC2s. This was liver-specific and not seen in ILCs from peripheral blood mononuclear cells. Patients with high ILC2/ILC1 ratio expressed interleukin-33 in the tumour that promoted ILC2 generation, which was associated with better survival. CONCLUSION: Our results suggest that the tumour cytokine milieu controls ILC composition and HCC outcome. Specific changes of cytokines modify ILC composition in the tumour by inducing plasticity and alter ILC function.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/metabolism , Cytokines/metabolism , Humans , Immunity, Innate , Killer Cells, Natural/metabolism , Leukocytes, Mononuclear , Liver Neoplasms/metabolism , Lymphocytes , RNA/metabolism , Tumor Microenvironment
3.
Gastroenterology ; 160(1): 331-345.e6, 2021 01.
Article in English | MEDLINE | ID: mdl-33010248

ABSTRACT

BACKGROUND & AIMS: Nonalcoholic steatohepatitis causes loss of hepatic CD4+ T cells and promotes tumor growth. The liver is the most common site of distant metastases from a variety of malignancies, many of which respond to immunotherapy. We investigated the effects of steatohepatitis on the efficacy of immunotherapeutic agents against liver tumors in mice. METHODS: Steatohepatitis was induced by feeding C57BL/6NCrl or BALB/c AnNCr mice a methionine and choline-deficient diet or a choline-deficient l-amino acid-defined diet. Mice were given intrahepatic or subcutaneous injections of B16 melanoma and CT26 colon cancer cells, followed by intravenous injections of M30-RNA vaccine (M30) or intraperitoneal injections of an antibody against OX40 (aOX40) on days 3, 7, and 10 after injection of the tumor cells. We measured tumor growth and analyzed immune cells in tumor tissues by flow cytometry. Mice were given N-acetylcysteine to prevent loss of CD4+ T cells from liver. RESULTS: Administration of M30 and aOX40 inhibited growth of tumors from intrahepatic injections of B16 or CT26 cells in mice on regular diet. However, M30 and/or aOX40 did not slow growth of liver tumors from B16 or CT26 cells in mice with diet-induced steatohepatitis (methionine and choline-deficient diet or choline-deficient l-amino acid-defined diet). Steatohepatitis did not affect the ability of M30 to slow growth of subcutaneous B16 tumors. In mice with steatohepatitis given N-acetylcysteine, which prevents loss of CD4+ T cells, M30 and aOX40 were able slow growth of hepatic tumors. Flow cytometry analysis of liver tumors revealed reduced CD4+ T cells and effector memory cells in mice with vs without steatohepatitis. CONCLUSIONS: Steatohepatitis reduces the abilities of immunotherapeutic agents, such as M30 and aOX40, to inhibit tumor liver growth by reducing tumor infiltration by CD4+ T cells and effector memory cells. N-acetylcysteine restores T-cell numbers in tumors and increases the ability of M30 and aOX40 to slow tumor growth in mice.


Subject(s)
Immunotherapy , Liver Neoplasms/etiology , Liver Neoplasms/therapy , Melanoma/therapy , Non-alcoholic Fatty Liver Disease/complications , T-Lymphocytes/physiology , Animals , Disease Models, Animal , Liver Neoplasms/pathology , Melanoma/etiology , Melanoma/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/pathology
4.
J Hepatol ; 74(5): 1145-1154, 2021 05.
Article in English | MEDLINE | ID: mdl-33276030

ABSTRACT

BACKGROUND & AIMS: While cholangiocarcinomas (CCAs) commonly express programmed cell death 1 (PD-1) and its ligand (PD-L1), they respond poorly to immune checkpoint inhibitors (ICIs). We aimed to determine whether stimulating antigen-presenting cells, including macrophages and dendritic cells, using a CD40 agonist could improve this response. METHODS: We compared treatment responses in subcutaneous, orthotopic, and 2 plasmid-based murine intrahepatic CCA (iCCA) models. Mice were treated for 4 weeks with weekly IgG control, a CD40 agonistic antibody, anti-PD-1, or the combination of both (anti-CD40/PD-1). Flow cytometric (FACS) analysis of lymphocytes and myeloid cell populations (including activation status) was performed. We used dendritic cell knockout mice, and macrophage, CD4+ and CD8+ T cell depletion models to identify effector cells. Anti-CD40/PD-1 was combined with chemotherapy (gemcitabine/cisplatin) to test for improved therapeutic efficacy. RESULTS: In all 4 models, anti-PD-1 alone was minimally efficacious. Mice exhibited a moderate response to CD40 agonist monotherapy. Combination anti-CD40/PD-1 therapy led to a significantly greater reduction in tumor burden. FACS demonstrated increased number and activation of CD4+ and CD8+ T cells, natural killer cells, and myeloid cells in tumor and non-tumor liver tissue of tumor-bearing mice treated with anti-CD40/PD-1. Depletion of macrophages, dendritic cells, CD4+ T cells, or CD8+ T cells abrogated treatment efficacy. Combining anti-CD40/PD-1 with gemcitabine/cisplatin resulted in a significant survival benefit compared to gemcitabine/cisplatin alone. CONCLUSION: CD40-mediated activation of macrophages and dendritic cells in iCCA significantly enhances response to anti-PD-1 therapy. This regimen may enhance the efficacy of first-line chemotherapy. LAY SUMMARY: Checkpoint inhibition, a common form of immune therapy, is generally ineffective for the treatment of cholangiocarcinoma. These tumors suppress the infiltration and function of surrounding immune cells. Stimulating immune cells such as macrophages and dendritic cells via the CD40 receptor activates downstream immune cells and enhances the response to checkpoint inhibitors.


Subject(s)
CD40 Antigens/agonists , Cholangiocarcinoma , Immune Checkpoint Inhibitors/pharmacology , Liver Neoplasms , Macrophage Activation/immunology , Tumor Microenvironment , Animals , Antimetabolites, Antineoplastic/pharmacology , Cell Line, Tumor , Cholangiocarcinoma/immunology , Cholangiocarcinoma/pathology , Cisplatin/pharmacology , Dendritic Cells/immunology , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Drug Collateral Sensitivity , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Lymphocytes, Tumor-Infiltrating/drug effects , Macrophage-Activating Factors/immunology , Mice , Mice, Knockout , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Gemcitabine
5.
J Hepatol ; 70(3): 449-457, 2019 03.
Article in English | MEDLINE | ID: mdl-30414862

ABSTRACT

BACKGROUND & AIMS: Cytokine-induced killer (CIK) cell-based immunotherapy is effective as an adjuvant therapy in early stage hepatocellular carcinoma (HCC) but lacks efficacy in advanced HCC. We aimed to investigate immune suppressor mechanisms in HCC, focusing on the role of myeloid-derived suppressor cells (MDSCs) in response to CIK therapy. METHODS: MDSCs were quantified by flow cytometry and quantitative real-time PCR. Cytokines were detected by cytokine array. A lactate dehydrogenase cytotoxicity assay was performed in the presence or absence of MDSCs to study CIK function against HCC cells in vitro. An FDA-approved PDE5 inhibitor, tadalafil, was used to target MDSCs in vitro and in vivo. Two different murine HCC cell lines were tested in subcutaneous and orthotopic tumor models in C57BL/6 and BALB/c mice. The antitumor effects of human CIKs and MDSCs were also tested in vitro. RESULTS: Adoptive cell transfer of CIKs into tumor-bearing mice induced inflammatory mediators (e.g., CX3CL1, IL-13) in the tumor microenvironment and an increase of tumor-infiltrating MDSCs, leading to impaired antitumor activity in 2 different HCC models. MDSCs efficiently suppressed the cytotoxic activity of CIKs in vitro. In contrast, treatment with a PDE5 inhibitor reversed the MDSC suppressor function via ARG1 and iNOS blockade and systemic treatment with a PDE5 inhibitor prevented MDSC accumulation in the tumor microenvironment upon CIK cell therapy and increased its antitumor efficacy. Similar results were observed when human CIKs were tested in vitro in the presence of CD14+HLA-DR-/low MDSCs. Treatment of MDSCs with a PDE5 inhibitor suppressed MDSC suppressor function and enhanced CIK activity against human HCC cell lines in vitro. CONCLUSION: Our results suggest that targeting MDSCs is an efficient strategy to enhance the antitumor efficacy of CIKs for the treatment of patients with HCC. LAY SUMMARY: Cytokine-induced killer cells are a mixture of immune cells given to eliminate cancer cells. However, not all patients respond to this treatment. Herein, we show in 2 different liver cancer models that myeloid-derived suppressor cells are increased in response to cytokine-induced killer cell therapy. Targeting these myeloid-derived suppressor cells may provide an additional therapeutic benefit alongside cytokine-induced killer cell therapy.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Cytokine-Induced Killer Cells/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Myeloid-Derived Suppressor Cells/metabolism , Phosphodiesterase 5 Inhibitors/therapeutic use , Tadalafil/therapeutic use , Adoptive Transfer/methods , Animals , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Combined Modality Therapy/methods , Cytokine-Induced Killer Cells/immunology , Cytokines/metabolism , Female , Humans , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells/drug effects , Phosphodiesterase 5 Inhibitors/pharmacology , Signal Transduction/drug effects , Tadalafil/pharmacology , Tumor Burden/drug effects , Tumor Burden/immunology , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
6.
Mol Cell ; 43(4): 681-8, 2011 Aug 19.
Article in English | MEDLINE | ID: mdl-21855806

ABSTRACT

p53 is the central regulator of cell fate following genotoxic stress and oncogene activation. Its activity is controlled by several posttranslational modifications. Originally defined as a critical layer of p53 regulation in human cell lines, p53 lysine methylation by Set7/9 (also called Setd7) was proposed to fulfill a similar function in vivo in the mouse, promoting p53 acetylation, stabilization, and activation upon DNA damage (Kurash et al., 2008). We tested the physiological relevance of this circuit in an independent Set7/9 knockout mouse strain. Deletion of Set7/9 had no effect on p53-dependent cell-cycle arrest or apoptosis following sublethal or lethal DNA damage induced by radiation or genotoxic agents. Set7/9 was also dispensable for p53 acetylation following irradiation. c-myc oncogene-induced apoptosis was also independent of Set7/9, and analysis of p53 target genes showed that Set7/9 is not required for the p53-dependent gene expression program. Our data indicate that Set7/9 is dispensable for p53 function in the mouse.


Subject(s)
DNA Damage , Protein Methyltransferases/physiology , Tumor Suppressor Protein p53/physiology , Acetylation , Animals , Apoptosis/genetics , Cell Cycle/genetics , Gene Deletion , Gene Expression Regulation , Histone-Lysine N-Methyltransferase , Mice , Mice, Knockout , Protein Methyltransferases/genetics , Protein Methyltransferases/metabolism , Tumor Suppressor Protein p53/metabolism
7.
Cancer Cell ; 40(9): 986-998.e5, 2022 09 12.
Article in English | MEDLINE | ID: mdl-36055226

ABSTRACT

Platelets, the often-overlooked component of the immune system, have been shown to promote tumor growth. Non-alcoholic fatty liver disease (NAFLD) is a common disease in the Western world and rising risk for hepatocellular carcinoma (HCC). Unexpectedly, we observed that platelets can inhibit the growth of established HCC in NAFLD mice. Through pharmacological inhibition and genetic depletion of P2Y12 as well as in vivo transfusion of wild-type (WT) or CD40L-/- platelets, we demonstrate that the anti-tumor function of platelets is mediated through P2Y12-dependent CD40L release, which leads to CD8+ T cell activation by the CD40 receptor. Unlike P2Y12 inhibition, blocking platelets with aspirin does not prevent platelet CD40L release nor accelerate HCC in NAFLD mice. Similar findings were observed in liver metastasis models. All together, our study reveals a complex role of platelets in tumor regulation. Anti-platelet treatment without inhibiting CD40L release could be considered for liver cancer patients with NAFLD.


Subject(s)
Blood Platelets/immunology , Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Receptors, Purinergic P2Y12/metabolism , Animals , CD40 Ligand/genetics , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics
8.
Cancer Discov ; 11(5): 1248-1267, 2021 05.
Article in English | MEDLINE | ID: mdl-33323397

ABSTRACT

Gut dysbiosis is commonly observed in patients with cirrhosis and chronic gastrointestinal disorders; however, its effect on antitumor immunity in the liver is largely unknown. Here we studied how the gut microbiome affects antitumor immunity in cholangiocarcinoma. Primary sclerosing cholangitis (PSC) or colitis, two known risk factors for cholangiocarcinoma which promote tumor development in mice, caused an accumulation of CXCR2+ polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC). A decrease in gut barrier function observed in mice with PSC and colitis allowed gut-derived bacteria and lipopolysaccharide to appear in the liver and induced CXCL1 expression in hepatocytes through a TLR4-dependent mechanism and an accumulation of CXCR2+ PMN-MDSCs. In contrast, neomycin treatment blocked CXCL1 expression and PMN-MDSC accumulation and inhibited tumor growth even in the absence of liver disease or colitis. Our study demonstrates that the gut microbiome controls hepatocytes to form an immunosuppressive environment by increasing PMN-MDSCs to promote liver cancer. SIGNIFICANCE: MDSCs have been shown to be induced by tumors and suppress antitumor immunity. Here we show that the gut microbiome can control accumulation of MDSCs in the liver in the context of a benign liver disease or colitis.See related commentary by Chagani and Kwong, p. 1014.This article is highlighted in the In This Issue feature, p. 995.


Subject(s)
Cholangiocarcinoma/pathology , Gram-Negative Bacteria/physiology , Hepatocytes/physiology , Liver Neoplasms/pathology , Myeloid-Derived Suppressor Cells/physiology , Animals , Disease Models, Animal , Gastrointestinal Microbiome , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL